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Abstract

The ftl, around the blades of a torque conuerter turbine,
consisling of an, arisymntetrical radial cascade, was inues-
tigated. The pressure distribulion along the blade surfaces
was determined erperimentally, using a torque conuerter
model equipped with pressure rneasuring stalions on the
blade surfaces of a stationary turbine. A two-dimensional
potential fl,ow panel method was deueloped for rhe anal-
ysis of incon-Lpressible flou, through arisymmetrical radial
cascades. The method was uerified by application to a rec-
tilinear cascade and through u,se of a conformal transfor-
mation. It yielded resu,lts in ercellent correspondence with
published data. For the turbine cascade the pa?rel nt ethod
predicted a blade surface pressure d,istribution which com-
pared well e?touglr, with the erperimenlal results to be con-
sidered as a blade profile desigtt, tool.

Nomerrclature

a Free spiral vortex palarneter
P Angle between profile surface tangent and

global x-axis
f Vortex strength in vortex-sink cornbination

forrning free spiral vortex
7 Function jrepresenting local strength of vortex

distribution; vortex strength; vortex strength
in specific node (when used with index)

0 Angle in polar coordinate system
A Sink strength in vortex-sink cornbination

forming free spiral vortex
O Velocity potential
A Trailing edge tip; quantity defined in Equation (4)

(r,r'hen used rvith index)
B Corner on upper profile surface near trailing edge;

quantity defined in Equation (4) (when used
with index)

C Free spiral vortex parameter
C-o* Moment coefficient
Cp Coefficient of pressur.e

Cret Reference pressure coefficient
j Index number of node
M AD Mean absolute deviation rneasure of fit
.A/ Nurnber of nodes distributed a.long profile surface
P Pressure (static unless otherwise indicated)

l Department of Mechanical Engineering, University of Stellen-
bosch, Stellenbosch, TGoo Republic of South Africa (Member)

2 Department of Mechanical Engineering, University of
Stellenbosch

?' Radial distance in polar coordinate system; radius
u Vector component in x-axis direction; velocity

cornponent in x-axis direction
V Flow velocity
a Vector component ir y-axis direction; velocity

component i.t y-axis direction
r Distance along horizontal axis in cartesian

a fffi::3'l"lr'1,T,,,.,r axis in cartes,an
coordinate system

Z Nurnber of profiles in cascade

Subscripts

^t' Due to profile surface vortex distribution
dyn Dynamic pressure (t, nV')
F Due to free spiral vortex
j Index number of node
N Index number of node //
n Normal to profile sur{ace
ref Of refererlce flow
stag Stagnation (total) pressure
st at Static plessure
t Tangential to profile surface
u In x-axis direction
v In y-axis direction
1 Index number of node
2 Index number of node
3 Index number of node

S,rp erscript

* Indicating Iocal coordinate system of panel

Introduction

To aid in optimizrng the operation and improving the ef-
ficiency of torque converters, various authors have estab-
lished theoretical design and analysis tools for hydrody-
ua,tnic drives. An example is the so-called one-dimensional
hydrodynarnic tnodel rvhich predicts the performance char-
a.cteristics of a torque converter by using fluid properties,
geometry and the operating conditions as input, to calcu-
la,te the momerltum flux over the rnembers at specific op-
erating points. This study takes a mole basic approach by
ana,lysing a single element of the torque converter, which
is seen as an entity operating under certain inlet condi-
tions. The reasoning is that analysis of the performance
of single elernents eventually leads to better understanding
of the rvhole torque converter. The ultimate objective is



32

to establish a rnethod whereby blade profile shapes may
be optimized.

Specific objectives of this study are

o the experimental evaluation of the pressure distribu-
tion around a blade in a torque converter turbine;

o development of a theoretical two-dimensional poten-
tial flow analysis technique for calculating this pres-
sure distribution;

o computer implementation of the potential flow anal-
ysis technique; and

o verification of this technique through comparison with
published data and experimental results.

Background

The subject of this investigation is the second turbine of a
commercial torque converter which is illustrated in Figures
1 and 2. The turbine is basically an axisymmetrical radial
cascade with 20 identical blades, one of which is shown in
Figure 3. This blade profile is defined by series of lines
and arcs which are detailed in Table 1.

casrng turbine

stator

impeller

turbine 2

input shaft

Figu re 1 Cross-section of the torq ue converter model.
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section A A

Figure 2 Plan and elevation of turbine.

