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Abstract

Rayleigh lines, representing states of constant mass fluz
per unit area when heat is transferred to or from a gas, are
proposed for use in a modified open or closed Joule cycle
(to replace lines of constant pressure) to better describe
cases such as regenerative heat transfer and reheating, as
well as combustion processes in jet engines, by allowing for
pressure drops during heating. The application of Rayleigh
lines for this purpose is simplified by the fact that at low
subsonic Mach numbers, lines for different mass velocities
(which may result from varying mass flow or combustion
chamber area) tend to coincide. The efficiency of such a
modified Joule cycle is derived.
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Subscripts

a atmospheric

¢ compressor

t stagnation; turbine

* thermal choking condition

1 upstream

2 downstream
Superscript

(") state after non-isentropic change

Introduction

The simple Joule or Brayton cycle, consisting of two con-
stant pressure lines and two isentropes (all usually ex-
pressed in terms of static parameters) has long been taken
as the theoretical basis of operation of ramjet and gas tur-
bine engines — as illustrated, for example, by a-b-c-d in the
p-v diagram of Figure 6. In practice, the experimental cy-
cle may be somewhat different. Not only are the expansion
and compression processes non-isentropic, but the actual
combustion process involves a pressure drop, as shown, for
example, by the experimental values of Figure 6. Whilst
the overall effect of such a compression process, although
complex, is not too different from that of an isentropic
process, the fact that the pressure drop during heating
(not normally considered in the simple theoretical cycle)
is approximately linear on a p-v diagram suggests that it
may be considered in terms of Rayleigh heating flow which
also predicts such a pressure drop. This paper examines
the possibility of incorporating a Rayleigh heating or cool-
ing line into processes normally described by the standard
Joule cycle, as given in standard texts, e.g. [1;2;3;4;5;6;7],
and takes into account the practical aspect of variation of
mass flow or heating chamber area in relation to the use
of such curves. The difference between Rayleigh curves on
T-s and Ti-s ordinates (which is often overlooked) is also
emphasised.

Some properties of T-s, h-s, and p-v plots

Rayleigh lines

For a constant area duct, with continuity, in one-
dimensional flow, without friction, and using perfect gas
analysis, G = pV = constant. Applying the momentum
equation, 4 (p+ pV?) = constant, we have p + G?/p =

R & D Journal, 1995, 11(2)



constant, the equation of a Rayleigh line. This may be

written p; — p2 = (v2 — v1) G? or (5::’;:) = —G?, which is

linear on a p-v plot. Also, taking T'= & and V:% = G,

= M =Gv/\YRT =G\/v/vp while (1)

Tt:T(1+7—;—1M2) =T+v*(y-1)G?*/2yR. (2)

For a heat addition process 2-3, as shown in, for example,
Figure 4,
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and in terms of M, we have
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In terms of the thermal choking (*) conditions (M = 1),
we also have, for K = 1+ (y —1) M?/2, so that K =
(r+1)/2:
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The Mach number at entry to the combustion chamber of
a turbojet engine may vary from 0.07 to 0.22,[2] but cal-
culations based on examples in [4] point to a value of 0.2
as being typical. As a result, the value of M may increase
during combustion to approximately 0.5 (less after after-
burning). Although at low Mach numbers the difference
between T and T; is often ignored, Ty /T for M = 0.5
is 1.05. Since the addition of heat to a moving gas in a
combustion chamber is easily represented as an increase
in enthalpy, a T-s diagram may often be more suitable

to depict Rayleigh lines on an actual cycle. Ti-s curves
corresponding to T-s curves may be found by putting

T, = (1 + 7T'1M2) T (9)
whence for example,

2
v=1_,\ .. M2 (1+yM2
T,=(1+1—Mm2 )12 (212
fa (+ 2 3) M2 \1+M? (10)
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Figure 1 compares Rayleigh lines in T-s and T}-s forms as
indicated by R(T') and R (T}), s being already a ‘stagna-
tion’ concept. The overall T;-s diagram differs from the
T-s diagram in that the supersonic branch of the Rayleigh
line lies above the subsonic branch, and better emphasises
the large enthalpy input needed to decelerate a gas moving
with supersonic velocity than is apparent on a T-s plot.
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Figure 1 Comparison of T-s and Ti-s lines
F(T), F(Ty) Fanno lines, R(T), R(T;) Rayleigh lines
----Normal shock

