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Abstract

Taylor-Proudman columns are a well-known phenomenon
in rotating flows in pure fluids (non-porous domains). A
theoretical formulation of the problem of incompressible
fluid flow in rotating porous media is presented. The cri-
teria for the relative significance of different terms in the
equations are identified leading to a formulation which is
based on the traditional Darcy’s law but extended to include
the Coriolis and centrifugal terms resulting from rotation.
Finally a proof is provided showing that Taylor-Proudman
columns ezist in porous media as well. This occurs in the
limit of small values of the porous media Ekman number.
The corresponding consequences are that a stream func-
tion ezists in this otherwise three-dimensional flow and
this stream function and the pressure are the same in the
limit of high rotation rates. This type of geostrophic flow
means that isobars represent siream-lines at the leading
order for small values of Ekman number.

Nomenclature

Latin symbols

é, a unit vector in the vertical direction

&, aunit vector in the direction of the imposed angular
velocity

&,  aunit vector in the gravity direction

é, a unit vector normal to the boundary

Ek  the porous media Ekman number defined by eq.(3)

Fry  gravity related Froude number, equals g—'ﬁ:
Fr, centrifugally related Froude number equals
2

(%)

h the bottom topography of the container

k(z,y,z) the dimensionless permeability function

ko  a reference value of permeability

l. a macroscopic characteristic length

Di dimensionless pressure

Pr the dimensionless reduced pressure generalized
to include the centrifugal and gravity terms, equals
pi— (%A) (&0 x X) - (80 x X) - (%) (8, - X)

P rescaled pressure, equals Ek p,

r a coordinate in the radial direction (in a cylindrical
system of coordinates)

Re  macroscopic Reynolds number, equals -9-%9
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Rea pore size Reynolds number
qe a characteristic filtration velocity
q the dimensionless filtration velocity, relative to the
rotating solid matrix
u horizontal component of filtration velocity in the
z direction
v horizontal component of filtration velocity in the

y direction
w vertical component of filtration velocity
X position vector, equals z&; + y&, + 2&,
z a horizontal coordinate (in a Cartesian system of

coordinates) .
Y a horizontal coordinate (in a Cartesian system of
coordinates)
2 the coordinate in the vertical direction (in both

Cartesian or cylindrical systems of coordinates)

Greek symbols

¢ porosity of the porous domain

We the angular velocity of rotation

Vo the kinematic viscosity

6 a coordinate in the angular direction (in a cylin-

drical system of coordinates)
P a stream function defined by eq.(11)

Subscripts

0 reference values

c characteristic values
* dimensional values

Introduction

Rotating flows and heat transfer in porous media have
a wide spectrum of applications in engineering and geo-
physics. The food process industry, chemical process in-
dustry and centrifugal filtration processes are some of the
traditional applications. More explicitly packed bed me-
chanically agitated vessels are used in the food processing
and chemical engineering industries in batch processes. As
the solid matrix rotates due to the mechanical agitation,
a rotating frame of reference becomes necessary. The fil-
tration velocity is thus measured relative to this rotating
frame of reference which is connected to the solid matrix.
Other, modern applications emerged recently as a result
of using the porous media approach to non-traditional dis-
ciplines including some domains in which the solid matrix
is subjected to rotation. Among these applications, the
flow of liquid in human tissues like the brain or heart,
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the development of porous turbine blades and cooling of
electronic equipment subject to rotation (e.g. a rotating
radar) may serve as examples. Vadasz [1] presented a more
detailed discussion of these applications. Nevertheless, no
reported research could be found on isothermal flow in ro-
tating porous media. Probably, the main reason behind
the lack of interest for this type of flow is that the isother-
mal flow in homogeneous porous media following Darcy’s
law is irrotational. However, for a heterogeneous medium
with spatial dependent permeability the flow is not irrota-
tional anymore. An example of flow in a rotating hetero-
geneous porous medium at high values of Ekman number
was presented by Vadasz.[1]

In this paper further results are presented showing
theoretically that Taylor-Proudman columns, which are
a common phenomenon for rotating flows in pure fluids
(non-porous domains), exist in porous media as well in
the limit of small values of Ekman number.