Figure 3 Turbine blade profile.

Experirnental work

The torque converter turbine

A full-scale rnodel of the torque converter with water as

n'orking fluid was used for the experiments. The model
was equipped with two stationary turbines, separated by
a stator and thus simulated the torque converter in the
stalled mode only. This facilita,ted pressure measurements
on the surfaces of the turbine blades, accomplished by
tttealls of holes, drilled in the surfaces of some blades and
conrlected to a lna.nometer, via a system of channels, tubes
and valves. In total t,here were 23 holes on different blades,



R&D JOURNAL VOL. 10, NO. 2, T994 33

Table 1 Detail of curves defining blade profile

Curve Startitrg point Arc centre (rnrn)
Arc

radius
(nt*)No.

1

2

3

4

5

6

7

8

Type
arc
line
arc
arc
arc
arc
arc
line

t

-4r.293
-13.991
- 8 .567

- 4.066
1.076

- 7.677

-22.775
-40.913

-8. 677 -22.703
-4.861
-6.065 - 3.869

-6.620 - 4.020
0.137 -11.427
4. 159 - 13 .67 3

3.029 12.981

- 8 .065

-42.106 38.250

13.509 20.130

- 2.600 4.020

- 9 .423 14.090

-r7.153 22.r40

-75.801 86.560

perpendicular to the blade surfaces and in the middle of
the blade span. The blades were accurately NC machined
to be identical and the pressure distributions over them are
assumed identical. By measuring static pressures at the 23
holes, the pressure distribution over the blade surface was
thus obtained. Over the rear 20% of the blade chord the
profile was too thin to allow the drilling of holes and no
pressures could be measured in this area.

In two-dimensional airfoil theory it is customary to
define the pressure distribution along an airfoil surface by
means of a dimensionless coefficient of pressure, expressing
the pressure with reference to the static and dyna,mic pres-
sures of the undisturbed stream. Since the 'undisturbed
stream' velocity varies inversely with radius in a radial cas-
cade flow, the pressure at a defined location in the model
is used as refere:nce. This location is termed the 'reference
pressure station'and it was chosen to be at the cascade
inlet radius, midway between two adjacent turbine blades.

11. 
dimensionless reference pressure coefficientis defined

Cref =
P.t.t - Pt"f stat

calculated for each i-peller speed, resulting in the dis-
tributions shown in Figure 5. The pressure distributions
obtained at different speeds are nearly similar, affirming
the repeatability of the blade pressure measurements and
proving the validity of the reference pressure coefficient
derived.

(1)
Pref dyn

A 'Kiel' type probe (shrouded pitot tube) was used to
Ineasure the stagnation pressure at the reference pressure
station. The dynamic pressure at the reference pressure
station was assumed to be the difference between the stag-
nation pressure and a static pressure measured atthe side-
wall of the flow circuit, &t the same radial position a,s the
reference station, but midway between two other bla,des.
The numerator of equation (1) is the difference between
the reference static pressure and the st atic pressure reg-
istered at a blade surface pressure hole. These pressures
were measured with a mercury manometer. As will shortly
be shown, it is also i-portant to find the flow angle at the
reference pressure station. This 'reference flovv angle' was
measured using a 'wedge' probe in conjunction with two
water manometers.

The measurements above were taken with the torque
converter impeller running at speeds of 185, 260 and 290
rpm. The reference flow angle, &s defined in Figure 4, rva,s

found to be 54.3o in all cases. The values for Cr.r rvere

Figu re 4 Reference flow.

