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Abstract

Sirnple uibratory conueyors, consisting of a horizontal table
supporled by uerlical helical tprings, are of the most aer-
satile malerial handling equipm,enl in industry. A disad-
L,antage of these conueyors is the transmission of dynamic

forces to the supporting structure. A design, of such a con-
aeAor may be optimized with respecl to the transmission
of dynamic forces through the adjustment, of uarious de-
sign parameters. In this study the posiliorts at which the
springs are attached to the table are taken as the design
uariables. The optimization procedure inz,olues the mathe-
nratical nrodelling of the dynantic behauiottr of the systeffi,
'wlr,ich, allows for the computation of a so-called transmis-
siort functiort, wh,ich is a nreas?rre of th,e dyn, antic f orces

tran,srnilted, and wh,ich may be m,inintized with, respect. to
th e desigrt uariable s. The co?nputed opl,imttm desigtt, giues

reduclions of ntore than 20% in the ualtte of the |rans-
rrtission f'un,ct'iort,, uhen contpared to that of two arbitrary
irtitial desiqns.
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Nornenclature

geornetrical design variahles as defined
in Figure 2

0 angle of couveyor table to the
horizontal
coordinates of centre of gra.rity of table
respective spring lengths at the feed
and dischal'ge ends of the table
respective top angles
respective base angles

..., 9 gerleraltzed notation for the uiue state
variables immediately above
vector form of above state variables
respective undeformed lengths of
the springs
mass of table
moment of inertia of table about axis
through centre of ma.ss and perpen-
dicular to plane
respective linear deforrnations of springs
gravit ational acceleration
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Lagrange function
kinetic energy
potential energy
torsional spring constants at
feed end
torsional spring constants at
discharge end
respective axial spring constants
at feed and discharge ends

1, ..., 6 expressions for geometrical
constraints

1 , ..., 6 Lagrange multipliers
multiplier vector
tirne
angular frequency of harmonic
exciting force Fs

total eccentrrc rnass

eccentricity
vector position of action of
harrnonic force Fo

radial position of excitor
angular position of excitor
excitation angle relative to table
darnping constant in r direction
darnping constant rn y direction
rotational darnping constant
respective reactive forces at
feed and discharge ends

I, ... ,fr ?? general design variables
vector form of design variables
obj ective function
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Introduction

Horizontal vibratory screens and conveyors are of the most

:o-To.r and versatile material handling equipment used

in mining, in particular, and industry, in general.[1 ;2;3]
They are capable of conveying a wide variety of materials
economically and effectively over long and short distances.
In addition to the transport function they are also used as

screens to separate, dry, a,nd grade materials.
A schematic representation of the design of the most

basic horizont,al vibratory conveyor is given in Figure 1.

Typically it consists of a horizontal trough or table sup-
ported by four vertically placed helical springs. Motion is

induced by a vibratory excitor rnounted on the table. The
direction of the stroke action may be adjusted depend-
ing on the type of material rnotion required. Although
more complicated vibratory conveyors have been designed



R&D JOURNAL VOL. 10, NO. 1, 1994

for specialized applications, most of the conveyors in use
are of the above relatively simple design. It is indeed its
simplicity and ease of operation that have made the basic
vibratory conveyor an economically attractive machine.

Figure l The basic horizontal vibratory conveyor

A disadvantage of the basic machine is the transmis-
sion of dynamic forces to the supporting structure and
environment. It may therefore be i-portant to be able
to minimize this transmission, through the adjustment of
design parameters within constraints i-posed by the sim-
plicity and the effective functioning of the machine. For
example, it has been found that for the effective sorting
and transportation of a rvide range of rnaterials a stroke of
between 3 and 5 mm is required [a] when the table vibrates
at a frequerlcy of 16 Hz.

As far as can be ascertained from the literature very
little work, and then with limited success, ha.s been done
with regard to the optimization of vibratory conveyors.
The failure is mainly due to an over-simplified and un-
realistic approach to the rnathematical rnodelling of the
dynamic behaviour of the conveyors.[5]

In a recent paper, Snyrnan & Vermeulen t6] anal-
ysed a detailed and realistic model of a vibratory con-
veyor mounted on the more comflicated ROSTA suspen-
sion units. Although different configurations were mod-
elled in order to select the most satisfactory design from
those analysed, no systematic optimization rvas carried out
with respect to design variables to determine the best or
optirnum design. In this study the modelling is restricted
to that of the basic conveyor depicted in Figure 1, but the
optimization is carried out in a systematic and economic
way by rneans of a mathematical programming technique
to yield the optimum design.

