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a free surface

G.D.Thiart 1

Abstract

A numerical lifting line theory for the calculalion of lift on

a hydrofoil of finite sp&n near a free surface is presented.

Nonlinearities in the lift cu,rae slope of the hydrofoil sec-

tions are accounted for, and a downwash correclion due

to the presence of the free surface is also included. Theo-

retical results o,re compared with erperimental results for a

5.11 aspecl ratio hydrofoil of the circular o,rc type. The lift
curaes of the hydrofotl sections as fu,nction, of depth of sub-

ntergence and angle of attack were calculat,ed by means of
a linearized free surface boundary condilion, panel method.

These section lift curaes u)ere used to calculate the f,nite
span hydrofoil lift curnes by 

^eans 
of the numerical lifting

line th,eory. The theoretical results compare fauourably with
the erperimenlal results, and it is shown that much bet-

ter agreement between theory and erperiment is obtained
as cornpared to resulls obtained with a simple aspect ratio
correction factor based on Prandtl's liftin,g line theory.

Nornenclature

op , bp, cp constants in quadratic curve fit
A7 hydrofoil aspect ratio (s2/plan areas)

c hydrofoil section chord
Coi induced drag coefficient
Cr,Cr section lift coefficient, hydrofoil lift

coefficient
force per unit length
Froude number
acceleration of gravity
depth of submergence of lifting line,
depth of submergence of trailing edge

index
number of panels, hydrofoil sectiotts
hydrofoil span
maximum thickness of hydrofoil
coordinates in free strea,m direction,
along hydrofoil span, perpendicular
to undisturbed free surface
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velocity components in r-direction,
z-direction
free stream velocity, effective velocity
at lifting line
downwash at lifting line induced by
trailing vorticity
geometrical angle of attack, zero-lift
angle, effective angle of attack at
hydrofoil section
strength of trailing vorticity
circulation
dummy variable in spanwise direction
wave-making velocity potential
fluid density

Introduction

The calculation of the lift generated by a hydrofoil near
a free surfa,ce is necessary for the determination of the
performance of hydrofoil supported craft such as hydro-
foil boats supported by surface-piercing struts or hydrofoil
supported catamarans. There are a number of methods
available for the calculation of the lift of a hydrofoil of
infinite length beneath a free surface, e.B. the thin hydro-
foil theory of Hough k Moran [1] and the panel method
of Giesing & Smith.[2] Both of these methods are based
on the linearized free surface boundary condition applied
at the undisturbed free surface. A number of calculation
methods which employ the exact nonlinear free surface

boundary condition at the exact location of the free sur-
face have also been presented recently.[3-6]

The calculation of the Iift of a hydrofoil of finite length
beneath a free surface has received much less attention.
Current practice usually involves the correction of two-
dirnensional results by means of Prandtl's lifting line the-
ory [7;8] or other more elaborate correction formulas.[9]

The purpose of this paper is to present the numerical
lifting Iine theory for hydrofoils of finite span near a free

surface. The method of calculation is similar to that of
Anderson et al. [10] in that the nonlinear lift curve slope

(with respect to angle of attack) of the hydrofoil section is

accounted for, but a lnore sophisticated approach towards
the calculation of the improper integrals that arise in the
formulation is adopted. Furthermore, a correction due to
the presence of the free surface is included in the present

theory.
The theory is applied to a 5.11 aspect ratio hydrofoil

which is very sirnilar to a Gcjttingen Kl1 profile, and the
results are compared with experirnental data. It is shown
that better agreement between theory and experiment is

Ft
Fr
g

h, ht"

k
N
s

t
t,A,,Z



R&D JOURNAL VOL. 10, NO. 1, 1994

obtained cornpared to the case when a simple aspect ratio
correction factor based on Prandtl's lifting line theory is
utilized.