T‘lOOO -

supersonic

s J/kg K

Figure 2 Rayleigh lines on T;-s diagram for two values of G

Fanno lines

Rayleigh lines are often considered together with the lines
representing Fanno flow, representing adiabatic flow in a
constant area duct with friction. Fanno lines are thus lines
of constant stagnation temperature, and hence of constant
stagnation enthalpy: hy = h+V?2/2 = h+yRTM? /2.
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Writing CpT; = CpT + V% /2, then since G = V /v,
Cp,=7R/ (y—-1), and pv = RT,

C,oT =

i 1pv+G21)2/2= cons tan t (11)

whence, in terms of M, between, say points 2 and 3, with
T; constant,

s3—s3 =R In {ME (1‘)7’%} (12)

My \ K3

The intersections of Rayleigh and Fanno lines represent
the end points of a normal shock, such as occurs in (or
upstream of) a supersonic intake — as illustrated in Fig-
ure 1. On the Ti-s plot, a Fanno line will be horizontal.
The normal shock transition from the supersonic to the
subsonic branches of a Fanno curve is now represented by
a section of this horizontal line.

Effect on Rayleigh Lines of m and A changes

A simplified approach to this topic is as follows. The above
normally considers that m and A are constant in a heat
transfer duct; however, ‘secondary’ and ‘tertiary’ air may
enter, or be bled from, a duct during operation, while A
may change for design reasons. It is therefore of interest to
consider the practical behaviour of Rayleigh curves when
such changes occur. For constant A, a different value of m
will give a proportionately different value of G, resulting
in a different Rayleigh line; Figure 2 shows Rayleigh lines
plotted on T}-s ordinates for appropriate values of m and
2m. The low subsonic branches of curves of widely differ-
ing G values are seen to be closely coincident (as a result of
the kinetic contribution to 73) and Rayleigh lines are thus a
useful way of representing the heating process in the com-
bustion chamber on a temperature-entropy diagram when
m varies under these conditions. As will be seen later (Fig-
ure 3), the subsonic branches of different G curves on T-s
ordinates also tend to coincide at low subsonic Mach num-
bers. This convergence is useful when using Rayleigh lines
under conditions, for example, of combustion chamber ge-
ometry variation. This close correspondence of the sub-
sonic curves for different values of G during heat addition
does not, of course, apply in the supersonic heat addition
case — except at unrealistically high Mach numbers as the
curves approach the s-axis asymptotically. However, the
Mach numbers corresponding to closely adjacent points
for different G curves are not, of course, the same; for ex-
ample, if G is doubled, M will be approximately doubled
for the same stagnation temperature condition at starting,
since from the mass velocity equation, using

K= 1+7—;-1M2 (13)

(14)
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For v = 1.4, this leads to M /(5 + M?%)? = constant x G,
the constant relating to the given stagnation condition.
(The denominator of this term is obviously only a weak
function of M if the latter is subsonic.) 2

If the area changes at constant m, consider the equa-
tion of continuity in the form

m = AVp = GA = constant (15)

If, for example, A is halved, G is doubled, and a shift to a
curve as for a correspondingly increased value of m occurs.
These effects are consistent with the use of an increased
size of nozzle in a gas turbine engine with reheat to permit
the use of higher nozzle entrance temperatures.[4]

Worked example

Figure 3(a) shows a typical Rayleigh line (dashed) on T-s
ordinates, starting at M = 0.2, and for which G = 181.56
kg/m?s. The two additional curves shown for 1.5 G and
2 G correspond to starting Mach numbers of 0.2973 and
0.4166 for the same stagnation temperature of T3, = 394
K. The corresponding effect of a G change on the p-v
diagram is illustrated in Figure 3(b); in the case shown,
the upper curve starts at a very low value of M. A change
in G brings about a change of slope as the combustion
chamber mass flow or area changes. For any given mass
flow, the pressure drop is obviously greater for a duct of
smaller area (or for an increase of mass flow in a duct of
constant area).