4

-3

A-z

Crrf
-1

o

1

35 -30 -25 -20 -15 ,10 -5 0

Blade r coordinate [mm] '- see Fig. 2

Figu re 5 E"perimental pressu re coeff icient distributions.
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Potential flow analysis

Assurnptions

In this analysis the,flow around the torque converter blades
is assumed to be incompressible, two-dimensional, inviscid
and irrotational. The first assumption (incompressibility)
is reasonable. Although the turbine blade aspect ratio is

only 0.67, the second assumption (two-dimensionality) it
ternpting since it greatly simplifies the analysis, and the
flow circuit curvature through the turbine is small. How-
ever, Reynaud,[1] who experimented on the same torque
converter rnodel, measured velocity differences of up to
25% and flow differences of up to I2o across the flow pas-

sage upstrearn of the second turbine blade row. Hence
this assumption inevitably sacrifices some accuracy. The
inviscid fluid assumption essentially leads to the neglect of
the boundary layer on the blade surfaces. Using various
techniques of flow visualisation, Reynaud concluded that
Iittle or no flow separation occurred in the turbine and, &c-

cording to Hess k Smith 12) the inviscid flow assumption
is thereby j ustified.

The panel rnethod

According to Lakshminarayanu [3] the panel method is the
rnost suitable potential flow analysis method if the interest
lies prirnarily in the pressure distribution. Therefore this
rnethod was chosen for the potential flow analysis. The
panel rnethod developed here rvill now be briefly outlined,
the full details of the rnethod and rela,ted rnathema,tics
having been given by Venter.[a]

Nodes and panels

A number of nodes are chosen on each blade surface, start-
irg and ending at the trailing edge tip and proceeding in
a clockwise direction. The section of surface between suc-
ceding nodes forms the panels and on each panel a local
(rr, yx) coordinate system is defined with the x*-axis con-
necting the initial and end nodes of the panel and the
y*-axis projecting outwards from the initial node. The
blade surface between succeeding nodes is approximated
by a cubic polynomial defined in the local coordinate sys-
tem. In this way nodes and panels are distributed over all
blades in the cascade, these distributions all being identi-
cal and r,vith the nodes more densely spaced at the leading
and trailing edges. A total of N nodes are chosen over the
Z blades.

Free spiral vortex

A 'free strearn' is commonly defined during the ana,lysis of
the flow around single profiles or in rectilinear cascades.

The equivalent for the radial casca,de is a free spiral vortex
q'hich follows from the conformal transformation mapping
a Cartesian coordinate system onto a polar system a,s de-

tailed for example by Wislicenur [5] aud Scholz,[6] The free
spiral vortex is centred at the ca,scade centre and consists
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of the superposition of a vortex (strength f) and a sink
(strength A). With a = arctan (i) and C = lW,
the flow velocity potential of the free spiral vortex at a

point (r,0) is then (from Anderson t7])

By differentiation the flow velocities in the r and y direc-
tions are

dr = -*(g sin a *ln r cos o)

up = -# cos (a * 0) and

ap = -*sin(a*0).

(2)

(3)

(4)

(5)

Distribution of singularities and their indu ced flow veloci-
ties

Distributions of flow singularities are set up over all panels
on all blades. Only vortices are used as singularities. The
strength of the vortex distribution varies linearly over each

panel and its value in the j-th node is denoted by 7i. It
may be shown that the total flow velocities in the x and y
directions due to the vortex distributions on all panels on
all blades can be expressed as

u-l

u.Y

s,A/Li=r
n,A/Li-r

T Ai and

7jBj,

where Aj and 81 are quantities that depend only on the
geometry of the blades and the cascade and can be cal-
culated explicitly at any field point (, , A). Thus the only
unknowns involved in the flow velocities are the vortex
strengths 7i in the nodes.

Control points and 
"quations

At any point in the flow field the flow velocities induced
by the free spiral vortex and the vortices distributed on
the panels on all the blades, are given by

u = ur*ut and

From (3) and (4) and Figure 6 the velocity normal to the
bla,de surface is then

Vr (r, Y1

+ Di= tyi [,4i sin g + 81 cos B]
(6)

The velocity tangential to this surface is

ucos 0 + usinp

# [-cos(o*d) cos P- sin(a*d) sinB]

+ Di= tij p.i cos g + 81 sin Bl
(i)

The unknown vortex distributions rnust norv be chosen so

as to make the blade surfaces streamlines of the flow. It

V(r,y) =
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can be proved that this will be achieved if one of the follow-
ing equivalent conditions is satisfied: the normal velocity
at all points on the boundary must be zero; or the tan-
gential velocity at any point just outside the blade surface
must be equal to the vortex strength at the surface; or the
tangential velocity just inside the blade surface must be
zero (see Anderson t7] ). These conditions are termed the
streamline boundary conditions.

