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Numerical lifting line theory for a hydrofoil near a free surface

G.D.Thiart!

Abstract

A numerical lifting line theory for the calculation of lift on
a hydrofoil of finite span near a free surface is presented.
Nonlinearities in the lift curve slope of the hydrofoil sec-
tions are accounted for, and a downwash correction due
to the presence of the free surface is also included. Theo-
retical results are compared with ezperimental results for a
5.11 aspect ratio hydrofoil of the circular arc type. The lift
curves of the hydrofoil sections as function of depth of sub-
mergence and angle of attack were calculated by means of
a linearized free surface boundary condition panel method.
These section lift curves were used to calculate the finite
span hydrofoil lift curves by means of the numerical lifting
line theory. The theoretical results compare favourably with
the experimental resulls, and it is shown that much bet-
ter agreement between theory and expervment is obtained
as compared to results obtained with a stmple aspect ratio
correction factor based on Prandtl’s lifting line theory.

Nomenclature
ax, bk, cx constants in quadratic curve fit
Ar hydrofoil aspect ratio (s?/plan areas)
c hydrofoil section chord
Cp; induced drag coefficient
C1,CL section lift coefficient, hydrofoil lift
coefficient
F' force per unit length
Fr Froude number
g acceleration of gravity

h, hte depth of submergence of lifting line,
depth of submergence of trailing edge

k index

N number of panels, hydrofoil sections

s hydrofoil span

t maximum thickness of hydrofoil

z,Y, 2 coordinates in free stream direction,
along hydrofoil span, perpendicular
to undisturbed free surface

1Senior lecturer, Department of Mechanical Engineering, Univer-
sity of Stellenbosch, Stellenbosch, 7600 Republic of South Africa

U, w velocity components in z-direction,

z-direction

free stream velocity, effective velocity

at lifting line

w; downwash at lifting line induced by
trailing vorticity

a,ap, e geometrical angle of attack, zero-lift
angle, effective angle of attack at
hydrofoil section

Voo,‘/e

v strength of trailing vorticity

r circulation

n dummy variable in spanwise direction
Ow wave-making velocity potential

p fluid density

Introduction

The calculation of the lift generated by a hydrofoil near
a free surface is necessary for the determination of the
performance of hydrofoil supported craft such as hydro-
foil boats supported by surface-piercing struts or hydrofoil
supported catamarans. There are a number of methods
available for the calculation of the lift of a hydrofoil of
infinite length beneath a free surface, e.g. the thin hydro-
foil theory of Hough & Moran (1] and the panel method
of Giesing & Smith.[2] Both of these methods are based
on the linearized free surface boundary condition applied
at the undisturbed free surface. A number of calculation
methods which employ the exact nonlinear free surface
boundary condition at the exact location of the free sur-
face have also been presented recently.[3—6]

The calculation of the lift of a hydrofoil of finite length
beneath a free surface has received much less attention.
Current practice usually involves the correction of two-
dimensional results by means of Prandtl’s lifting line the-
ory [7;8] or other more elaborate correction formulas.[9]

The purpose of this paper is to present the numerical
lifting line theory for hydrofoils of finite span near a free
surface. The method of calculation is similar to that of
Anderson et al. [10] in that the nonlinear lift curve slope
(with respect to angle of attack) of the hydrofoil section is
accounted for, but a more sophisticated approach towards
the calculation of the improper integrals that arise in the
formulation is adopted. Furthermore, a correction due to
the presence of the free surface is included in the present
theory.

The theory is applied to a 5.11 aspect ratio hydrofoil
which is very similar to a Gottingen K11 profile, and the
results are compared with experimental data. It is shown
that better agreement between theory and experiment is
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obtained compared to the case when a simple aspect ratio
correction factor based on Prandtl’s lifting line theory is
utilized.

Theoretical model

The basis of the lifting line model [10] is the postulate that
straight wings of large aspect ratio may be represented
by a single bound vortex line at the quarter-chord. The
strength of this vortex line (the lifting line) varies along
the span, with the local strength given by the circulation
I'(y). A trailing vortex is generated at each point on the
wing where the circulation changes, the strength of the
trailing vortex being equal to the change in circulation at
the point where it leaves the lifting line. For a continuous
circulation distribution, the strength of the trailing vortex
starting at a given point on the lifting line is given by
v(y) =dT'/ dy.