Optirnization of the conveyor may b. performed with
respect to any nurnber of material, operational and geo-

metrical parameters. This initial study was restricted to
the influence of geometrical design parameters. In particu-
lar, only the positions at which the supporting springs are
attached to a standard conveyor table are taken as design
variables, with standard prescribed operating conditions
and component materials and dimensions being assumed.
The optimization exercise requires, first of all, the success-
ful mathematical rnodelling of the dynamic behaviour of
the system. Having done so, a so-called transmission func-
tion, which is a measure of the dynarnic forces transrnitted
to the supporting structure, may be computed. The trans-
mission function may then be minimized, with respect to
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the geometrical design variables, by means of a suitable
numerical optimization technique.

All the steps in the above optimization procedure were
carried out successfully. A realistically detailed mathemat-
ical model was constructed and experimentally verified.
This enabled t,he definition and computation of an objec-
tive function which accurately reflects the transmission of
dynamic forces to the supporting foundation. Some diffi-
culties were encountered with the application of standard
'off-the-shelf' optimization codes. These problems are as-

cribed to the existence of 'noise' in the computed objec-
tive function. The optimizatron was finally successfully
done by means of Snyman's ti] dynamical and heuristic
LFOPl(b) algorithm.

The computed optimum design gives significant re-
ductions of more than 20% in the value of the transmis-
sion function when compared to that of two acceptable but
arbitrarily chosen initial designs.

Mathematical model

System description

Since the conveyor has a syrnmetry plane and the harmonic
force of the excitor acts in this plane, all motion ir parallel
to it, and use may therefore be made of a planar model.
A schematic representation of the model is presented in
Figure 2. The symmetry allows for the four symmetrically
placed supporting springs to be consolidated into two for
the purpose of the modelling. The table DC is attached
to a rigid foundation by rneans of the two vertical helical
springs. Assurne that in the initial undeformed state, with
the springs vertical and the table horizontal, the ends of
the springs a,re rigidly attached to the base and to the
table, respectively. This introduces torsional springs at the
points of attachment. Linear elastic restoring forces and
rnoments are a,ssurned for which the spring constants may
be obtained experirnerltally. The axial spring constants are
denoted by ks and ka a,nd the respective torsional spring
constants by kr, kz., k3, and ka as indicated in Figure 2.

DISCHARGE

Figure 2 Schematic representation of a planar model
of the conveyor

The state uariables giving a detailed description of the
system and a,lso indicated in Figure 2 are: the angle 0 to
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the horizontal, the coordinates of the centre of gravity of
tlre table (* n,Us), the respective base angle, spring length
and top angle of the two individual springs: P,,(t,a,0',t2,
arrd e' . For convenience these nine state variables, in the
order in which they were introduced, will also be referred
to by Qr,Qz, ..., Qe . The undeformed natural lengths of the
two springs are denoted by t? and (92, respectively. In
the case of the horizontal conveyor of interest here, the
initial undeformed system corresponds to the state where
g - 0, p - o: g' = et = 5 and (q - l? - tg - 12.

The geometrical design uariables, of interest in this
optimization study, are the positions of attachment of the
vertical springs relative to the centre of mass of the table.
They are denoted by the distances o, b, a,nd h, as indicated
in Figure 2.

The system clearly has only three degrees of freedom.
Having introduced nine state variables for convenience of
description implies the existence of six con straint equa-

tiotts. These equations define the relationship and inter-
dependence between the variables and are of the general
form

gj(Qt,Qz,...,gg) -gt(q) -0, j:r,2,...,6 (1)

wlrere q - (q-, qz, . .., ,ln)'

By inspection of Figure 2, the follorving six geometri-
cal and holonomic constraint equations lnay be identified:

gr- (.rcosB + (a* b) cos 0 + (.2cos13' - (c+ D)
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system considered here equation (8) may be written as

Applyins (10) to (9) for k - L,2 and 3 yields the equations
of motion:

Iso - fr
*)+(asin0 + ftcos 0)+ )s(hsin 0 - ocosd) + )o 

(11)
milg = fz - )a

ttty n

Since {1 for k - 4,...,9 does not explicitly appear in (10),
it is i-portant to realize that for any instant t, with q
known, w€ may solve the six remaining equations in (10)
to yield ), rvhich of course, in general, also varies with
time.

By defining new variables qtg = 0: h i Qrt - is
Qz and Qtz
( 1 1), six first order differential equations in the twelve de-
pendent variables Qt, Qz, ..., Qtz. A further six first order
differential equations can be obtained by transforming the
six constraint equations (1) bV differentiation to the form:

-e @) o* -*D- (*) o*:,i- (*) on*n -ti,
j - r,2, ...,6

( 12)

Combining these six equations with the previous six re-
sults in a systern of twelve coupled first order differential
equations in the trvelve dependent variables Qt,Qz, ..., Qtz.
In matrix form the systern rnay be written as

Ad-c

Iz - /1 sin t3 +(c * b)sin 0 -
9s-0+13'-e-e'

