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Abstract

Rayleigh lines, representing states of constant mass flu,
per unit area when heat is transferred to or from a gas, are
proposed for use in a modifi,ed open or closed Joule cycle
(to replace lines of constant pressure) Io better describe
cases such as regeneratiue heat transfer and reheating, as

weII 0,s cornbustion processes in jet engines, by allowing fo,
pressure drops during heating. The application of Rayleigh
Iines fo, this purpose is simplified by the fact that at low
subsonic Mach nurnbers, lines fo, different rnt,ss aelocities
(which rnay result from aarying mass flo* or combustion
chamber area) tend to coincide. The efficiency of such a

modified Joule cycle is deriued.

Nomenclature

a rtT"0
A cross-sectional area of duct
b r"(0 - I)
e regenerator effectiveness
G ma,ss velocity
K 1+(t-I)M2 12
Kr, Kz constants in pressure loss factor (PLF)
m mass flow
M Mach number
p pressure
PLF pressure loss factor

A heat flux

f :ff,"#ent
T temperature
a specific volume (= t I p)
V velocity
W work

Greek

a pressure rati o pz I p,

7 ratio of specific heats
q efficiency
0 temperature ratio TslTt
p mass density
r temperature ratio TzlTt

l school of Mechanical Engineering, University of the
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Subscripts

a atmospheric
c compressor
t stagnation; turbine
* thermal choking condition
1 upstream
2 downstream

S,tperscript

(') state after non-isentropic change

Introduction

The simple Joule or Brayton cycle, consisting of two con-
stant pressure lines and two isentropes (all usually ex-
pressed in terms of static parameters) has long been taken
as the theoretical basis of operation of ramjet and gas tur-
bine engines - as illustrated, for example, by a-b-c-d in the

?u diagram of Figure 6. In practice, the experimental .y-
cle may be somewhat different. Not only are the expansion
and compression processes non-isentropic, but the actual
combustion process involves a pressure drop, as shown, for
example, by the experimental values of Figure 6. Whilst
the overall effect of such a compression process, although
complex, is not too different from that of an isentropic
process, the fact that the pressure drop during heating
(not normally considered in the simple theoretical cycle)
is approximately linear on a ?u diagram suggests that it
may be considered in terms of Rayleigh heating flow which
also predicts such a pressure drop. This paper examines
the possibility of incorporating a Rayleigh heating or cool-
it g line into processes normally described by the standard
Joule cycle, &s given in standard texts, €.8. [1 ;2;3;4;5;6;7],
and takes into account the practical aspect of variation of
mass flow or heating chamber area in relation to the use

of such curves. The difference between Rayleigh curves on
T-s and Tt-s ordinates (which is often overlooked) is also
emphasised.

Some properties of T-s, h-s, and p-v plots

Rayleigh lines

For a constant area duct, with continuity, in one-
dimensional flow, without friction, and using perfect gas

analysis, G = pV = constant. Applyitrg the momentum
equation, A (p + pvz) - constant, we have p + G'I p =

Witwater-
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The Mach number at entry to the combustion chamber of
a turbojet engine may vary from 0.07 to 0.22,12) but cal-
culations based on examples in [4] point to a value of 0.2
as being typical. As a result, the value of M may increase
during combustion to approximately 0.5 (less after after-
burning). Although at low Mach numbers the difference
between T and T is often ignored, f, I f for M = 0.5
is 1.05. Since the addition of heat to a moving gas in a

combustion chamber is easily represented as an increase
in enthalpy, a T-s diagram may often be more suitable
to depict Rayleigh lines on an actual cycle . Tt-s curves
corresponding to ?-s curves may be found by putting

Figure 1 compares Rayleigh lines in T-s and T1-s forms as

indicated by Rg) and R gr), s being already a 'stagna-
tion' concept. The overall Tr-s diagram differs from the
T-s diagram in that the supersonic branch of the Rayleigh
line lies above the subsonic branch, and better emphasises
the large enthalpy input needed to decelerate a gas moving
with supersonic velocity than is apparent on a T-s plot.