Pressure effects

The entropy change on a line of constant pressure between
points 2 and 3 is given by putting ps = p3 in

R T =

Y 3 (p2\ "

As= ——1In = | = 16
-1 {Tz (Ps) } (16)

An example of such a line (for p = 2.58 bar) is given in
Figure 3(a) for comparison with a Rayleigh line starting
at the same point. On the other hand, the pressure drop
during heating, Ap, / p:, is expressed [4] as

Ap. _ (PLF) 1 (RT)
Py - 2A2 p?
where (17)

_ Apy _ > | Tty

PLF = ——mz/?pAz_[\l—}-I\g (T—t?— )

The pressure loss expression (PLF) involves a constant
‘cold loss’ factor Ky (due to friction) and a ‘fundamental
pressure loss’ involving K3, due to the increase of temper-
ature as a result of combustion (and hence, a function of
Tis / Ti,). This form of expression for Ap, / p; introduces
the variable m / A (= G) ,and in practice the value of i / A
is chosen to yield a value of Ap; / p; between 4 and 7%.[4]

2This expression was given by Cambel in [8] and [9].
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Rayleigh lines (or a corresponding value of G) may thus
be selected to conform to an appropriate value of Ap, / p;.
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Figure 3(a) T-s plot for different G values
G = 181.56 kg/m?s, 1.5 G = 271.34 kg/m?s
2 G = 363.12 kg/m’s
120 I Flow starting point (M = 0.075 for A;
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Figure 3(b) p-v plot for different G values
Curve A: G = 31.42 kg/m?s, Curve B: G = 62.84 kg/m?s

Applications of Rayleigh lines

Regenerative heat transfer

Consider a heat exchanger of the form shown in Figure
4(a). In the regenerator, Sections 2-3 and 5-6 will in gen-
eral represent different geometries and hence different val-
ues of G. In general, T5-T; = e (T5-Ts) if the specific heats
are cancelled, and e is the regenerator effectiveness. In the
ideal case (e = 1), T3 = T5 and Ty = Ts. The ideal situ-
ation is depicted in Figure 4(a). The Rayleigh curve, R;,
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corresponding to the heating section of the heat exchanger
is here almost identical with that (R;) for the combustion
chamber. After point 5, cooling takes place in the other
section of the heat exchanger — which corresponds to a
different Rayleigh curve, R3. For simplicity, M5 has been
made equal to M3. At exit from the heat exchanger at
6, the flow will theoretically be at a higher pressure than
ps and a drop to pz(= pa) is then required (shown as an
isentropic drop).

In the calculation of the p-v diagram (Figure 4(b)),
point 5 is found from the intersection of the isentropic line
from 4 with the isothermal from 3; the Rayleigh line, R3,
(having the same value of G as for line 2-3) then extends
to meet the isothermal from 2 at 6, from where 6-7 is the
final isentropic drop.

Worked example

In Figure 4, the plot is based on a starting value of T} =
280.1 K, with 7 = 2. T3 is taken as 560.2 K (= Tg) and
M, = 0.1, while T (after the drop through the turbine
=951 K (=T3). Ms = M5 =0.132. Mg =0.1.

Reheating

The process followed is that shown in Figure 5(a) and (b).
The change of Rayleigh curves is here different from that
shown for area change in Figure 3 since the presence of the
turbine gives rise to a temperature discontinuity in the
cycle; reheating therefore corresponds to a Rayleigh line
starting at a different temperature point, and the resulting
curve does not coincide with that relating to the chamber
upstream of the turbine.

Worked example

In the case shown. we assume M5 = 0.2. Then for

pi, = 6.67bar
T,, = 564.5K
Ty, = 1200K and
To = 560.0K
we have p3 = 1.77kg/m?
Vs = 118.1m/s and
Mz = 0.312

Then, G = 383.3 kg/m?s. If the temperature through
the turbine falls to T;, = 959 K and the area ratio A3/A4
is assumed to be 0.5, this gives G4 = (A3/A4)Vaps = 104.5
kg/m?s, which defines the second Rayleigh curve. Let
Ti, = 2000 K after reheating. Then,

G =104.5kg/m?s = Vaps
=My (yRT4)? ps = M4(v/ R)? 1_34/ (Tu)?
1 j _é_f- y+1
=Ms(vy/R):pe, | (T3,)? K4 20T
(18)
.
Since Ty = Tu/[\"l and Pa = p“/.[i"‘-l .
= M4 = 0.204, leading to Mg = 0.31.

