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Optimization of a vibratory conveyor for reduced support
reaction forces

A.J. van Wyk,! J.A. Snyman? and P.S. Heyns?

Abstract

Simple vibratory conveyors, consisting of a horizontal table
supported by vertical helical springs, are of the most ver-
satile material handling equipment in industry. A disad-
vantage of these conveyors is the transmission of dynamic
forces to the supporting structure. A design of such a con-
veyor may be optimized with respect to the transmission
of dynamic forces through the adjustment of various de-
sign parameters. In this study the positions at which the
springs are attached to the table are taken as the design
variables. The optimization procedure involves the mathe-
matical modelling of the dynamic behaviour of the system,
which allows for the computation of a so-called transmis-
ston function which 1s a measure of the dynamic forces
transmitted, and which may be minimized with respect to
the design variables. The computed optimum design gives
reductions of more than 20% in the value of the trans-
mission function, when compared to that of two arbitrary
initial designs.

Nomenclature

a,b,h geometrical design variables as defined
in Figure 2

0 angle of conveyor table to the
horizontal

Tg,Yg coordinates of centre of gravity of table

£y, 0, respective spring lengths at the feed
and discharge ends of the table

a, o respective top angles

8,03 respective base angles

¢;i,1=1,...,9 generalized notation for the nine state
variables immediately above

q vector form of above state variables
(29 0% respective undeformed lengths of
the springs
m mass of table
I, moment of inertia of table about axis

through centre of mass and perpen-
dicular to plane
Al Al respective linear deformations of springs

g gravitational acceleration
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L Lagrange function

T kinetic energy

1% potential energy

ki, ko torsional spring constants at
feed end

ks, k4 torsional spring constants at
discharge end

ks, ke respective axial spring constants

at feed and discharge ends
gj,J =1,...,6 expressions for geometrical

constraints
Ai,i=1,...,6 Lagrange multipliers
A multiplier vector
t time
w angular frequency of harmonic

exciting force Fy

7 total eccentric mass

r eccentricity

P vector position of action of
harmonic force Fy

p radial position of excitor

T angular position of excitor

o excitation angle relative to table

Cee damping constant in z direction

Cyy damping constant in y direction

Cop rotational damping constant

R,S respective reactive forces at

feed and discharge ends
z;,1 = 1,..,n n general design variables

X vector form of design variables
d objective function )
Introduction

Horizontal vibratory screens and conveyors are of the most
common and versatile material handling equipment used
in mining, in particular, and industry, in general.[1;2;3]
They are capable of conveying a wide variety of materials
economically and effectively over long and short distances.
In addition to the transport function they are also used as
screens to separate, dry, and grade materials.

A schematic representation of the design of the most
basic horizontal vibratory conveyor is given in Figure 1.
Typically it consists of a horizontal trough or table sup-
ported by four vertically placed helical springs. Motion is
induced by a vibratory excitor mounted on the table. The
direction of the stroke action may be adjusted depend-
ing on the type of material motion required. Although
more complicated vibratory conveyors have been designed
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for specialized applications, most of the conveyors in use
are of the above relatively simple design. It is indeed its
simplicity and ease of operation that have made the basic
vibratory conveyor an economically attractive machine.

DISCHARGE

Figure 1 The basic horizontal vibratory conveyor

A disadvantage of the basic machine is the transmis-
sion of dynamic forces to the supporting structure and
environment. It may therefore be important to be able
to minimize this transmission, through the adjustment of
design parameters within constraints imposed by the sim-
plicity and the effective functioning of the machine. For
example, it has been found that for the effective sorting
and transportation of a wide range of materials a stroke of
between 3 and 5 mm is required [4] when the table vibrates
at a frequency of 16 Hz.