A further postulate is that local value of circulation
may be related to the local force per unit span F’ by means
of a modified version of the Kutta-Joukowski theorem,

F'(y) = pVe(y)T'(y) (1)

Here V. is the local effective velocity ‘seen’ by the lifting
line, composed of the free stream velocity V., and the
downwash velocity w; induced by the trailing vortex sheet:

Ve=1/V2 +w? (2)

The effective angle of attack is given by
ae(y) = a — ap — arctan(w; / Voo) (3)

where o 1s the geometrical angle of attack and g the zero-
lift angle.

The direction of F’ is perpendicular to the direction
of V., and its value may be found from

F/(y) = 5V (0)e(w)Ci (o) (4)

where ¢ is the local section chord, and Cj is the local (two-
dimensional) section lift coefficient which is a function only
of the local effective angle of attack a.(y). It follows, from
equations (1) and (4), that

I(w) = 5V W) () Ci () (5)

In the presence of a free surface the downwash distri-
bution depends not only on the circulation distribution on
the hydrofoil, but also on gravity effects. The effect of the
free surface may be accounted for via the linearized free-
surface boundary condition applied at the undisturbed free
surface:[1;2]

Ou g

—+-——w=0 atz=0 6

or V2 ©)
The velocity field induced by the bound vortex and the
trailing vortex sheet has to be augmented so that this
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boundary condition in satisfied. Two other conditions that
also have to be satisfied are the radiation condition, i.e.
that the free surface remains undisturbed far ahead of the
hydrofoil, and the depth condition, i.e. no disturbances
very far below the hydrofoil. This may be achieved by
means of the image in the plane z = 0 of the bound lifting
line and its associated trailing vortex sheet, plus a so-called
wave-making velocity potential ¢,,. All gravity effects are
included in this wave-making potential, which has to be a
solution of Laplace’s equation, i.e. V2¢, = 0.
Application of the law of Biot-Savart to the trailing
vortex sheet and its image leads to the following equation
for the downwash at the lifting line of length s situated at

depth h beneath the undisturbed free surface:
— s/2 dr
wi(y) = 45 /250 G 7= A0
1os/2 dr_ y-n dn

4m J—s/2 dn ah2+(y—n)?

(7

The first term is the downwash due to the trailing vortex
sheet at the lifting line, and the second term (without the
minus sign) the upwash due to the image trailing vortex
sheet.

The trailing vortex sheet and its image satisfy equa-
tion (6), the linearized free surface boundary condition, ex-
actly, because both the axial velocity component u and the
vertical velocity component w induced by the two sheets
are zero everywhere on z = 0. It can therefore be con-
sluded that the wave-making velocity potential associated
with the trailing vortex sheet is exactly zero, and hence
that wave-making effects are introduced only via the two-
dimensional calculation procedure for determining the sec-
tion lift characteristics.

In the classical lifting line theory, V. is assumed to be
equal to the free stream velocity, C is assumed to be a lin-
ear function of ae, and arctan(w; / Vi) in equation (3) is
replaced by w; / Vi, under the assumption that the magni-
tude of the downwash is small compared to the magnitude
of the free stream velocity. This leads to Prandtl’s integro-
differential equation with I'(y) as the only unknown [11],
which can be solved by means of Fourier analysis. In the
present paper, the methodology of Anderson et al. [10] is
used to solve the problem numerically, which obviates the
need for the three assumptions leading to Prandtl’s equa-
tion. According to this methodology, Ci(a.) is determined
by means of an appropriate two-dimensional calculation
method or from experimental data, whereafter equations
(2), (3), (5), and (7) are solved iteratively. An appropri-
ate circulation distribution, e.g. elliptical or calculated by
means of Prandtl’sequation, is used to start the iteration
process.

For the purposes of this paper, it is assumed that
the spanwise lift distribution is symmetrical, i.e. T'(y) =
['(—y); the procedure for a nonsymmetrical lift distribu-
tion is similar. The wing is subdivided into N spanwise
sections, and a quadratic variation in circulation is as-
sumed to exist over every section, i.e.