Theoretical model

The basis of the lifting line model [10] is the postulate that
straight wings of large aspect ratio may be represented
by a single bound vortex line at the quarter-chord. The
strength of this vortex line (the lifting line) varies along
the sparl, with the local strength given by the circulation
f (y). A trailing vortex is generated a,t ea,ch point on the
wing rvhere the circulation changes, the strength of the
trailing vortex being equal to the change in circulation at
the point where it leaves the lifting line. For a continuous
circulation distribution, the strength of the trailing vortex
st arting at a given point orl the lifting line is given by

t(y) - dr I dy.
A further postulate is that local value of circulation

rnay be related to the local force per unit span F' by rneans
of a modified version of the Kutta-Joukoq'ski theorem,

F'(y) = pV.(y)r(y)
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boundary condition in satisfied. Two other conditions that
also have to be satisfied are the radiation condition, i.e.
that the free surface remains undisturbed far ahead of the
hydrofoil, and the depth condition, i.e. no disturbances
very far below the hydrofoil. This may be achieved by
means of the image in the plane z - 0 of the bound lifting
line and its associated trailing vortex sheet, plus a, so-called
wave-making velocity potential 6*. All gravity effects are

included in this wave-making potential, which has to be a

solution of Laplace's equation, i.e. Y'6* - 0.

Applicat,ion of the law of Biot-Savart to the trailing
vortex sheet, and its irnage leads to t,he following equation
for the downwash at the lifting line of length s situated at
depth h beneath the undisturbed free surface:

u,i(y)

-+flJ,r#ffiary
(7)

The effective angle of atta,ck is given by

a"(y) - d -016 -arctan(w, lIl"") (3)

wlrere a is the geornetrical angle of attack and a6 the zero-
lift angle.

The direction of F' is perpendicular to the direction
of I/", a,nd its value lnay be found from

Here \,'" is the local effective velocity'seen'by the lifting
Iine, colnposed of the free strearn velocity Vo. and the
dou'ttn'ash velocity r.ui induced by the trailing vortex sheet:

The first term is the downwash due to the trailing vortex
sheet at the lifting line, and the secorld term (without the
nrinus sign) the uprvash due to t,he irnage trailing vortex
sheet.

The trailing vortex sheet and its image satisfy equa-
tion (6),the litreartzedfree surface boundary condition, ex-
actly, beca,use both the axial velocity cornponent u and the
vertical velocity colnponent u) induced by the t,wo sheets
a,re zeto everywhere on z - 0. It can therefore be con-
sluded that t,he wa,ve-making velocity potential associated
u'it,h the trailing vortex sheet is exactly zero, and hence
that wa,ve-rnaking effects are introduced only via the two-
dirnensioual c.alc.ulation procedure for detennining the sec-

tion lift characteristics.
In the classical lifting line theory, % is assumed to be

equal to the free strearn velocity, Cl is assumed to be a lin-
ear function of a", and arctan(u, lV,-) in equation (3) is
replacecl b,r- tu1 I V* under the assulttption that the magni-
tude of the don'nrvash is small cornpared to the magnitude
of the free stream velocity. This leads to Prandtl's integrG
differential equation u'ith f (y) as the only unknown [11],
which c.an be solved by rnearls of Fourier analysis. In the
present paper, the methodology of Anderson et al . [10] is
usecl to solve the problern llurnerically, which obviates the
need fol tlte tltree a,ssurnptions leacling to Prandtl's equa-
t,iotr. According to this rnethodology, Ct(o") is determined
by lneans of an appropriate trvo-dirnensional calculation
rnethod or frotn experimental da,t,a, rvhereafter equations
(2), (3), (5), and (i) are solved iteratively. An appropri-
ate circulation distribution, e.g. elliptical or calculated by
rneans of Prandtl'sequation, is used to start the iteration
process.

For the purposes of this paper, it is assumed that
tlrespatrwiseliftdistributionisSyl1llnetrical,i.er(y)
f (-V); the procedure for a, nonsyrnmetrical lift distribu-
tion is sinrilar. The wing is subdivided into ,n/ spanwise
sectious, and a quadratic va,riat,ion in circulation is as-

sutned to exist over every section, i.e.

f(y) -ap*Dxy+cky2; k=1, ...1/i Uu. rSyaAu
(8)

(1)

(2)

(4)

(5)

where c is the local section chord, and C1 is the local (two-
dirnensional) section lift coefficient rvhich is a function only
of the local effective angle of attack a"(y). It follows, from
equations (1) and (4), that

1

r(y) - ;V" (y) , (y) Ct (a")

ougn
M+Ww-0 atz-0

The velocity field induced by the bound vortex and
trailing vortex sheet has to be augmented so that

In the presence of a free surface the downrvash distri-
bution depends not only on the circulation distribution on
the hydrofoil, but also on gravity effects. The effect of the
free surface may be a,ccounted for via the linearized free-
surface boundary condition applied at the undisturbed free
surface: [1 ;2]

(6)

the
this
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with go = 0. The quadratic variation is necessary to ensure
that the first integral in equation (i) ca,n be determined
analytically; the coefficients ap, bp and cp for each section
are deterrnined from the knowu values of f 1 determined at
tlre previous iteration, &rd the requirements that df / dy -
0 at Ao, and tha,t df / dy be continuous betr"'een adjacent
sections.