As far as can be ascertained from the literature very
little work, and then with limited success, has been done
with regard to the optimization of vibratory conveyors.
The failure is mainly due to an over-simplified and un-
realistic approach to the mathematical modelling of the
dynamic behaviour of the conveyors.[5]

In a recent paper, Snyman & Vermeulen [6] anal-
ysed a detailed and realistic model of a vibratory con-
veyor mounted on the more complicated ROSTA suspen-
sion units. Although different configurations were mod-
elled in order to select the most satisfactory design from
those analysed, no systematic optimization was carried out
with respect to design variables to determine the best or
optimum design. In this study the modelling is restricted
to that of the basic conveyor depicted in Figure 1, but the
optimization is carried out in a systematic and economic
way by means of a mathematical programming technique
to yield the optimum design.

Optimization of the conveyor may be performed with
respect to any number of material, operational and geo-
metrical parameters. This initial study was restricted to
the influence of geometrical design parameters. In particu-
lar, only the positions at which the supporting springs are
attached to a standard conveyor table are taken as design
variables, with standard prescribed operating conditions
and component materials and dimensions being assumed.
The optimization exercise requires, first of all, the success-
ful mathematical modelling of the dynamic behaviour of
the system. Having done so, a so-called transmission func-
tion, which is a measure of the dynamic forces transmitted
to the supporting structure, may be computed. The trans-
mission function may then be minimized, with respect to
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the geometrical design variables, by means of a suitable
numerical optimization technique.

All the steps in the above optimization procedure were
carried out successfully. A realistically detailed mathemat-
ical model was constructed and experimentally verified.
This enabled the definition and computation of an objec-
tive function which accurately reflects the transmission of
dynamic forces to the supporting foundation. Some diffi-
culties were encountered with the application of standard
‘off-the-shelf’” optimization codes. These problems are as-
cribed to the existence of ‘noise’ in the computed objec-
tive function. The optimization was finally successfully
done by means of Snyman’s [7] dynamical and heuristic
LFOP1(b) algorithm. ;

The computed optimum design gives significant re-
ductions of more than 20% in the value of the transmis-
sion function when compared to that of two acceptable but
arbitrarily chosen initial designs.

Mathematical model

System description

Since the conveyor has a symmetry plane and the harmonic
force of the excitor acts in this plane, all motion is parallel
to it, and use may therefore be made of a planar model.
A schematic representation of the model is presented in
Figure 2. The symmetry allows for the four symmetrically
placed supporting springs to be consolidated into two for
the purpose of the modelling. The table DC is attached
to a rigid foundation by means of the two vertical helical
springs. Assume that in the initial undeformed state, with
the springs vertical and the table horizontal, the ends of
the springs are rigidly attached to the base and to the
table, respectively. This introduces torsional springs at the
points of attachment. Linear elastic restoring forces and
moments are assumed for which the spring constants may
be obtained experimentally. The axial spring constants are
denoted by ks and kg and the respective torsional spring
constants by kq, kg, k3, and k4 as indicated in Figure 2.

Figure 2 Schematic representation of a planar model
of the conveyor

The state variables giving a detailed description of the
system and also indicated in Figure 2 are: the angle 8 to
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the horizontal, the coordinates of the centre of gravity of
the table (z4,y,), the respective base angle, spring length
and top angle of the two individual springs: 3, ¢1, a, 3, £,
and o . For convenience these nine state variables, in the
order in which they were introduced, will also be referred
to by q1,92, ..., ¢9. The undeformed natural lengths of the
two springs are denoted by 9 and £3, respectively. In
the case of the horizontal conveyor of interest here, the
initial undeformed system corresponds to the state where
=0, ﬁ:a:ﬂ':a’:%andflzf?:@:(’g.

The geometrical design wvariables, of interest in this
optimization study, are the positions of attachment of the
vertical springs relative to the centre of mass of the table.
They are denoted by the distances a, b, and h, as indicated
in Figure 2.

