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Abstract

Taylor-Proudrnt,n columns are a well-known ph,enotnenon
in rotating flows in pare fluids (non-porous dornains). A
theoretical formulation of the Ttroblem of incompressible

fl,uid flow in rotating poroas media is presented. The cri-
teria for lhe relatiue significance of differenl ter-ms in the
equations are identified leading to a formulalion which is
based on the traditional Darcy's law but edended to include
the Coriolis and centrrfugol terms resalting frorn rototion.
Finally a proof is proaided showing that Taylor-Proudtnan
colurnns edst in poroas media as well. This occurs in the
limil of small aalues of the porous media Ekman nu,mber.
The corresponding consequences are that a stream func-
tion edsts in this otherwise lhree-dimensional fl,ow and
this stream function and the pressure are th.e sarne in the
Iimit of high rotation rates. This type of geostrophic flow
tneans lhat isobars represent slream-lines at th.e leading
order fo, small aalues of Ekman number.

Nomenclature

Latin symbols

e, a unit vector in the vertical direction
A, a unit vector in the direction of the i-posed angular

velocity
As a unit vector in the gravity direction
e,. a unit vector normal to the boundary
Ek the porous media Ekman number defined by eq.(3)

Fr, gravity related Froude number, equafr #
F r, centrifugally related Froude number eqiali

(0"\'
\'" l" )

h the bottom topography of the container
k(, , U, z) the dimensionless permeability function
,te a reference value of permeability
l" a macroscopic characteristic length
p; dimensionless pressure
p, the dimensiqnless reduced pressure generalized

to include the centrifugal and gravity terrrrs, equals

Pi- (t) tu, x x)'(c, x x) - (e) tu,'x)
p rescaled pressure, equals Ek p,
r a coordinate in the radial direction (in a cylindrical

system of coordina,tes)
Re macroscopic Reynolds number, equalr **
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Re a, pore size Reynolds number
gc a characteristic filtration velocity
q the dimensionless filtration velocity, relative to the

rotating solid matrix
u horizontal component of filtration velocity in the

c direction
a horizontal component of filtration velocity in the

y direction
w vertical component of filtration velocity
X position vector, equals c6, * Udy * 26,
o a horizontal coordinate (in a Cartesian system of

coordinates) ,

y a horizontal coordinate (in a Cartesian system of
coordinates)

z the coordinate in the vertical direction (in both
Cartesia,n or cylindrical systems of coordinates)

Greek symbols

6 porosity of the porous domain
u) c the angular velocity of rotation
vs the kinematic viscosity
0 a coordinate in the angular direction (in a cylin-

drical system of coordinates)

4, a stream function defined by eq.(l1)

Subscripts

0 reference values
c characteristic values
* dimensional values

fntroduction

Rotating flows a,nd heat transfer in porous media have
a wide spectrum of applications in engineering and geo-

physics. The food process industry, chemical process in-
dustry and centrifugal filtration processes are some of the
traditional applications. More explicitly packed bed me-
chanically agitated vessels are used in the food processing
and chemical engineering industries in batch processes. As
the solid matrix rotates due to the mechanical agitation,
a rotating frame of reference becomes necessary. The fil-
tration velocity is thus measured relative to this rotating
frame of reference which is connected to the solid matrix.
Other, modern applications emerged recently as a result
of using the porous rnedia approach to non-traditional dis-
ciplines including some domains in which the solid matrix
is subjected to rotation. Among these applications, the
flow of liquid in hurnan tissues like the brain or heart,
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the development of porous turbine blades and cooling of
electronic equipment subject to rotation (..g. a rotating
radar) lnay serve a^s examples. Vadasz lll presented a more
detailed discussion of these applications. Nevertheless, Do

reported research could be found on isotherTnt,l flow in ro-
tating porous media. Probably, the main reason behind
the lack of interest for this type of flow is that the isother-
mal flow in homogeneous porous media following Darcy's
law is irrotational. However, for a heterogeneous medium
with spatial dependent permeability the flow is not irrota-
tional anymore. An example of flow in a rotating hetero-
geneous porous medium at high'values of Ekman number
was presented by Vadasz.[1]

In this paper further results are presented showing
theoretically that Taylor-Proudman columns, which are
a common phenomenon for rotating flows in pure fluids
(non-porous domaitt), exist in porous media as well in
the limit of small values of Ekman number.