(.2 sin l3t - 0

9q- (4cosB*acosd - hsin0 - rs - 0 (5)

gs : Ag - (tsinp - asind - hcosd - 0

9a-0*a-0-0

L - T(q, q) - tz(q)

- 0 (2)

(3)

-0 (4)

(6)

(7)

(8)

Lagrange equations of rnotion

With the system described in terms of genera,hzed coordi-
nates and constraint equatiorls, the ua,tural rvay to analyse

the motion of th6 systern is by rnea,ns of Lagrange rnecharl-
ics. Of particular importauce for this study is that the
Lagrarlge approach allorvs for the easy detertnination of
the reaction forces, at the spring attachrnent,s, in terms of
the so-called Lagrange multipliers associated rvith the con-

straint equations. We briefly sketch the derivation of the
relevant equations of rnotion. For the rnornent the shaking
force as well as the dampiug forces are ignored. They will
be introduced later.

The Lagrallge function is defined as

n'here more detailed inforrnation concerning the structure
of the rnatrix A and the vector c is given in the thesis by
Van Wyk. [9]

Harmonic disturbing force, dampit g forces and re-
actions

The forced response of the conveyor is due to a harmonic
force generated by two synchronised and contra rotating

( 13)

rvhere T denotes the kinetic energy and V the potential
enet'gy of the system at any instaut t. For the conveyor
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eccentric masses. If the nlasses rotate at, a,ngular frequency
u the expression for the hannonic force becomes

Fo - pru2 cos(url)

(xo;yo) Sy

I

I

FEED

Figu re

Solution of

4 Reaction forces a nd moments acting
at positions of attachment

the systern equations and verification
of the model

\Yit,h the initial conditions q(0) known the system of dif-
ferential equations (13) may be solved numerically to give
q at, any instant t. Notice that this solution also yields
A (see the paragraph following equations (11)), and con-
sequently through ( 17) the reactions at the base. Here
the initial value problem is solved nurnerically by means
of the Runge-Iiut,ta,-Verner method as embodied in the
IN,ISL subroutine IVPRK [10]

Before cornmencing with the routine solution of (13)
in an ext,ensive optirnization procedure, it is necessary to
determine representative values for the darnping constants
c:rr and cyy and to verify the rnodel experimentally. For
a fixed setting of the design variables lo,b, h] , the free re-
sponse of a sta,ndard experirnental system wa,s studied. In
agreement n'ith the assurnption that the respective damp-
ing forces in the r a,nd y directions are uncoupled, the
motions in t hese trn'o directions were studied separately
and cornpared u'ith that predicted by the rnathematical
nrodel. The values of the damping constants ctc arLd co, rn
the model were systematically varied until excellent agree-
meut betu'eetr t,he experirnental ancl predicted behaviour
was obtained. These values were used throughout in the
simula,tions that follow. For the given systern, operating
under st,andard conditions, the rneasured tirne-dependent
belraviour of R, and Sy and of the stroke, were compared
to t,hat, preclicted by the model. Excellent agreernent was
obt ained. [9]

The most inrportant geometrical, material and opera-
tional system pararneters are listed in Appendix A. A rnore
detailed exposition of the para.meters and a description of
the experinrental determination of sorne of these geomet-
rical and rnaterial pa,rameters rnay be found in the thesis
by Van qt""'k. 

[9]

Optirnization

Optirnization of the syst,ern with respect to any set of de-

sign variables x
of a suitable objective function. Since our objective is the
rninimization of the tra,nsrnission of vibration to the sup-
porting foundation, ar] appropriate objective function to
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where p is the total eccentric lnass and r the eccentricity.
The harmonic force f0 acts at a, vector dista,nce p from
the centre of mass and at an angle o with respect to the
horizontal table (see Figure 3). It follorvs that the equiv-
alent force and moment components acting at and about
the centre of mass is given by

F, - .Fo cos( o*0); Fv - Fo sin( o*0); Fe

( 15)

I
I
I
I

DISCHARGE

Figu re 3 Position a nd action of excitor

A simple viscous and uncoupled danrping rnodel is
assulned in which the darnping force and lnorrrent compo-
nents are given by

ry1 ctcnri g; Tvls 
-

where cor, cyy and css denote the damping coltstants. We
sirnplify the model further by a,ssumittg cee

determination of crx and cya a,re dealt with in the next
section.

The respective force and lnornent components in (15)
and (16) may now be added to the equat,ions of rnotion,
(11) and (13), to complete the mathernatical description
of the system.