T(y) =ax+by+oay®s k=1, ..N; w1 <y<w

(8)
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with yo = 0. The quadratic variation is necessary to ensure
that the first integral in equation (7) can be determined
analytically; the coefficients ay, by and cy for each section
are determined from the known values of I'y determined at
the previous iteration, and the requirements that dT" / dy =
0 at yo, and that dI' / dy be continuous between adjacent
sections.

Substitution of equation (8) into equation (7) yields
the following discretized expression for the downwash at
the lifting line:

N
wi(y) = 55 gjl e (bx + 2cx)

(9)

1 1 y—n y+n
[y—n y+n  4h2+(y—n)? + 4h?+(y+n)2] d

The integral of the first two terms in equation (9),
representing the downwash due to the vortex sheet, is as
follows:

D (b 200) [ — ok | d

— bklll | Y=yx—1)(y+yx-1)

(¥y=y1)(y+yx)

+2ckyln ’ﬁy‘yk—l—)(l“*'yk)

(10)

+n-Dly-v) | Ao (e — Y1)

If y = yx (or y = yx—1), the integrals have to be evaluated
in the Cauchy principle value sense; it can be shown that
the factor y — yx (or y — yx—1, as appropriate) can then
simply be omitted from equation (10), or replaced by a
constant such as h or s to ensure that the arguments of
the logarithmic terms remain non-dimensional.

The integral of the second two terms in equation (9),
representing the downwash due to the image of the trailing
vortex sheet, is given by

v - +
ykk_: (bk + Zexn) {— 4hi(yn—n)" + 4h2i(yn+n)2] G

{4r?+(y-9)* H{ar>+(y+y1)?}

=1p1
A {4r2+(y—yr-)? H{4r2+(y+yx-1)?}
4h24(y+y-1)? H4r +y—-91)?}
n |4 . . (11)
teky {ar2+(y-yi-1)* H{ar?+(y+v10°}
tan ~! L5k — tan ~! LMkt
+4eih 74 @
K [ —tan "1 LHk 4 tap 1 Lot

+4ex (Yx — Y1)

The method of numerical integration of the downwash
integrals presented here differs substantially from that of
Anderson et al.,, who used Simpson’s rule and approxi-
mated the singular cases (y = yx) as the average of the
integrals for adjacent sections.

After a converged solution for the circulation distri-
bution has been obtained, the lift and induced drag co-
efficients of the hydrofoil can be computed in the usual

manner: /
24 s/2
CL= —R/ I(y) dy (12)
Voo 87 —s/2
24r [*/? ,
o= [ w1
0S8 J-s/2
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Equation (12) is evaluated by utilizing the quadratic curve
fits of equation (8), and equation (13) in a similar man-
ner by assuming that the product wi(y)['(y) also varies
quadratically over every section.

Comparison with experiment

For the purpose of comparison, experimental data for a
5.11 aspect ratio hydrofoil that was measured in the Uni-
versity of Stellenbosch towing tank [6] were selected. The
foil section is very similar to a Gottingen K11 profile: it
has a flat pressure side, a circular arc suction side, and
a leading edge radius equal to 0.970¢2/c, where ¢ is the
maximum thickness of the profile. The maximum thick-
ness of the tested profile was equal to 0.077 ¢ compared to
the maximum thickness of 0.075¢ for the Gottingen K11
profile.
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Figure 1 Convergence of section lift coefficients
for a =4.5°

The section lift characteristics for the chosen section
was calculated by means of the panel method of Giesing
& Smith,[2] implemented in FORTRAN 77 on a 486 per-
sonal computer. The panels were distributed over the
chord of the section according to the well-known semi-
circle method, except on the rounded leading edge, where
panels of equal length were used. The lift characteristic-
swere calculated for a Froude number Fr = V, /1/(gc) of
4.3, depth of submergence of the trailing edge hie equal
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to 1/8, 1/4, 1/2, and 1 times chord length, and angles
of attack ranging from —4.5° to 6°, corresponding to the
towing test conditions. The lift curve for infinite submer-
gence was also calculated. In order to ascertain whether
the results were independent of panel size, the number of
panels was varied from 23 (8 panels) to 2° (512 panels)
for every case. The typical convergence behaviour of the
section lift coefficient as function of the number of panels
is illustrated in Figure 1 for @ = 4.5°. It took approxi-
mately 6 min of CPU time to calculate one data point for
512 panels.
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Figure 2 Calculated section lift characteristics (symbols

represent calculated points, lines represent
quadratic curve fits)