Problem formulation

Transport phenomena in porous media are represented
by a mathematical model at a macroscopic level. This
representation is achieved by averagitrg over a Represen-
tative Elementary Volume (REV) the Navier-Stokes aud
other transport equations which are valid at the micro-
scopic, pore-size scale. Different approa,ches for averaging
have been proposed by Bear & Bachmat,[2] Whitaker,[3]
Barrere, Gipoloux k Whitaker t4] and Du Plessis k
Masliyah.[5] Eventually a set of equations is obtained at
the macroscopic level which are an extension of Darcy's
law to include inertial and other effects. As a consequence
of the averagitrg process new variables are defined, e.g. the
filtration velocity q is the average (over the REV) of the
real velocity, and the pressure in porous media is the av-
erage (over the REV) of the real pressure. New properties
are introduced as well through the averaging process, Iike
tlre porosity 6 which is the ratio of the pore volurne over
the total volume of the porous domain, and the permeabil-
ity ko, which has the units of square length, representing
in principle at the macroscopic level the effective cross-
sectional area of the microscopic flow. A major significance
of the averaging approach is that it allows one to obtain
theoretically the criteria for neglecting terms in the equa-
tions. For example, the porous media Reynolds number
Rea, defined as .Re6 = ReDa - #, controls the validity
of Darcy's law. When ReA is k.pt small the inertial effects
are insignificant. However, the relationship between the
familiar Reynolds number in pure fluids Re (non-porous
domains) and the porous media Reynolds nurnber is given
by the multiplying factor Da, which represents a Darcy
number and is defined as Da = E This is the square

of the ratio between a pore-size length scale ,ffi and the
macroscopic length scale of the problem, 1". As such, Do
is typically very small (10-10 - 10-5), hence extending the
validity of Darcy's regime to include a wide range of Re
number values. However, the a,veraging techniques were

N&O IOERNAAL VOL. IO, NR 3, 1994

traditionally applied to the Navier-Stokes equations in a
non-rotating frame of reference. When the porous medium
rotates a rotating frame of reference becomes necessary in
order to keep the averaged equations valid, since the filtra-
tion velocity is defined relative to the solid matrix and the
later rotates a^s a solid body. As soon as a rotating frame
of reference is introduced two additional inertial effects
should be incorporated in the model, i... the centrifugal
and the Coriolis accelerations. The criteria for their rel-
ative significance is not controlled by Red alone but by
other dimensionless groups, like the Ekman number. If
Ekman number is very high (Ek -* oo) then the Coriolis
effect becomes insignificant.

As a result, it wa^s concluded (Vadasz t6]) that the
followittg dimensionless equations govern the incompress-
ible flow in rotating heterogeneous porous media under
isothermal conditions

(i) Continuity equation

v.q - 0 (1)

(ii) Darcy's law extended to include the Coriolis term

q - -e [vP, * Ek-t6, x q]

wlrere q is the dimensionless filtration velocity, pr is the
dimensionless reduced pressure generalized to include the
centrifugal and gravity terms , k(r, U, z) is the dimension-
less permeability functiotr, 6, is a unit vector in the direc-
tion of the i-posed angular velocity and ^OIc is the porous
rnedia Ekman number defined in the form

Ek- 6ao

(2)

(3)
2w 

"ks
where d ir porosity, w" is the angular velocity of rotation,
/cs is a reference value of permeability and us is the kine-
matic viscosity.

Equations (1) and (2) are presented in a dimensionless
form where the va.lues of fl and tr are used to scale the
filtration velocity and pressure, respectively, and lcs is used
to scale the permeability function /c*.