Problem formulation

Transport phenomena in porous media are represented
by a mathematical model at a macroscopic level. This
representation is achieved by averaging over a Represen-
tative Elementary Volume (REV) the Navier-Stokes and
other transport equations which are valid at the micro-
scopic, pore-size scale. Different approaches for averaging
have been proposed by Bear & Bachmat,[2] Whitaker,[3]
Barrere, Gipoloux & Whitaker [4] and Du Plessis &
Masliyah.[5] Eventually a set of equations is obtained at
the macroscopic level which are an extension of Darcy’s
law to include inertial and other effects. As a consequence
of the averaging process new variables are defined, e.g. the
filtration velocity q is the average (over the REV) of the
real velocity, and the pressure in porous media is the av-
erage (over the REV) of the real pressure. New properties
are introduced as well through the averaging process, like
the porosity ¢ which is the ratio of the pore volume over
the total volume of the porous domain, and the permeabil-
ity ko, which has the units of square length, representing
in principle at the macroscopic level the effective cross-
sectional area of the microscopic flow. A major significance
of the averaging approach is that it allows one to obtain
theoretically the criteria for neglecting terms in the equa-
tions. For example, the porous media Reynolds number
Rea defined as Rea = ReDa = {fo—;?, controls the validity
of Darcy’s law. When Rea is kept small the inertial effects
are insignificant. However, the relationship between the
familiar Reynolds number in pure fluids Re (non-porous
domains) and the porous media Reynolds number is given
by the multiplying factor Da, which represents a Darcy
number and is defined as Da = —’,‘-,‘1 This is the square

of the ratio between a pore-size length scale \/ko and the
macroscopic length scale of the problem, l.. As such, Da
is typically very small (10~ —10-3), hence extending the
validity of Darcy’s regime to include a wide range of Re
number values. However, the averaging techniques were
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traditionally applied to the Navier-Stokes equations in a
non-rotating frame of reference. When the porous medium
rotates a rotating frame of reference becomes necessary in
order to keep the averaged equations valid, since the filtra-
tion velocity is defined relative to the solid matrix and the
later rotates as a solid body. As soon as a rotating frame
of reference is introduced two additional inertial effects
should be incorporated in the model, i.e. the centrifugal
and the Coriolis accelerations. The criteria for their rel-
ative significance is not controlled by Rea alone but by
other dimensionless groups, like the Ekman number. If
Ekman number is very high (Ek — oo) then the Coriolis
effect becomes insignificant.

As a result, it was concluded (Vadasz [6]) that the
following dimensionless equations govern the incompress-
ible flow in rotating heterogeneous porous media under
isothermal conditions.

(i) Continuity equation
V-q=0 (1)

(ii) Darcy’s law extended to include the Coriolis term
q=—k[Vp, + Ek7'&, x q] (2)

where q is the dimensionless filtration velocity, p, is the
dimensionless reduced pressure generalized to include the
centrifugal and gravity terms, k(z,y, z) is the dimension-
less permeability function, &, is a unit vector in the direc-
tion of the imposed angular velocity and Ek is the porous
media Ekman number defined in the form

_ ¢w
Ek = Swoke 3)

where ¢ is porosity, w, is the angular velocity of rotation,
ko is a reference value of permeability and vg is the kine-
matic viscosity.

Equations (1) and (2) are presented in a dimensionless
form where the values of %3 and ﬁ,‘:—zﬂ are used to scale the
filtration velocity and pressure, respectively, and kg is used
to scale the permeability function k..