43



0 500 1000

s g K

Figure 4(a) T-s diagram for a case of regenerative heat transfer.
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Figure 4(b) p-v diagram for a case of regenerative heat transfer.
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Figure 5(a) T-s diagram for a case of reheating (in a gas turbine).

8 I

2

P 6 [~ !\\‘ TS A
[ 3 < 4% drop
N

bar | \
] \

L
s Voo
\ \
\ \
\
vooN
2 | “ N-‘:\ 4% drop
\\ 6“‘
\ Ss
AN Sse o 7
S e aa
0 1 1 1 1 1 1 r
0 1 2 4 5 6
v m%g
Figure 5(b) p-v diagram for a case of reheating (in a gas turbine)
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The cycle is completed as shown in Figure 5(a) and a com-
plete Rayleigh curve corresponding to the reheating pro-
cess is given (of higher T3). Figure 5(b) shows the corre-
sponding pressure drops (7.8% from 2—3 compared with
27.7% from 4—6).

Supersonic intake phenomena

In general, compression is accomplished by one or more of
the sequential processes indicated on Figure 6:

e Oblique shock compression;
e Supersonic diffusion,;
e Normal shock compression; and

e Subsonic diffusion.

Experimental cycle

Figure 6 Theoretical and experimental
Joule cycles (from [1])

Processes: 1. Oblique shock compression; 2. Supersonic
diffusion; 3. Normal shock compression; 4. Subsonic
diffusion; 5. Combustion; 6. Expansion; 7. Cooling.

The experimental points are plotted from data given in [2 ]
(corrected).

In a turbojet, these processes may be followed by fur-
ther compression in the compressor unit. Although the
overall process involving the above is not strictly a simply
Rayleigh process (i.e. one associated merely with a stagna-
tion temperature change), Figure 1, showing a transition in
a duct from supersonic flow to subsonic flow through a nor-
mal shock, followed by subsonic heating, lends itself to il-
lustrating several of the intake phenomena involved within
the flow boundaries. The appropriate diagram is shown
in Figure 7(a), and includes two Rayleigh lines, R; and
Ry ,which correspond to the different ‘duct’ areas. The
oblique shock may be represented as reaching the outer
rim of the intake duct (to avoid flow spillover — the shock-
on-rim case). The flow area decreases in the supersonic
region; the friction effects here result in changes closely
similar to those occurring along a Fanno line. The normal
shock shown (and the defining Fanno line) results from a

46

flow Mach number not much greater than unity; down-
stream of the normal shock, the cross-sectional area nor-
mally enlarges to decelerate the now subsonic gas stream
(equivalent to a decreasing value of G). The characteristic
convergence of the two subsonic parts of the Rayleigh lines
representing the different values of G will be noted.

The entropy zero is here taken at the station upstream
of the normal shock, rather than at point 2 in the open
cycle.

700 -

8

s kg X

Figure 7(a) T-s diagram illustrating intake processes

1.0 2

0.5 -

0 1 L
0 s

Figure 7(b) p-v diagram illustrating intake processes

Worked example

A simple 2-dimensional intake is chosen for purposes of il-
lustration. The compression process starts at an assumed

R & D Journal, 1995, 11(2)



freestream Mach number of 2.5, and at static temperature
and pressure values of 200 K and 70 kPa, for which G (first
Rayleigh line) at inlet = 1550 kg/m?s, and T; = 451.4 K.
Two oblique shocks turn the flow through 10° and 8°, re-
spectively; this leads to a flow at M = 1.77 upstream of
the normal shock, after which deceleration is considered
to take place isentropically, followed by heating along the
second Rayleigh line after point 2; G for subsonic diffusion
= 387.5 kg/m?. In Figure 7(a), the oblique shock com-
pression line appears to follow the isentropic line fairly
closely, as is confirmed by reference to Figure 7(b). The
effect of n of the small entropy increase during compres-
sion is similar to that introduced by the imperfection 7,
(to be discussed later).