. 1000 0 tom

Figure 1 Comparison "f "-: "^:\1 ,,.,",
F Q) , F (Tr) Fanno lines, R(") , Rgr) Rayleigh lines

- Normal shock

0 1000

t l/T9 K

Figure 2 Rayleigh lines on Tt-s diagram for two values of G

Fanno lines

Rayleigh lines are often considered together with the lines
representing Fanno flow, representing adiabatic flow in a
constant area duct with friction. Fanno lines are thus lines
of constant stagnation temperature, and hence of constant
stagnationenthalpy: h1 -h+V2 l2 = h+yRTM'12.

constant, the equation of a Rayleigh line. This may be

written pt - pz = (r, - rr) G' ", ffi = - G',which is

linear on a ?u plot. Also, takingT - H and V=X - Go,

+ M =Gul\ffi -G while ( 1)

11 -r (1 + +M') - r *u2 (t - r)G' l 2t R . (2)"\2)
For a heat addition process 2-3, as shown in, for example,
Figure 4,

sg-sz - -U-m7-L

= 
Etl'

7-I

and in terms of M, w€ have

ss-sz = fir^ly,
Ts-r^M3 (r+tui\'z'w\m)

In terms of the thermal choking (*) conditions (M
we also have, for I{- 1+ (Z - t) M'12, so that
(z+t; 12:

rt- (t* +*'),
whence for example,

r," =(' * +w) n#, (m)' (,0)
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whence, in terms of M, between, s&y points 2 and 3, with
ft constant,

Writin g CpT, = CoT + V2 / 2, then since G =
Cp - tRl (z - 1), and pa - RT,

CrTr : 1 
ipu + G2u2 / 2 = constant

7-L

^t-L142Ii - 1+ t,

l'YR?,v-7-

For 7 - I.4, this leads to M l(5 + 142)t = constant x G,
the constant relating to the given stagnation condition.
(The denominator of this term is obviously only a weak
function of M if the latter is subsonic.) 2

If the area changes at constant m, consider the equa-
tion of continuity in the form

m-AVp-GA:constant

v lo,

(11)

( 15)

s3-s2 - R In

The intersections of Rayleigh and Fanno lines represent
the end points of a normal shock, such as occurs in (ot
upstream of) a supersonic intake as illustrated in Fig-
ure 1. On the Tt-s plot, a Fanno line will be horizontal.
The normal shock transition from the supersonic to the
subsonic branches of a Fanno curve is now represented by
a section of this horizontal line.

Effect on Rayleigh Lines of m and A changes

A simplified approach to this topic is as follows. The above
normally considers that rn and A are constant in a heat
transfer duct; however, 'secondary' and 'tertiary' air may
enter, or be bled from, a duct during operation, while A
may change for design reasons. It is therefore of interest to
consider the practical behaviour of Rayleigh curves when
such changes occur. For constant A, a different va,lue of nt
will give a proportionately different value of G, resulting
in a different Rayleigh line; Figure 2 shows Rayleigh lines
plotted on Tt-s ordinates for appropriate values of m and
2rn. The low subsonic branches of curves of widely differ-
i.rg G values are seen to be closely coincident (as a result of
the kinetic contribution to Tt) and Rayleigh lines are thus a
useful way of representing the heating process in the com-
bustion chamber on a, temperature-entropy diagram when
riz varies under these conditions. As will be seen later (FiS-
ure 3), the subsonic branches of different G curves on 7-s
ordinates also tend to coincide at low subsonic Mach nurn-
bers. This convergence is useful when using Rayleigh lines
under conditions, for example, of combustion chamber ge-

ometry variation. This close correspondence of the sub-
sonic curves for different values of G during heat addition

:;tr:l'i$;T'l?,::il:{,11,$i;Til::il:*T.li*';i,:
curves approach the s-axis asymptotically. However, the
Mach numbers corresponding to closely adjacent points
for different G curves are not, of course, the salne; for ex-
ample, if G is doubled, M will be approximately doubled
for the same stagnation temperature condition at starting,
since from the Inass velocity equation, usiug