The Taylor-Proudman theorem in porous media

Equation (2) can be presented in the following form

k A F—
[1 + gl x] q=—kVp, (4)

Multiplying eq.(4) by [%] and rescaling the pressure in
the form p = Ek p, yields

k
[ET ; ] a=-Vp (5)

Given typical values of viscosity, porosity and permeability
one can evaluate the range of variation of Ekman number
in some engineering applications. There, the angular ve-
locity may vary from 10 rpm to 10000 rpm leading to
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Ekman numbers in the range from Ek =1 to Ek = 103,
The later value is very small, pertaining to the condi-
tions considered in this paper. Therefore, in the limit of
Ek — 0, say Ek = 0, and assuming &, = &, equation (5)
takes the simplified form

é, xq=-Vp (6)

and the effect of permeability variations disappears. Tak-
ing the ‘curl’ of equation (6) leads to

Vx(&xq) =0 )

Evaluating the ‘curl’ operator on the cross product of the
left-hand side of equation (7) gives

(&:-V)q=0 (8)

Equation (8) is identical to the Taylor-Proudman form for
pure fluids (non-porous domains); it thus represents the
proof of the Taylor-Proudman theorem in porous media
and can be presented in the following simplified form

9q
2 =0 9
P (9)
The conclusion expressed by equation (9) is that q =
q(z,y), i.e. it cannot be a function of z. This means
that all filtration velocity components can vary only in
the plane perpendicular to the angular velocity vector.

Results and discussion

An example of a Taylor-Proudman column

The consequence of the result presented in the previous
section can be demonstrated by considering a particu-
lar example. Figure 1 shows a closed cylindrical con-
tainer filled with a fluid saturated porous medium. The
topography of the bottom surface of the container is
slightly changed by fixing securely a small solid object (see
Greenspan [7] for the corresponding example in pure flu-
ids). The container rotates with a fixed angular velocity
w¢. Any forced horizontal flow in the container is expected
to adjust to its bottom topography. However since equa-
tion (9) applies for each component of q it applies in partic-
ular to w, i.e. % = 0. But the impermeability conditions
at the top and bottom solid boundaries require q - &, = 0
at z = h(r,0) and at z = 1, where h(r,0) represents the
bottom topography. The combination of this boundary
condition with the requirement that % =0yieldsw =0
anywhere in the container. Hence, a flow over the object
as described qualitatively in Figure 2 becomes impossible
as it introduces a vertical component of filtration velocity.
Therefore the resulting flow may adjust around the object
as presented qualitatively in Figure 3. However since this
flow pattern is also independent of z, it extends over the
whole height of the container resulting in a fluid column
above the object which rotates as a solid body. This is
a demonstration of a Taylor-Proudman column in porous
media, as presented qualitatively in Figure 4.
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A section of the container showing
an obstacle fixed at the bottom.

Figure 1 A closed cylindrical container filled with a fluid
saturated porous medium.
A solid object is fixed at the bottom.
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Figure 2 An impossible type of flow over the object.
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Geostrophic flow in rotating porous media

A further significant consequence of equation (9) is repre-
sented by a geostrophic type of flow. It is observed that
despite imposing a permeability which is a function of z
as well, the flow at high rotation rates, i.e. Ek — 0, is in-
dependent of z. In particular 22 = 0, and the continuity

9z
equation (1) presented in Cartesian coordinates becomes

Ou Ov
7 tay; =0 (10)

» X A stream function, ¥, can therefore be introduced for the
flow in the z — y plane

oY _oy
—6—y, v = E (11)

u=
Through the definition of the stream function %, given by
equation (11), the continuity equation (10) is identically
satisfied. Substituting u and v with their stream function
representation given by equation (11) into eq.(6) yields

Figure 3 The flow adjusts around the object (as seen from

above) and extends at all heights creating a column above ? = % (12)
the object which behaves like a solid body. :c z
oy _ op

3 =y (13)

The conclusion resulting from equations (12) and (13) is
that the stream function and the pressure are the same
in the limit of high rotation rates (Ek — 0). This type of
geostrophic flow means that isobars represent stream-
lines at the leading order for Ek — 0.

Conclusions

A theoretical formulation and proof of existence of Taylor-
Proudman columns in porous media in the limit of small
values of the porous media Ekman number was presented.
The corresponding consequence leading to a geostrophic
type of flow in porous media was discussed. Experimental
confirmation of the theoretical results is recommended de-
spite the practical difficulty of reproduction of experiments
from pure fluids to porous domains.
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