Figure 6 The normal and the tangent to the profile.

Applying the last condition to (7) leads to the linear
equation

D[ t 7i [,4i cos g + Bi sin B]

- #[cos (o * g) cos g +sin ( a *g) sinB]
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streamline bisector

trailing

Figu re 7 Trailing edge angle bisector.

Cornputer implementation of the panel method

A set of computer programs were written to apply the
panel method to the torque converter turbine. The accu-
racy of the method and its implementation were verified
by comparison to published data.

Application to a rectilinear cascade

The method was first modified by changing the geome-
try of the cascade and the character of the free stream
so that it could be applied to rectilinear cascades. The
program wa^s then applied to several cases for which pub-
lished Co distributions are available, making comparisons
and verifications possible. Figure 8 shows the Co distribu-
tion predicted by the program for the rectilinear Gostelow
cascade using cusped blades at a stagger angle of - 37 .5o 

,

a pitch to chord ratio of 0.99 and an inlet angle of -53.50
(Gostelow t9] ). This cascade was also used as a test
case by several other authors (..g. Tanaka el al. [10]
and McFarland [11]). The Kutta condition was applied
a^s for the torque converter turbine blade. To calculate
e) the iteration method suggested by McFarland [11] wa^s

used. The Cp distribution was calculated using the inlet
velocity as reference, as was done in the original paper
of Gostelow.[9] The agreement between the analytical Co
distribution given by Gostelow and that calculated here is
excellent.

_ t,O

_ 0,9

- 0,6

- 0,4

-02
CP o'o

o2

0,4

0,6

0,8

1,0
r.0 . 0.e .0.8 - o.7 . 0.8 - 0.5 -o.1 . 0.3 -02 - 0.1 0.0

.r/oorC

(8)

to be satisfiediby the unknown lj's. Multiple 'control,
points (, , y) are chosen on the blade surface and this equa-
tion is applied at infinitesimally small distances away from
the control points towards the inside of the blade profile.
Thereby enough equations may be generated from which
to solve for 7t,72, ..., lN . Here the blade surface nodes
themselves are chosen as control points. Since the distri-
bution of panels and vortices are identical on the different
blades, it is only necessary to set up and solve linear equa-
tions on one blade. The blade chosen for this purpose is
called the 'control profile'.

As proven by, for example, Moran t8] and Anderson
[7] the streamline boundary flow condition is not adequate
to allow a unique solution for a blade that is generating
lift. Another condition must be applied namely the Kutta
condition which specifies the circulation generated by a
blade. As shown by Moran [S] this is done by making the
vortex strength in the trailing edge tip equal to zero and
stipulating that the flow on the upper and lower surfaces
of the blade join smoothly at the trailing edge tip and
continues along the extension of the bisector of the trailing
edge angle, away from the profile (see Figure T). For a
profile with sharp trailing edge the outlet flow angle is
hereby fixed to the angle of the trailing edge bisector.

normal

Figure 8 Co distribution for Gostelow's rectilinear cascade.
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Conformal transformation

Having established the accuracy of the analysis for the case

of a rectilinear cascade, it is possible to evaluate the accu-
racy of the analysis for a radial cascade using a conformal
transformation which maps a rectilinear cascade onto a ra-
diat cascade (Wislicenus [5] or Gostelow [9] ). The program
for rectilinear cascades was first applied to the Gostelow
cascade. By integrating the tangential flow velocity on
the profile surface, from the trailing edge in a clockwise
direction around a profile in the Gostelow cascade, the
flow potential on the profile was calculated in the chosen
control points. The Gostelow ca^scade was transformed to
an axisymmetrical radial cascade by means of a confor-
mal transformation and the new locations of the control
points were determined. The program for axisymmetrical
radial cascades was applied to this cascade and the pro-
file surface potentials calculated in the new control points.
The flow potential is invariant under a conformal trans-
formation and consequently the potential values obtained
from both prograrrln should correspond. However, since
the prograrns used different conventions regarditrg their
free streams, these potential values differed by a constant
scaling factor. To remove this factor the two sets of poten-
tial values were normalized by dividing each by its poten-
tial value at the leading edge (which wa^s approximately
the largest value obtain.d). These normalized potential
values are shown in Figure 9, plotted against the original
coordinates of the (unstaggered, untransform"d) Gostelow
profile. It is clear that the agreement is excellent.