If, for example, A is halved, G is doubled, and a shift to a
curve as for a correspondingly increased value of m occurs.
These effects are consistent with the use of an increased
size of nozzle in a gas turbine engine with reheat to permit
the use of higher nozzle entrance temperatures.[a]

Worked example

Figure 3(u) shows a typical Rayleigh line (dashed) on ?-s
ordinates, starting at M - 0.2, and for which G = 181.56
kg/m2s. The two additional curves shown for 1.5 G and
2 G correspond to starting Mach numbers of 0.2973 and
0.4166 for the same stagnation temperature of ?1, = 394

/{. The corresponding effect of a G change on !h. Ta
diagram is illustrated in Figure 3(b); in the case shown,
tlre upper curve starts at a very low value of M. A change
in G brings about a change of slope as the combustion
chamber ma.ss flow or area changes. For any given mass

flow, the pressure drop is obviously greater for a duct of
srnaller area (or for an increase of mass flow in a duct of
constant area).

Pressure effects

The entropy change on a line of constant pressure between
points 2 and 3 is given by puttin g pz = ps in

(r2)

(13)

(14)

'"{fi &) 
-} 

(16)

An exarnple of such a line (for p = 2.58 bar) is given in
Figure 3(u) for comparison with a Rayleigh line starting
at the same point. On the other hand, the pressure drop
during heating, Lp, I pr, is expressed [4] as

Lp,
Pt

where

PLF

+G = pl'=pt (+)?-r Itr

The pressure loss expression (PLF) involves a constant
'cold loss' fa,ctor /(r (due to friction) and a'fundamental
pressure loss' involving liz, due to the increase of temper-
ature a,s a result of combustion (and hence, a function of
Tt" I 7;).This form of expression for Lp, I pt introduces
the variable m I A (= G) ,and in practice the value of m I A
is clrosen to yield a value of Lp1 I p, between 4 an d TTo.lal

2This expression was given by Qambel in [8] and [9].
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Rayleigh lines (ot a corresponding value of G) may thus
be selected to conform to an appropriate value of L,p1 I pr.

corresponding to the heating section of the heat exchanger
is here almost identical with that (Rr) for the combustion
chamber. After point 5, cooling takes place in the other
section of the heat exchanger which corresponds to a
different Rayleigh curve, Rs. For simplicity, M5 has been
made equal to Ms. At exit from the heat exchanger at
6, the flow will theoretically be at a higher pressure than
ps and a drop to p.,(= po) ir then required (shown iLs an
isentropic drop).

In the calculation of the p-v diagram (Figure 4(b)),
point 5 is found from the intersection of the isentropic line
from 4 with the isothermal from 3; the Rayleigh line, Rs,
(having the same value of G as for line 2-3) then extends
to meet the isothermal from 2 at 6, frorn where 6-7 is the
final isentropic drop.

Worked example

In Figure 4, the plot is based on a starting value of T1 =
280.1 K, with r
M2 = 0.1, while T5 (after the drop through the turbine

- 951 I( (= ?r). M5 - Ms - 0 .132 Ma - 0.1.

Reheating

The process followed is that shown in Figure 5(a) and (b).
The change of Rayleigh curves is here difierent from that
shown for area change in Figure 3 since the presence of the
turbine gives rise to a temperature discontinuity in the
cycle; reheating therefore corresponds to a Rayleigh line
starting at a different temperature point, and the resulting
curve does not coincide with that relating to the chamber
upstream of the turbine.