Modified Joule cycle

In the simple Joule cycle, using isentropes,

= 1=t
n_(m)To(m)TIn
Tl p1 Pa T4
Let r=To /Th =T5/TasoTy /Ty =13/ Ts.
In terms of static enthalpies, 7 is given by
n = W CpTa-Ts)=Cp(Ta=T1)
=9 = Co(T>=T7)
_'l_lT — Td/Tl—-l T
I-#=f = l-tnmen (20)
= 1- 1/7' :

With inefficiencies (see [5]), if
a:'ltﬂcﬁ, 0:T3/T1,andb:qc(9_1)’
then

hs—h,
nc-h, and n, = 22 (21)
glvmgn—g—x——lf (a/r=1
b—r1

In the modified cycle, using a Rayleigh combustion line,
let the combustion pressure change be expressed in terms
of & := p3s = aps and a useful relationship between o and
mass velocity, G, is (see Appendix for derivation)

(p2+RT1TG2 /p2)% [(p2+RTT1G? [ p2)° —4(G2R0T1)] (22)
2p2 ’

if G is known. Alternatively, G may be found from «, using

l1-«a 3

o=r|mmure

(23)

n may be found from (see Appendix)

n=
{ - rmﬂnrﬁ(l a)/u1G2] [o:r?’_z_?]%} (r-1)

6—71

(24)
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Worked examples

For a simple cycle, letting 7 = 2,7 =1—-1/7 = 0.5, while,
ifp, =n. =0.9,s0 that b =0.9(5—-1) =3.6if § =5, and
a=0.9x0.9 x 5=4.05, this equation for 7 gives

_(2-1)(4.05/2—-1
- 3.6-2
The example shown in Figure 8 makes use of the following
parameters for the modified cycle:

) = 0.641.

T, = 288K a=4

pa = lbar G = 181.56 kg/m?s

M, = 0.135 (starting combustion chamber value)
Ms = 0.226 (final combustion chamber value)

T3 = 1100K

Thermal choking does not occur until 7* = 4317 K.

’
'
2000 ’I
/ '
S ]
/ Rayleigh ’
T 4 line ’
/ /
/ \
i !
’
K /I’
M=-0226 7
3 /-’
1000 -
’
4
7 Constant pressure
lines
4
M «0.135
2
1
0 1 1 1 1 B
0 1000 2000

Figure 8(a) T-s diagram illustrating the modified Joule

cycle.
Rayleigh line
2 3
P sk
bar
2 -
4
1 1
1
0
0 1 2
v mkg

Figure 8(b) p-v diagram illustrating the modified Joule
cycle.
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Figure 9 illustrates the slow reduction in the theo-

retical value of 7 with increasing pressure drop for the
modified cycle, using

Ty = 288K

P = 105 Pa

=5

T=2
Then, n = 0.493 at @ = 0.971, falling to n = 0.469 at « =
0.88.

Simple Joule cycle
0.5

0.4 |
0 1 1 1 1 1 1 1
0 2 6 10 i 25
{-a (Pressure drop as % of p,)
Figure 9 Cycle efficiency vs pressure drop in the modified

Joule cycle.

The exit point 4 of the cycle normally represents a

supersonic flow (e.g. My = 2.33 for the cycle parameter
values given). To reach such a value, the flow must pass
through the sonic value which corresponds to the max-
imum s point on the appropriate Rayleigh curve. Such
acceleration after the flow has left the combustion cham-
ber corresponds to a decreasing and then increasing area

(incr

easing and then decreasing G), i.e. the flow follows

a series of G curves, on one of which it passes through a
maximum entropy point as it goes sonic.

1.
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Discussion and Conclusions

Rayleigh lines, representing constant mass flow per
unit area under conditions of heat transfer, are con-
sidered to be appropriate components of processes fol-
lowing the Joule cycle (in which two elements are
constant pressure lines). This technique may also
be applied to other cycles embodying constant pres-
sure lines. Variation of combustion chamber cross-
sectional area or mass flow produces little change in
the subsonic branches of Rayleigh lines on a T-s plot
(and there is even closer correspondence on a Ti-s
plot). This small change in the cycle on T-s ordinates
implies little effect on heat reception or rejection.