Figure 9 Potential values for linear and radial Gostelow
cascades.

It has now been shown that the linear cascade pro-
gram gives results in accordance with published data. Fur-
thermore, the radial and linear cascade progrann agree if
applied to conformally related cascades. This leads to the
conclusion that the radial cascade program is also substan-
tially correct.

Application to the torque converter turbine

The method was then applied to the radial turbine cascade

using the modified blade trailing edges discussed below.
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Turbine trailing edge conditions

The trailing edge of the torque converter turbine blade is
shown in Figure 10. The shape of this trailing edge creates
a problem with the application of the Kutta condition. To
simply apply the condition as detailed above would mean
the specification of an outlet flow angle which is clearly
larger than wat could realistically be expected from the
cascade. Also, if the upper trailing edge corner B is not
treated in a special way, inviscid flow theory would predict
an infinite flow velocity around this corner. Different so-

lutions to this problem, in the form of slight modifications
to the blade profile, were investigated.

Figure 1.0 Turbine blade trailing edge.

The blade trailing edge was slightly modified by first
smoothing out corner B with an arc and then by extending
the two arcs that make up the upper and lower blade sur-
faces near ;the trailing edge, until they meet. Both trailing
edges are illustrated in Figure 1 1. Although this results
in a thin, sharp trailing edge to which the Kutta condi-
tion can be applied as explained above, the modifications
are arbitrary and the resulting specified circulation may
not be realistic. To solve this the outlet flow angle of the
cascade must be established by either calculation or mea-
surement. Due to practical considerations regarding the
torque converter model, the latter proved i-possible and
the angle had to be estimated by calculation.

actual

modified

extended TE

Figu re 11 Extended and modified trailing edges.

Dixon lI2) describes a geometrical method for the es-

timation of the outlet flow angle of a linear cascade. This
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rnethod may be modified for application to a radial cascade
using a logarithmic spiral instead of Dixon's straight line,
as illustrated in Figure 12. The logarithmic spiral connects
the trailing edge of one profile with the suction surface of
the next, intersecting the latter orthogonally. Only one
such logarithmic spiral exists. Applied to the torque con-
verter cascade, this method yielded a radial outlet flow
angle of 29.59o.

log spiral

Figu re 1,2 Estimated outlet a ngle.

The trailing edge was adjusted such that the radial
angle of the trailing edge bisector equa,lled this estimated
outlet flow angle. The modification used two arcs, which
joined the upper and lower curves of the profile surfaces
smoothly and met in a sharp, tip with a bisector at the
required angle (see Figure 13). Care was taken to keep the
extension as short as possible to avoid inaccuracies. The
I(utta condition was then applied to the adjusted blade
trailing edge. 

i
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be used for C (..g. C = 1). The a parameter has a

different influence. If a is known and the 1j's have been
determined, the flow velocity anywhere in the flow field
can be calculated using (5) By calculating the angle of
the flow at the location of the reference pressure station
and changing the value of a until this angle corresponds
to the reference flow angle measured experimentally, the
a necessary for similarity to the experimental situation
can be established. The pressure distribution calculated at
this a should then correspond to the experimental pressure
distribution.

Calculation of the pressu.re coefficient

In accordance with the initial assumptions it may be as-

sumed that Bernoulli's equation holds for the flow through
the stationary turbine. Then the stagnation pressure will
be constant throughout the flow field and ( 1) may be
rewritten as

c,"r=r- (*,) ' (e)

Figure 13 Adjusted trailing edge.

To solve the system of equations the free spira,l vortex
paralneters C and a must be known. It can be proved
that C acts only as a constant of proportionality of the
flow velocities and that it cancels out of any ratio of one
velocity to another. As will shortly be shown the pressure
distribution around the blade is expressed by means of
such a ratio and consequently any convenient value may

Figure L4 Reference point method
trailing edge ( Figu re

This gives the pressure coefficient in terms of the blade
surface velocity and the velocity at the reference pressure
station and allows the calculation of this coefficient by up-
plying (7) at points on the blade surface and using the
ma,gnitude of the velocity given by (5) Instead of using
(7) for Vt, it may also be equated to the vortex strength
solution at the blade surface points (which follows from
the streamline boundary condition and is much simpler
but does not hold for the trailing edge node).