Substitution of equation (8) into equation (7) yields
the following discretized expression for the downwash at
the lifting line:

,i (v) = + .D IJ:-, (br* * 2ckq)
k-1xl*-h-ffi+ffi1 0,

The integral of the first two terrns in equation (9),
representing the downwash due to the vortex sheet, is as

follorvs:

IJ:-, (br, +2ckq)l* - 3u,lo,

-bxhlffil
*2cxyl,r I # I - +rx ( yr - ux- r )t'^^ 

| @*vu-')(u-uu) |

If A = yr (or y - Ax-r ), the integrals ha,ve to be evaluated
in the Cauchy principle value sense; it can be shou'n that
tlre factor A - Au (ot y - gk-r, a,s appropriate) can then
simply be ornitted from equation (10), or replaced by a
constant, such as h or s to ensure that the arguments of
the logarithmic terms rerna,in non-dimensional.

The integral of the second trvo terrns in equation (9),
representing the dou'nrva,sh due to the irnage of the tra,iling
vortex sheet, is given by
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Equation (12) is evaluated by utilizing the quadratic curve
fits of equation (8), and equation (13) in a similar man-
ner by assuming that the product ?ni(y)f(y) also varies
quadratically over every section.

Comparison with experiment

For the purpose of comparison, experimental data for a

5.11 aspect ratio hydrofoil that was measured in the Uni-
versity of Stellenbosch towing tank t6] were selected. The
foil section is very similar to a Gottingen K11 profile: it
has a flat pressure side, a circular arc suction side, and
a leading edge radius equal to 0.970r' I ", where t is the
maximum thickness of the profile. The maximum thick-
ness of the tested profile was equal to 0 .077 c compared to
the tnaxitnurn thickness of 0.075c for the Gottingen K11
profile.
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Figu re 1 Convergence of section lift coeff icients
for a - 4.5o

The section lift characteristics for the chosen section
was calculated by mearls of the panel method of Giesing
& Smith,[2] irnplernented in FoRTRAN 77 on a 486 per-
sonal cornputer. The panels were distributed over the
chord of the section according to the well-known semi-
circle method, except on the rounded leading edge, where
panels of equal length were used. The lift characteristic-
swere calctrlated for a Froude number Fr = V*11ffi ot
4.3, depth of submergence of the trailing edge hr" equal

F
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The rnethod of llulnerical integration of the dorvnrvash
integra.ls presented here differs substantially from that of
Anderson et al., who used Sitnpsou's ntle aud approxi-
rnated the singular ca,ses (y
integrals for adj aceut sections.

After a, converged solution for the circulation distri-
bution has been obtained, the lift and induced drag co-

:rT:rT:T: 
of the hydrofoil can be computed in the usual

Cr

t:: , ui(y) r@) dy
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to I I 8, I I 4, L 12, and 1 times chord length, and angles
of attack ranging from -4.5o to 6o, corresponding to the
towing test conditions. The lift curve for infinite submer-
gence was also calculated. In order to ascertain whether
the results were independent of panel size, the number of
panels was varied from 2s (8 panels) to 2s (5I2 panels)
for every case. The typical convergence behaviour of the
section lift coefficient as function of the number of panels
is illustrated in Figure 1 for a
mately 6 min of CPU time to calculate one data point for
5L2 panels.

2t

unknown) potential flow solution. The calculated sectiou
lift characteristics are shown in Figure 2 (the method of
Giesing U Smith can only be applied if the hydrofoil is

completely subrnerged beneath the undisturbed free sur-
face; for the trailing edge depth of cf 8 this corresponds to a
maximum angle of attack of approximately 4.5o), together
with their corresponding quadratic lea,st squa,res curve fits.
It is clear that the characteristics a,s calculated can be ap-
proximated by quadratic polynomials to a high degree of
accuracy. The coefficients of these clrrve fits are presented

in Table 1.

o.71.4

1.2

t.0 /
/

/

1
/

/

) (
,6

.p'

/,
(
(-,

,E

,c '?