The system clearly has only three degrees of freedom.
Having introduced nine state variables for convenience of
description implies the existence of six constraint equa-
tions. These equations define the relationship and inter-
dependence between the variables and are of the general
form

9i (91,92, -, 90) = 9; (@) =0, j=12,..,6 (1)
(41,92, - 28)"

By inspection of Figure 2, the following six geometri-

cal and holonomic constraint equations may be identified:

where q =

g1 =ft1cosf+ (a+b)cosf+Llycos B —(a+b)=0 (2)

gr={¢1sinfB+ (a+b)sinf —lysinF =0 (3)

g3=pf+pF —a-a' =0 (4)
ga="ticosB+acosf —hsinf —z, =0 (5)
gs =Yg —Lisinf —asinf —hcosf =0 (6)

gs=0+a—-3=0 (7)

Lagrange equations of motion

With the system described in terms of generalized coordi-
nates and constraint equations, the natural way to analyse
the motion of the system is by means of Lagrange mechan-
ics. Of particular importance for this study is that the
Lagrange approach allows for the easy determination of
the reaction forces, at the spring attachments, in terms of
the so-called Lagrange multipliers associated with the con-
straint equations. We briefly sketch the derivation of the
relevant equations of motion. For the moment the shaking
force as well as the damping forces are ignored. They will
be introduced later.

The Lagrange function is defined as

L=T(q,q) - V(a) (8)

where T denotes the kinetic energy and V' the potential
energy of the system at any instant ¢. For the conveyor
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system considered here equation (8) may be written as

: > : ,\2
X me? +myl + 1,0 — ki (B— %)
2 2

L=3{ k-5 k-3

—kq (8" — —) — ks Al — ke AL — 2mgy,

(9)
where m denotes the mass, I, the moment of inertia about
the axis through the centre of mass and perpendicular to
the plane, and A¢; and A/, the respective linear deforma-
tions of the springs.

The Lagrange equations for the dynamical system
with the six prescribed constraint equations (1) may now
be written in terms of the Lagrange multipliers A =
(A1, A2, .y A6)T as :[8]

d (0L dg;
i (7) 7 Z e

Applying (10) to (9) for £ = 1,2 and 3 yields the equations
of motion:

k=1,2,..,9 (10)

I,6=fi ==X (a+0b)sind+ Ay (a+b)cosf
+A4 (asinf + hcosf@) + As (hsinf — acosé) + g
mz, = fo = A
mijy = f3 = As —mg

(1)

Since ¢ for k =4, ...,9 does not explicitly appear in (10),
it 1s important to realize that for any instant ¢, with q
known, we may solve the six remaining equations in (10)
to yield A, which of course, in general, also varies with
time.

By defining new variables g0 = 6 = ¢ ; q1; = 1 =
g2 and ¢12 = y, = g3 we have, together with equations
(11), six first order differential equations in the twelve de-
pendent variables ¢;,¢s2,...,q12. A further six first order
differential equations can be obtained by transforming the
six constraint equations (1) by differentiation to the form:

9 3 3
2 (f)a= 2 (38) = 2 () e =65,
j=1,2,..6
(12)
Combining these six equations with the previous six re-
sults in a system of twelve coupled first order differential
equations in the twelve dependent variables ¢y, q9, ..., q19.
In matrix form the system may be written as

Aq=c (13)

where more detailed information concerning the structure
of the matrix A and the vector ¢ is given in the thesis by
Van Wyk.[9]

Harmonic disturbing force, damping forces and re-
actions

The forced response of the conveyor is due to a harmonic
force generated by two synchronised and contra rotating
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eccentric masses. If the masses rotate at angular frequency
w the expression for the harmonic force becomes

Fo = prw? cos(wt) (14)

where p is the total eccentric mass and r the eccentricity.
The harmonic force Fy acts at a vector distance p from
the centre of mass and at an angle ¢ with respect to the
horizontal table (see Figure 3). It follows that the equiv-
alent force and moment components acting at and about
the centre of mass is given by

Fy = Focos(o+0); Fy = Fosin(o+6); Fg = Fopsin(o—7)
(15)

FEED DISCHARGE

Figure 3 Position and action of excitor

A simple viscous and uncoupled damping model is
assumed in which the damping force and moment compo-
nents are given by

Ty = —ceamiy; Ty = —cyymyy; Tp = —c(;glgé (16)

where ¢zz, cyy and cgg denote the damping constants. We
simplify the model further by assuming cgg = 0. The
determination of ¢, and cyy, are dealt with in the next
section.