The Taylor-Proudrnan theorem in porous media

Equation (2) ca,n be presented in the followittg form

-kVp, (4)

Multiplying eq.(4) by l+] and rescaling the pressure
tlre forrn p - Ek p, yields

l++€,x] 
q- -vp

ln

(5)

Given typical va,lues of viscosity, porosity and permeability
one can evaluate the range of variation of Ekman number
in some engineering applications. There, the angular ve-
locity may vary from 10 rpm to 10 000 rpm leading to
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Ekman nurnbers in the range from Ek = 1 to Ek -- 10-3.
The later value is very small, pertaining to the condi-
tions considered in this paper. Therefore, in the limit of
EIc - 0, say Ek - 0, and a^ssuming 6, - e, equation (5)
takes the simplified form

Arxq=-Vp
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and the effect of permeability variations disappears. Tak-
irrg the 'curl' of equation (6) leads to

Vx (a, xq)-O (7)

Bvaluating the 'curl' operator on the cross product of the
Ieft-hand side of equation (7) gives

(6)

(8)

(e)

z=I 

-

z=0

(Ar.V)g=0

Equation (8) is identical to the Taylor-Proudman form for
pure fluids (non-porous domairs); it thus represents the
proof of the Taylor-Proudman theorem in porous media
and can be presented in the following simplified form

The conclusion expressed by equation (9) is tha.t q _
q(c ,a), i.e. it cannot be a function of z. This means
that all filtration velocity components can vary only in
the plane perpendicular to the angula,r velocity vector.

Results and discussion

An example of a Taylor-Proudrnan column

The consequence of the result presented in the previous
section can be demonstrated by considering a particu-
lar example. Figure 1 shows a closed cylindrical con-
tainer filled with a fluid saturated porous rnedium. The
topography of the bottom surface of the container is
slightly changed by fixing securely a small solid object (see

Greenspan [7] for the corresponding example in pure flu-
ids). The container rotates with a, fixed angular velocity
u)c. Any forced horizontal flow in the container is expected
to adjust to its bottom topography. However since equa-
tion (9) upplies for each component of q it applies in partic-
ular to w, i.e H - 0. But the irnpermeability conditions
at the top and bottom solid boundaries require g . 6r, - 0

at z = h (r,0) and at z = 1, where h (r,0) represents the
bottom topography. The combination of this boundary
condition with the requirement that # - 0 yields t^u = 0

anywhere in the container. Hence, a flow over the object
as described qualitatively in Figure 2 becomes impossible
as it introduces a vertical component of filtration velocity.
Therefore the resulting flow may adjust around the object
as presented qualitatively in Figure 3. However since this
flow pattern is also independent of z, it extends over the
whole height of the container resulting in a fluid column
above the object which rotates a,s a solid body. This is
a demonstration of a Taylor-Proudman column in porous
media, &s presented qualitatively in Figure 4.
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A section of the container showing
an obstacle fixed at the bottom.

Figure 1 A closed cylindrical container filled with a fluid
satu rated porous med iu m.

A solid object is fixed at the bottom.
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Figu re 2 An i-possible type of flow over the object.
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Figu re 3 Th e flow adj usts a rou n d

above) and extends at all heights
the object which behaves
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Geostrophic flow in rotating porous media

A further significant consequence of equation (9) is repre-
sented by a geostrophic type of flow. It is observed that
despite imposing a permeability which is a function of z

as well, the florv at high rotation rates, i.e. Ek -r 0, is in-
dependent of z. In particular H = 0, and the continuity
equation (1) presented in Cartesian coordinates becomes

A stream function , th, can therefore be introduced for the
flow in the s - y plane

_Ath Atb
ntvnoa ot

( 10)

(11)

( 12)

( 13)

the object (as seen from
creating a colu mn above
like a solid body.

Tlrrough the definition of the stream function r!, given by
equation (11), the continuity equation (10) is identically
satisfied. Substituting u and u with their stream function
representation given by equation (11) into eq.(6) yields

Alh 0p

0s 0x

Alh 0p

w-&
The conclusion resulting from equations (12) and (13) is
that the stream function and the pressure are the same
in the lirnit of high rotation rates (Ek -* 0). This type of
geostrophic flow means that isobars represent stream-
lines at the leading order for Ek - Q.

Conclusions

A theoretical forrnulation and proof of existence of Taylor-
Proudman columns in porous media in the limit of small
values of the porous media Ekman number was presented.
The corresponding consequence leading to a geostrophic
type of flow in porous rnedia was discussed. Experimental
confirmation of the theoretical results is recommended de-
spite the practical difficulty of reproduction of experiments
from pure fluids to porous domains.
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