The calculated distribution of Cr.t around the profile
may now be compared to that obtained experimentally.
To quantify this compa.rison the means of the absolute de-

viations between experimental Cr"1's and their calculated
equivalents is used. This parameter is referred to as the
MAD (mean absolute deviation) measure of fit. The Cr"r
distribution can also be integrated over the radial pro-
jection of the profile. By incorporating into this integral
multiplication by the distance of every incremental area
from the cascade centr€, & measure of the moment around
the cascade centre (or torque) generated by u single blade,
is obtained. This mon'Lent, coefficient is denoted by C-o*

Blado r coordlnate lmml- s€e Flg. 2

results for extended
11)
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Table 2 Results for extended (Figure 11) and adjusted (Figure 13)
trailing edges

r994

Parameter

flow angle at reference station

M AD -.Xr,rre of fit

C*o* (."p) [mm2]
C-o- (80%) [--']
C*o- (100%) [**']

total torque [N-]

predicted upstream flow /
estimated stator outlet /
predicted turbine outlet /
estimated turbine outlet /

Reference point
method

Extended Adjusted
TE TE

-54.300 -54.300

Optimal G"r fit
rnethod

Extended Adjusted
TE TE

-35.540 -36.160
36.240 28.80036.020

0.942

-5985
- 6903

-7 379
37.69

-68.09o
- 55 .600

33.620

30.9 10

28.540

0.950

-5985
- 6695

-6935
35.12

-67.990
- 55.600
27.230

29. b9.

0.284

- 5985

- 8141

- 8998

15.96

0.253

- 5985

-77 46

- 8128
4r.52

-50.850 -51 .480

-55.600 -55.600
33.900 27.580

30.9 1 
0 29.590

and may be calculated from the experimental and the
panel method predicted C..r distributions, and the results
can be compared in further assessment of the accuracy of
the analysis. The torque output of the turbine could also
be rneasured experirnentally and compared to an output
torque calculated from the theoretical moment coefficient.

Since the extended trailing edge in Figure 11 and the
adjusted trailing edge in Figure 13 yielded the most real-
istic results, only these will be discussed. The results for
tlrese blades are surrrmarized in Table 2 and in Figures 14

to 17 . The meaning of the table entries and the figure
captions rvill shortly become clear.

Blad€ : coordlnate [mml - s€€ Hg.2

Figu re 15 Optimal Cr"1 fit method results for extended
trailing edge.

Extended trailing edge blade

Figure 14 shows the pressure distribution obtained for
the extended trailing edge at the a which makes the cal-
culated florv angle at the reference pressure st ation equal
to the lneasured reference florv angle. This rnetho d for

determining u is termed the reference point method and
accordirrg to Table 2 it yields an a of fl6 .02. The M AD
measure of fit is 0 S42 and from Figure 14 it is clear that
the predicted distribution is not a very good approxima-
tion of the experimental distribution over the full profile.
It was decided to find the best possible correspondence
that the panel method could yield by tryitrg different val-
ues of a. This method for determining a is referred to as

the optimal Cr"r fit method and it results in a - 36.240, a

minimum M AD of 0 .284 and the Cr"r distribution of Fig-
ure 15. The flow angle at the reference point now changes
to -35 .54o. The improvement in agreement between pre-
dicted Cr"r and experimental Cr"s distributions due to the
optimal Cr"r fit method, is reflected clearly in the drop in
the M AD value. The fit to the experimental data is ex-
cellent on the pressure surface and the leading edge of the
blade but on the suction surface the predicted Cr"t values
are generally too negative. In part this may be caused by
the effect discussed previously whereby the flow deflection
specified by the Kutta condition is higher than that of the
actual cascade.