The respective force and moment components in (15)
and (16) may now be added to the equations of motion,
(11) and (13), to complete the mathematical description
of the system.

In order to compute a transmission function, required
for the later optimization exercise, it 1s necessary to deter-
mine the time variational change of the reaction forces at
the support points on the foundation. Assuming that the
masses of the springs are negligible compared to the mass
of the whole system, the reaction forces and moments at
the supporting base may be taken as equal to that at the
points of attachment of the springs to the table. The com-
ponents R;, Ry and Sz, Sy of the reaction forces R and
S, respectively, as well as the moments Mg and Mg (see
Figure 4) may be determined in terms of the computed
Lagrange multipliers A. Comparing the Newton equations
of motion for the system in Figure 4 with the Lagrange
equations (11) yields:[9]

S,; = )\1; Sy = /\g; ]\45 = /\3

Ro= M- A Ry=Xs—Ao; Mp=Js—2g 7
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Figure 4 Reaction forces and moments acting
at positions of attachment

Solution of the system equations and verification
of the model

With the initial conditions q(0) known the system of dif-
ferential equations (13) may be solved numerically to give
q at any instant t. Notice that this solution also yields
A (see the paragraph following equations (11)), and con-
sequently through (17) the reactions at the base. Here
the initial value problem is solved numerically by means
of the Runge-Kutta-Verner method as embodied in the
IMSL subroutine IVPRK.[10]

Before commencing with the routine solution of (13)
in an extensive optimization procedure, 1t is necessary to
determine representative values for the damping constants
cee and cyy and to verify the model experimentally. For
a fixed setting of the design variables [a, b, h], the free re-
sponse of a standard experimental system was studied. In
agreement with the assumption that the respective damp-
ing forces in the 2 and y directions are uncoupled, the
motions in these two directions were studied separately
and compared with that predicted by the mathematical
model. The values of the damping constants ¢zr and cyy in
the model were systematically varied until excellent agree-
ment between the experimental and predicted behaviour
was obtained. These values were used throughout in the
simulations that follow. For the given system, operating
under standard conditions, the measured time-dependent
behaviour of R, and S, and of the stroke, were compared
to that predicted by the model. Excellent agreement was
obtained.[9]

The most important geometrical, material and opera-
tional system parameters are listed in Appendix A. A more
detailed exposition of the parameters and a description of
the experimental determination of some of these geomet-
rical and material parameters may be found in the thesis
by Van Wyk.[9]

Optimization

Optimization of the system with respect to any set of de-
sign variables x = (21, 29, ..., £,)T requires the definition
of a suitable objective function. Since our objective is the
minimization of the transmission of vibration to the sup-
porting foundation, an appropriate objective function to
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be minimized is

d(x)= 2 f;" -
X {(Sy — Sys)? 4+ (Ry — Rys)* + 52 + Ri}’ dt

where Sy, and Ry, denote the static equilibrium reactions,
and [0,7;] is an operational time interval sufficiently long
to allow d to take on a steady state value. Since the time-
dependent behaviour of R;, Ry, S, and S, are dependent
on the design variables x,d is also a function of x. This
initial study is restricted to the design vector x = [a, b, h]T
(see Figure 2). The objective d is computed by the numer-
ical solution of the initial value problem (13), whilst at the
same time carrying out the numerical integration of (18).
The time interval used here is 7; = 39 seconds.