In order to compute a transrnission function, required
for the later optirnization exercise, it is necessary to deter-
tnine the time variational change of the reaction forces at
the support points on the foundation. Assuming that the
lnasses of the springs are negligible compared to the rnass

of the whole system, the reaction forces and rnornents at
the supporting base rnay be taken as equal to that at the
points of attachment of the springs to the table. The corn-
ponents Rr, Rv and S, , Sy of the reaction forces R and
S, respectively, as well as the tnotnents A't s and AI n (see

Figure 4) lnay be determined in terrns of the cornputed
Lagrange rnultipliers ). Comparing the Newton equations
of rnotion for the system in Figure 4 rn'ith the La.grange
equations (1 1) yields:[9]

A,I ,s

\zl A'l n

S,

- )ri Ry - )b -

(14)

(17)
R,
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be minirnized is

t rT;
T

T; Jo

- sy,)'+ (Ro - Rv,)'+ s3 +
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wlrere S* and R* denote the sta.tic equilibrium reactions,
and [0,4] is an operational tirne interval sufficiently long
to allow d to take on a steady state value. Since the time-
dependent behaviour of Rr,, Rr, S, and Sy are dependent
on the design variables x,d is also a function of x. This
initial study is restricted to the design vector x - lo,b,hl'
(see Figure 2). The objective d is computed by the numer-
ical solution of the initial value problem (13), whilst at the
salne tirne carrying out the numerical integration of (18).
The tirne interval used here is 4 - 39 seconds.

The objective function d may now be rninimized
with respect to x using any standard numerical optimiza-
tion algorithm. Initially it wa,s decided to make use of
the standard and 'off-the-shelf' IMSL optimization sub-
routines BCONF and UN,ICGF,[l0] employing the BFGS
quasi-Newton and conjugate gradient methods, respec-
tively. Both rnethods failed to provide satisfactory conver-
gence. The failures are ascribed to the existence of 'noise'
in the objective function which arises a,s a result of srnall
inaccuracies in the cornputation of the objective function.
These inaccuracies are due to the fact that the objective
functiou is itself the outcome of an approxirnate nulner-
ical integration procedure. This results in serious errors
in the gradient evaluations and line searches required for
carrying out the optimization.

The optirnization wa,s finally successfully performed
by rneans of Snyrnau's [7] dynarnical a.nd heuristic
LFOPl(b) optimiza,tiou algorithtn. This method, requir-
ing no formal line searches, is a proven robust rnethod
with outstanding global convergence properties. To allow
for the imposition of side constraitrts on the design vari-
ables and functional constraints oll the stroke, use was
made of a. penalty function approach in which the ob-
jective function wa,s modified by the addition of a cor-
responding penalty term whenever a, constra,int (see Ap-
pendix A) is violated. The convergence histories of the
successful LFOPl(b) algorithur, together rvith that of the
failed methods and for two different designs, are shown in
Figure 5, (a) and (b) In both ca,ses t,he dynarnical rnethod
collverged to the same loca.l, o,rd probably the global, rnini-
rnum lo;b;hlr = [0.5993; 0,4294; 0.2571]t,with objective
furrction value d - 27 .8929 units.

Conclusion

The objective of the study, narnely the optirnal reduction
of the transrnission of dynamic forces through the adjust-
ment of the spring support positions, was achieved.In par-
ticula.r reduction of mol'e than 20% in the value of the
tra,nsrnission function, compared t,o that of tu'o a,cceptable
but otheru'ise a,rbitrarily chosen initial designs, were ob-
tained.

26
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Figure 5 Convergence histories of the three optimization
algorithms for two different initial designs

Since the rnathematical model employed already takes
into account other geometrical a,s well as material and
operationa,l parameters, future work will concentrate on
achieving further reduction through optimization with re-
spect to these additional design variables.
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Appendix A

Geometrical, material and operational system pa-
rarneters

Spring parameters:
- undeformed spring lengths (qu(0) : qr(0) - 0.130 m)
- feed end axial spring stiffness (kr - 5300.0 N l^)

T7

- feed end torsional spring stiffnesses
(kt - k2 - 46.68 Nm/rad)

discharge end axial spring stiffness (&u - 7007.0 N/m)
discharge end torsional spring stiffnesses

(kt - kq = 60.86 Nm/rad)

Mass parameters:
- mass of table (* - 54.9 kg)

moment of inertia about axis through c.o.m.
(In = 11.70 kel^')

- gravitational acceleration (g - 9.81 m/s2)

Excitation parameters :

angular frequency (, = 99.34 rad/s)
- eccentric mass (tt - 5.249 kS)
- eccentricity (r' = 0.0205 rn)
- excitation angle relative to table (o - r l4 rad)

radial position of excitor (p - 0.188 m)
angular position of excitor (, - I.220 ra,d)

Damping parameters:
damping constant in r direction (rr, - 0.004 r-t)
damping constant in y direction (rr, - 0.011 r-t)

Constraints irnposed on design:
0.3851( a < 0.7851
0.2L49< b < 0.6149
0.1660 < h < 0.2560
0.003( stroke < 0.005

(bounds given in metres)