Worked example

In the case shown. we assume M2 - 0.2. Then for
Pt'
Tr' = 564.5 I(
7,,
T2

M .0.1

1 ,4x
Figure 3(a) 

"-r 
plot for different G

G - 181 .56kglm2s, 1.5 G - 27I.34
2 G - 363 .I2 kgl.2,

t@

values
kelm2s

.Flow starting poinr

/f

0.59

ffi=l

\rt'- 
B

tt 
fv{=o

(I{ = 0.075 for A;
[!f = 0.1i3 for B)

f,'f = 0.555

lvt=l

Pm
kPa
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\
\
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\

M
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EO

Figure 3(b) p-v prot ;, ,;:1.,.', G varues

Curve A: G - gI.42kel.'r, Curve B: G - 62.84kelm2s

Applications of Rayleigh lines

Regenerative heat transfer

Consider a heat exchanger of the form shown in Figure
a("). In the regenerator, Sections 2-3 and 5-6 will in gen-
eral represent different geometries and hence different val-
ues of G. In general, Ts-72 - e (Ts-Ta) if the specific heats
are cancelled, and e is the regenerator effectiveness. In the
ideal case (e
ation is depicted in Figure a(u). The Rayleigh curve, Rt,

R & D Journnl, 1995, I1(2)

Ms = 0.312
Then , G = 383.3 kg/rn2s. If the temperature through

tlre turbine falls to fro :959 K and the area ratio AslAq
is assurned to be 0.5, this gives G+ = (A"lAn)Vsps = 104.5
kg/rn2s, which defines the second Rayleigh curve. Let
Ttu - 2 000 K after reheating. Then,

604020
we have ps

Vs

G = 104.5 kg/m2s

- Ma (t RTq)* pn

- Ma (t I R)i p,^

- 1 18. 1 m/s and

= V+pq

= Mae I R)+ pq I en)i
I (T,n)i xn;8+?

( 18)

Since Tq = TrrlI{q and, pa = pt^lI{f' .

) Mq - 0 .204, leading to M6 - 0.31.
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diagram for a case of regenerative heat transfer.
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Figure 4(b) p-v diagram for a
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The cycle is completed as shown in Figure 5(u) and a corr-
plete Rayleigh curve corresponding to the reheating pro-
cess rs grven (of higher T;). Figure 5(b) shows the corre-
sponding pressure drops (7.8% from 2-3 compared with
27 .7To from 4-*6).

Supersonic intake phenornena

In general, compressio is accornplished by one or more of
the sequential processes indicated on Figure 6:

o Oblique shock compression;

o Supersonic diffusion;

o Normal shock compression; a d

o Subsonic diffusion.

foulc.y.h

P

lPr

Expcrimentd cyclc

' 
: 

",,ar

Figure 6 Theoretical and experimental

Jou le cycles (from tll)
Processes: 1. Oblique shock compression; 2. Su personic

diffusion; 3. Normal shock compression; 4. Subsonic
diffusion; 5. Combustion; 6. Expansion; 7. Cooling.

The experimental points are plotted from data given in 12)
(corrected).

In a turbojet, these processes may be followed by fur-
ther compression in the compressor unit. Although the
overall process involvittg the above is not strictly a simply
Rayleigh process (i... one associated merely with a stagna-
tion temperature change), Figure 1, showing a transition in
a duct from supersonic flow to subsonic flow through a nor-
mal shock, followed by subsonic heating, lends itself to il-
Iustrating several of the intake phenomena involved within
the flow boundaries. The appropriate diagram is shown
in Figure 7(u), and includes two Rayleigh lines , Rr and
Rz ,which correspond to the different 'duct' areas . The
oblique shock may be represented as reaching the outer
rim of the intake duct (to avoid flow spillov€r - the shock-
on-rim case). The flow area decreases in the supersonic
region; the friction effects here result in changes closely
similar to those occurring along a Fauno line. The nortnal
shock shown (and the defining Fanno line) results from a
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M.6

Figure 7(r) T-s diagram

t@

s lrtt x

illustrating inta ke processes

ieenaopic diffusion

MPe

notand lhock comPrereion

thcf, comFclsion

I

O 0.5 v mr&t 1.0

Figu re 7(b) p-v diagram illustrating intake processes

Worked example

A simple 2-dimensional intake is chosen for purposes of il-
lustration. The compression process starts at an assumed

flow Mach number not much greater than unity; down-
strearn of the normal shock, the cross-sectional area nor-
rnally enlarges to decelerate the now subsonic gas stream
(equivalent to a decreasing value of G). The characteristic
convergence of the two subsonic parts of the Rayleigh lines
representing the different values of G will be noted.