The results were extrapolated to zero panel size by
means of Richardson [12] extrapolation; it is estimated
that these extrapolated values should generally be accu-
rate to four decimal figures compared to the exact ( but

Table 1 Quadratic curve fit coefficients for C,

Coefficient of a? al [rad!] o? [rad~?]
hte = 00 0.5296889 6.645067 —0.306030
hte = ¢ 0.4146372 4.876007 —3.159077

hte = ¢/2 0.3562194 4.048844 —4.674135
hte = ¢/4 0.2635960 3.243845  —5.480603
hte = ¢/8 0.1750660 2.796657 —6.162090
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unknown) potential flow solution. The calculated section
lift characteristics are shown in Figure 2 (the method of
Giesing & Smith can only be applied if the hydrofoil is
completely submerged beneath the undisturbed free sur-
face; for the trailing edge depth of ¢/8 this corresponds to a
maximum angle of attack of approximately 4.5°), together
with their corresponding quadratic least squares curve fits.
It is clear that the characteristics as calculated can be ap-
proximated by quadratic polynomials to a high degree of
accuracy. The coefficients of these curve fits are presented
in Table 1.
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Figure 3 Comparison of experimental lift characteristics
with calculated results corrected by means of

Prandtl's lifting line theory (symbols represent ex-
perimental results, lines represent numerical results)

4 5 6 7

The correction factor for a 5.11 aspect ratio rectan-
gular flat plate as calculated by means of Prandtl’s lift-
ing line theory was found to be equal to 0.6909. The
experimental lift curves are compared in Figure 3 with
the calculated two-dimensional results multiplied by this
correction factor. For hi/c = 1, the experimental val-
ues are underestimated at small angles of attack (up to
about 1°), but for larger angles the experimental values
are overestimated. The reason for this dualistic behaviour
is that there is a modest discontinuity in the slope of the
measured lift curve at about a = 1, which can probably
be ascribed to leading-edge separation of the long bubble
type as described by Hoerner & Borst.[13] The potential
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flow theory used to calculate the section lift coefficients of
course does not make provision for separated flow. The
same comments apply in principle for the comparison at
hte/c = 1/2. For hie/c = 1/4 and 1/8, correspondence
between theory and experiment is poor: the theory under-
estimates the lift by a considerable margin.
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Figure 4 Convergence of hydrofoil lift coefficients
for a = 4.5°

The numerical lifting line theory, utilizing the section
lift characteristics as defined in Table 1, was also imple-
mented in FORTRAN 77 on the 486 personal computer.
Sections along the hydrofoil span were distributed accord-
ing to the semi-circle method, and calculations were per-
formed for the number of sections ranging from 2 to 26
(64). The typical convergence behaviour of the hydrofoil
lift coefficient as function of number of sections is illus-
trated in Figure 4, also for « = 4.5°. The CPU time
required for one 64-section data point is about 30 s, in-
volving approximately 40 iterations with a relaxation fac-
tor of 0.05 on downwash and circulation. It is estimated
that the 64-section results should generally be accurate to
three decimal figures.

The 64-section results are compared with the exper-
imental results in Figure 5. For hie/c = 1 and 1/2, the
experimental values are fairly well predicted up to about
o = 1°, where the discontinuities in the experimental
lift curves are located. For hie/c = 1/4 and 1/8, cor-
respondence between theory and experiment is also much
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improved relative to the theoretical results based on the
Prandtl lifting line correction factor.
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Figure 5 Comparison of experimental lift characteristics
with numerical lifting line theory (symbols represent
experimental results, lines represent numerical results)

Conclusions

A method for calculating the lift on a hydrofoil near a
free surface has been presented. It was demonstrated that
the lift on a circular arc hydrofoil of finite span near a
free surface can be predicted fairly well for small angles of
attack by means of this theory. There is scope for further
improvement by accounting for viscous effects in the two-
dimensional calculation procedure.

Induced drag can also be calculated by means of the
method, but, since induced drag cannot be measured sepa-
rately from other major contributions such as viscous and
wave drag, no comparison with experimental drag results
was presented. The prediction of the drag of a hydrofoil of
finite span near a free surface is one of the topics envisaged
for further research.
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