The objective function d may now be minimized
with respect to x using any standard numerical optimiza-
tion algorithm. Initially it was decided to make use of
the standard and ‘off-the-shelf” IMSL optimization sub-
routines BCONF and UMCGF,[10] employing the BFGS
quasi-Newton and conjugate gradient methods, respec-
tively. Both methods failed to provide satisfactory conver-
gence. The failures are ascribed to the existence of ‘noise’
in the objective function which arises as a result of small
inaccuracies in the computation of the objective function.
These inaccuracies are due to the fact that the objective
function is itself the outcome of an approximate numer-
ical integration procedure. This results in serious errors
in the gradient evaluations and line searches required for
carrying out the optimization.

The optimization was finally successfully performed
by means of Snyman’s [7] dynamical and heuristic
LFOP1(b) optimization algorithm. This method, requir-
ing no formal line searches, is a proven robust method
with outstanding global convergence properties. To allow
for the imposition of side constraints on the design vari-
ables and functional constraints on the stroke, use was
made of a penalty function approach in which the ob-
jective function was modified by the addition of a cor-
responding penalty term whenever a constraint (see Ap-
pendix A) is violated. The convergence histories of the
successful LFOP1(b) algorithm, together with that of the
failed methods and for two different designs, are shown in
Figure 5, (a) and (b). In both cases the dynamical method
converged to the same local, and probably the global, mini-
mum [a; b; h]T = [0.5993; 0.4294; 0.2571]7, with objective
function value d = 27.8929 units.

Conclusion

The objective of the study, namely the optimal reduction
of the transmission of dynamic forces through the adjust-
ment of the spring support positions, was achieved.In par-
ticular reduction of more than 20% in the value of the
transmission function, compared to that of two acceptable
but otherwise arbitrarily chosen initial designs, were ob-
tained.

N&O JOERNAAL VOL. 10, NR 1, 1994

40

—-—QUASI-NEWTON
~~~~~~~ CONJUGATE GRADIENT
— SNYMAN

(a)

x® = (0,9;0,4;0,25)7

26 . A A L A
0 20 40 60 80 100 120 140
ITERATIONS

40

— =QUASI-NEWTON
~~~~~~ CUNJUGATE GRADIENT
— SNYMAN

(b)

26 | X0 = (0,8;0,3;0,1)T
0 20 40 60 80
ITERATIONS

Figure 5 Convergence histories of the three optimization
algorithms for two different initial designs

Since the mathematical model employed already takes
into account other geometrical as well as material and
operational parameters, future work will concentrate on
achieving further reduction through optimization with re-
spect to these additional design variables.
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Appendix A

Geometrical, material and operational system pa-
rameters

Spring parameters:
- undeformed spring lengths (¢5(0) = ¢s(0) = 0.130 m)
- feed end axial spring stiffness (ks = 5300.0 N/m)
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- feed end torsional spring stiffnesses

(k1 = k2 = 46.68 Nm/rad)
- discharge end axial spring stiffness (ks = 7007.0 N/m)
- discharge end torsional spring stiffnesses

(k3 = kq = 60.86 Nm/rad)

Mass parameters:

- mass of table (m = 54.9 kg)

- moment of inertia about axis through c.o.m.
(I, = 11.70 kg/m?)

- gravitational acceleration (¢ = 9.81 m/s?)

Excitation parameters:

- angular frequency (w = 99.34 rad/s)

- eccentric mass (pu = 5.249 kg)

- eccentricity (r = 0.0205 m)

- excitation angle relative to table (¢ = 7/4 rad)
- radial position of excitor (p = 0.188 m)

- angular position of excitor (7 = 1.220 rad)

Damping parameters:
- damping constant in z direction (cN = 0.064 s"l)
- damping constant in y direction(cw =0.011 s‘l)

Constraints imposed on design:
0.3851< a < 0.7851
0.2149< b < 0.6149
0.1660< h < 0.2560
0.003< stroke < 0.005
(bounds given in metres)