The entropy zero is here taken at the station upstream
of the normal shock, rather than at point 2 in the open
cycle.

Y .0.15Ta

pi

bentrc ' dllfurlon

M.0J

T

Kt@

.O

lql

2q,

to

0

'l
I
I,l
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M '0.U1

t
I
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freestream Mach number of 2.5, and at static ternperature
and pressure values of 200 K and 70 kPa, for which G (first
Rayleigh line) .t inlet - 1550 kg/m2s, and 4 - 451.4 I{.
Two oblique shocks turn the flow through 10o and 8o, re-
spectively; this leads to a flow at M- I.77 upstream of
the normal shock, after which deceleration is considered
to take place isentropically, followed by heating along the
second Rayleigh line after poin t 2; G for subsonic diffusion

pression line appears to follow the isentropic line fairly
closely, &s is confirmed by reference to Figure 7(b). The
effect of T of the small entropy increase during compres-
sion is similar to that introduced by the i-perfection T"
(to be discussed later).

Modified Joule cycle

In the simple Joule cycle, using isentrop€s,

Worked examples

For a sirnple cycle, letting r - 2,\ = 1- I l, - 0.5, while,
If ,t, = Tt" - 0.9, so that b - 0.9(5 - 1) - 3.6 if 0 = 5, and
o - 0.9 x 0.9 x 5 - 4.05, this equation for r7 gives

n - Q - r)!4_.05 /2 - r) - o .64r .

3.6 - 2

The exarnple shown in Figure 8 makes use of the following
parameters for the modified cycle:
To = 288K a=4

1 bar G - 181.56 kg/m2s
0.135 (starting combustion chamber value)
0.226 (final combustion chamber value)

T2 (pr1 ' (pr1 # Ts

n ( 1e)

(20 )

(21)

(23)

Ts = 1100K
Thermal choking does not occur until ?* - 4317 K.

Figure 8(t) T-s diagram illustrating the modified Joule
cycle.

Let r-TzlTt =
In terms of static

Ts I Ta so Tq I Tt - Ts I Tz.
enthalpies, r7 is given by

w
a

1-
1-

c o(Tr-Ta)- C o(Tr-Tr)
c o(7"-Tz)
t (Tn lTr- 1 )?,r - T157Tr--TY,

With inefficiencies (see [5]), if
a - TtT"0, 0 - Ts lT1, and b - n"(0 - 1) ,

then

T":ffiand \1 =m
giving n - k-t\loglr-tt.

In the modified cycle, using a Rayleigh combustion line,
Iet the combustion pressure change be expressed in terms
of o :) ps - apz and a useful relationship between a and
mass velo city, G, is (see Appendix for derivation)

(n,+nrrrG' I pr)f [(p, *X:,G' I pr)'-4(G'ner,)]i (22)

if G is known. Alternatively, G may be found from a, using

G=pzf4l +

lffir@ la - ')J
17 may be found from (see Appendix)

q-

o-r 
e4)

0

Figure 8(b) p-v diagram

r rtftt

illustrating the modified Joule
cycl e.
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Figure I illustrates the slow reduction in the thee
retical value of q with increasing pressure drop for the
modified cycle, using

T1 - 2gg K
Pt = 105 Pa
0 _5
r -2

Then, \ = 0.493 at a - 0.971, falling to n - 0.469 at o =
0.88.

line may hence be arranged by adjustment of mass ve-
loci ty, G, to coincide with any experimental pressure
drop (such as a'4To line') obtained in normal prac-
tice . n may then be calculated as indicated for the
modified cycle. As an example, if the pressure at the
end of combustion is only, S&y, 3% less than the pres-
sure at entrance to the combustion chamber, q does
not decrease more than ITo from the simple Joule cy-
cle value of 50To. lf pt is10% less than pz, q drops
to 47.5%, which indicates the i-portance of holding
down combustion chamber losses by a suitable choice
of mass velocity.
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0

Figu re 9

l-e (Prorurt drop m t of pr)

Cycle efficiency vs pressure drop in the modified
J ou le cycle.