Table 2 also shows the moment coefficient calcu-
lated from the experimental data over the forward 80%
of the blade chord (C-o-(.*p)), that calculated from the
panel method results over the forward 80% of the blade
chord (C*o*(80%)) and that calculated from the panel
method results over the entire blade (C*o-(100%)). Thus
Cr^o-(.*p) and C,,'o-(80%) are directly comparable. The
reference point method yields a result closer to the exper-
imental value than that of the optimal Cr"r fit method.
However, inspection of Figure 14 indicates that this could
be due to a fortuitous cancellation of errors in the pre-
dicted pressure distribution rather than a closer approx-
imation of the experimental pressure distribution. The
numerically higher C,''o- value resulting from the optimal
Cr.r fit method is due to the low C""s's predicted on the
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suction surface as discussed earlier. The 'total torque' wa^s

calculated using Cr.,o-(100%) and can be compared to the
experimental torque of 30.3 Nm, cited by Reynaud.[l] The
discrepancy between the predicted and experimental C-orn
values discussed above, was the major contributor to this
difference.

.1

-3

Cnt -,

.l

0

I
-as -4 -90 .o -28 .n -ts -to -E o

Bldo r coordlnate [mml. rce Flg. 2

J9

to in Table 2 as the 'estimated stator outlet angle'. The
best correspondence between this angle and the predicted
upstream flow angle is obtained using the optimal Cr"r fit
method. The 'predicted turbine outlet angle' in Table 2
is the flow angle calculated by the panel method at a field
point on the cascade trailitrg edge radius, midway between
two successive trailing edges. This angle may be compared
to the 'estimated turbine outlet angle' again obtained by
the geometrical method.

Adjusted trailing edge blade

Figures 16 and 17 indicate that this trailing edge per-
formed somewhat better than the simply extended trailing
edge. The C.ur's are significantly less negative over the
rear third of the blade suction surface and for the optimal
C.ur fit method there is a steady pressure recovery with
the Cr"t's corresponding well to the experimental distribu-
tion over this area. For this method then the M AD fit is
also the best and this trailing edge also performs better as

far as the moment coefficients and the agreement between
predictged and estimated flow angles are concerned.

Discuss ion

It was found that when the turbine blade trailing edge
shape was modified to give an outlet flow angle in agree-
ment with that expected from the cascade geometry, the
inlet flow angle that would give the best fit to the ex-
perimental pressure distribution would agree to within 4o

with the upstream stator outlet flow angle. The shape of
the predicted pressure distribution then agrees very well
with the experimental distribution except in the 10 to 60To
chord region on the suction side. Taking into consider-
ation the complex three-dimensional flow in the torque
converter, especially at stall a^s in the current case, the
agreement is as good as can be expected.

Conclusions

o A theoretical two-dimensional potential flow tech-
nique was developed for the analysis of incompressible
flow through a torque converter turbine cascade.

o A set of computer programs implementing this tech-
nique was developed.

o The soundness of the technique and computer pro-
grams was verified by comparison with published re-
sults.

o The technrque was applied to the torque converter
turbine and yielded results in rea.sonable agreement
with the experimental measurements.

o The agreement between predicted and experimental
pressure distributions was good enough to warrant the
use of the present method for the analysis of proposed
turbine blade profile designs.

for adjusted

.5

-a

.3

Cnt ."

-l

.tl6 .lto .35 .$ .6 .A .i5 .10 -5 0

Bhdo r coordlnate lmml - see Hg.Z

Figure rr Optimal Cr"r fit method results for adjusted
tra i Ii ng ed ge.

Four different flow angles are shown in Table 2. The
first angle is defined as follows: if a field point is moved
radially outward to infinity and the flow angle at this point
calculated by means of the panel method, this flow angle
tends to a limit which is indipendent of the coordinates of
the field point. This limiting angle is referred to as the
'predicted upstream flow angle'. The program predicts a
flow angle that is already within 20 of its limiting value
at a radius 15 mm greater than the radius of the cascade
leading edge. In the torque converter this upstream flow
angle is considered to be the inlet flow angle of the turbine
and as such it should be close to the outlet flow angle of
the stator cascade, which precedes the turbine in the flow
path.

Using the geometrical method of Figure rz the sta-
tor outlet flow angle has been estimated and is referred

Figure 16 Reference point method
tra iling ed ge ( Figu re

resu lts
13)
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