/

V

,*

,*

J
l'

.v

*'

v
*

0.6

0.5

0.4

()- 0.3

o.2

0.1

0.0

-0.t
-5-+ -5-2 -1 0 t 2 5 4 5 6 7

c( [']
Figu re 3 Compa rison of experimenta I lift ch aracteristics

with calculated results corrected by means of
Prandtl's lifting line theory (tyrnbols represent ex-

perimental results, lines represent numerical results)

The correc t ion factor for a 5. 1 1 aspect ratio rectan-
gular flat plate as calculated by means of Prandtl's lift-
itrg line theory was found to be equal to 0.6909. The
experimental lift curves are compared in Figure 3 with
the calculated trvo-dimensional results multiplied by this
correction factor. For hr" I c = 1 , the experimental val-
ues are underestirnated at small angles of attack (up to
about 1o), but for larger angles the experirnental values

a,re overestimated. The reason for t,his dualistic behaviour
is that there is a rnodest discontinuity in the slope of the
measured lift curve at about a = 1, rvhich can probably
be ascribed to leading-edge separation of the long bubble
type as described by Hoerner k Borst.[l3] The potential
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Figu re 2 Calcu lated section lift ch aracteristics (symbols

represent calculated points, lines represent
quadratic curve fits)

The results were extrapolated to zero panel size by
means of Richardson [12] extrapolation; it is estimated
that these extrapolated values should generally be accu-
rate to four decimal figures compared to the exact ( but

Table 1 Quadratic curve fit coefficients for Ct

Coefficient of 00 aL [rad- 
1] a2 frad- 

2]

6.645067 -0.306030
4.876007 -3. 159077
4.048844 -4.67 4135

3.243845 -5.480603
2.796657 -6.162090

hr"=-
hr.=,

hr" = c12

hr.= cl4
hr" = c/8

0.5296889
0.4146372
0.3562 r94
0 .2635960
0. 1 750660
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flow theory used to calculate the section lift coefficients of
course does not make provision for separated flow. The
same comments apply in principle for the comparison at
hrclc = Il2. For hr"lc = Il4 and Il8, correspondence
between theory and experiment is poor: t,he theory under-
estimates the lift by a considerable margin.
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Figu re 4 Convergence of hydrofoil lift coefficients
for a - 4.5o

The numerical lifting line theory, utilizing the section
lift characteristics as defined in Table 1, was also imple-
mented in FoRTRAN 77 on the 486 personal computer.
Sections along the hydrofoil span were distributed accord-
ing to the semi-circle method, and calculations were per-
formed for the number of sections ranging from 2 to 2a

(64). The typical convergence behaviour of the hydrofoil
lift coefficient as function of number of sections is illus-
trated in Figure 4, also for a : 4.5o. The CPU time
required for one 64-section data point is about 30 s, in-
volving approximately 40 iterations with a relaxation fac-
tor of 0.05 on downwash and circulation. It is estimated
that the 64-section results should generally be accurate to
three decimal figures.

The 64-section results are compared with the exper-
imental results in Figure 5. For hr"lc = 1 and Il2, the
experimental values are fairly rvell predicted up to about
a = 1o, where the discontinuities in the experimental
lift curves are located. For hr"lc = Il4 and Il8, cor-

respondence between theory and experitnent is also much
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improved relative to the theoretical results based on the
Prandtl lifting line correction factor.
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Figu re 5 Comparison of experimental lift characteristics
with nu merical lifting line theory (ty.bols represent

experimental results, lines represent numerical results)

Conclusions

A method for calculating. the lift on a hydrofoil near a
free surface has been presented. It was demonstrated that
the lift on a circular arc hydrofoil of finite span near a
free surface can be predicted fairly well for small angles of
attack by means of this theory. There is scope for further
improvement by accounting for viscous effects in the two-
dimensional calculation procedure.

Induced drag can also be calculated by means of the
method, but, since induced drag cannot be measured sepa-

rately from other major contributions such as viscous and
wave drag, Do comparison with experimental drag results
wa,s presented. The prediction of the drag of a hydrofoil of
finite span near a free surface is one of the topics envisaged
for further research.
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