The exit point 4 of the cycle normally represents a
supersouic flow (".g. Ma - 2.33 for the cycle pa,ralneter
values given). To reach such a value, the flow must pass

through the sonic value which corresponds to the max-
imum s point on the appropriate Ra,yleigh curve. Such
acceleration after the flow has left the combustion cham-
ber corresponds to a decreasing and then increasing area
(increasing and then decreasing G), i.e. the flow follows
a series of G curves, or one of which it passes through a

maximum entropy point as it goes sonlc.

Discussion and Conclusions

Rayleigh lines, representing constant mass flow per
unit area under conditions of heat transfer, are con-
sidered to be appropriate cornponents of processes fol-
lowing the Joule cycle (ir which two elements are
constant pressure lines). This technique rnay also
be applied to obher cycles embodying constant pres-
sure lines. Variation of combustion charnber cross-
sectional area or mass flow produces little change in
the subsonic branches of Rayleigh lines on a T-s plot
(and there is even closer correspotrdence on a Tt-s
plot). This small change in the cycle on ?-s ordinates
implies little effect on heat reception or rejection.

Both Rayleigh lines and the use of the conventional
mass flow parameter , in (RTr)i I pr, lead to a linear
pressure drop on a p-v plot. The subsonic Rayleigh

1

2

Slnplc foulc .y.h
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Appendix

Derivation of Parameters q and d

Using isentropic compression and expansion, let T2 - rTt.
Then

k) 
+ 

-?;
and H= (f)'

Let ps drop to apz
line,

us - uz - P" -=,?'
_G2

r so P = rn-t or pz = ptr#
so?/20)rrrr!,. 

"' (1)

during combustion.l For a Rayleigh

{ r,0-r,['+ +fi ,#(1-o) / ",f[,"o+ ] 
t 

] 
-r,r,-,1t

-r)

( r-
tr- 1,*+i| ,#(1-o )/.,][,"*]* ]-(,-1) 

(11)

It G is known, o may be found as follows as

f (pz, R, r, Tt, G, 0) :

psas - RTs - R|Tr and pzaz - RTz - RrTt
) as - R?Trlpt and u2 - RrTllpr.
Now,ps-pz-(us-rr)-G,
)ps=pz-(rr -a2)G,
= pz - G2 RoTr /p" * RrT1G, /pr.

(2)

=)us_

Let the gas be
Tt (0 - r). Also,

Ps

Pq

)u.+=

uz*r#-u2.W (B)

heated to Ts = 0Tr. Then Ts T2 =

= Pt' (4)
* ps+ ry = pz* RrTotc2 

.

Puttingps=ap2,
(r2)

(5) apz + G2R|T. 
= pz * RrTrGz whence, (13)aPz pz

u4 = us (ps t p)i = [,, 
* #]l3l*

Now,

a2 - alr r!, and pz I pt = r*, ,

o'p, + G2 RTT. I p, - a (p, + RrT1G, I pr) or (14)

o2 pz - a (p, + RrTlG' I pr) + G2 Rl11 I p, - 0 whence,

( 15)

a-
(pz+RTtc2 / pz)+l(pr+nrrrcz / or)2 -q(cz nerr)]l (16)

2Pz 
'

(the positive root being the applicable one).
$lvell ct2 :

u2 = RTzlp,
R?Tt I opr.

(6)

(7)

Pf
(8)-d

(e)
Alternatively,

RTslpt =

) Ts -Ta

=0Tr-L'- ul

-0Tr-Tt

-r. Ws+ - Wn
-r- :

Qsz

( 10)

U3-

G_

u2=w_ry_rct(*_r)

lmlr = [6g11 
- 
= Pzf4"-,4 

] 

-

( 17)

1A derivation of o - f (pz, R,

R & D Journal, 1995, II(2)

co (7, - Ta) - Co (7, - Tt)
co (7, - Tz)

( 18)

r, Tr, G, d) is given below.

1

= PtT't-t
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