. Both Rayleigh lines and the use of the conventional

mass flow parameter, m (RTt)‘é / pt, lead to a linear
pressure drop on a p-v plot. The subsonic Rayleigh

(1

(2

(6]

(7]

(8]

9]

line may hence be arranged by adjustment of mass ve-
locity, G, to coincide with any experimental pressure
drop (such as a ‘4% line’) obtained in normal prac-
tice. n may then be calculated as indicated for the
modified cycle. As an example, if the pressure at the
end of combustion is only, say, 3% less than the pres-
sure at entrance to the combustion chamber, n does
not decrease more than 1% from the simple Joule cy-
cle value of 50%. 1f p3 is10% less than p,, n drops
to 47.5%, which indicates the importance of holding
down combustion chamber losses by a suitable choice
of mass velocity.
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Appendix

Derivation of Parameters 7 and o

Using isentropic compression and expansion, let T, = 77}. p 1
Theng v b ’ ’ ' {Tlo—n [rl—-‘"wﬂﬁ’-"(l-a)/c’] [ar?l'f] ’ }-Tl(f_x)
v1
=1 Ti(8-7)
(%) ¥ =%=TSO£—%=T7’{TOI’1)2:[)17'TZT (1)
ki 1
and ;}; = (%f) S0 Vg = vy TV-1 =
1
' _ ‘ {o— [Tﬂw%lﬂﬁ(l—a)m’] [er77]” }—(r—l) (11)
Let p3 drop to aps during combustion.! For a Rayleigh !
line, (6-7)
v3 — v = P;:;}fz (2) If G is known, @ may be found as follows as
f(pg, R, T, T1, G, 6) o
p3v3 = RT3 = ROT; and p2va = RTy = RTT)
B p2(a—1) _ p2(1—a) = vz = ROT1 /ps and vy = R7Ty/p.
TBEnt e, Tt T ) Now, p3 — pa = (v3 — v3) — G?

= p3 = p2 — (v3 — v2) G?

Let the gas be heated to T3 = 67y. Then T3 — T = = py — G2ROT, /p3 + RrT,G?/p,.

T1 (0 — 7). Also,

G2?ROT, __ R1T, G?
ps _ [va\” " o = p3t Tt =+ S (12)
E = v_3 . Dlnce py = p, = py, (4) Putting ps = ap,,
Vg P3 v 2 2
- = <—> , whence (5) aps + G*ROTy = p, +R_7Tﬁ whence, (13)
3 P1 apz p
1
1 l—a K .
va =3 (ps/p1)Y = [vg + i’%} [%] . (6) o’py + G*RITy [ py = o (p2 + RTTG? [ p3) or  (14)
Now,
vy = 077 and py / py = 77T, (M 2, — T,G? G?ROT, =0 wh
a“pa OI(P2+RT 1 /P2)+ ROTy / p2 = 0 whence,
(15)
L 1
vy = |vy7T N A ) IG(QI—O()} [arwzl]v (8) o =
PrHRTi7G? [pa)4 [(pa+R1T1G? /pa)*~a(c?Remy)]?  (16)
2p2 ’
=> Ty = Bz . : (the positive root being the applicable one). Alternatively,
=& [vlrl_:v 4 BT *f-Glzgl—a)] [aTTZT]; %) given ay :
v2 = RT3/ps = RrTi/ps; vs = RT3/ps =
ROTy [/ ap-.
=>T3—T4
1 71_11 _7_%1 iva—vQZMl—&l‘L:ﬂl(i—T)
=0T, — %11 [vlr1T7 + p—‘T—Gz(_—a)J [arw—lJ (10) aplz P2 P2 )
ol _ |p2=ps]? _ (1—o)p2 : _ l-a :
=0T, - T [7'1_-1? + 5—1———)77_1—‘0(21—0 J [O'TTZTJ E =+ G = ["3-”] B l:RTl(%‘T)J —pe I:RTIZ%—"j]( )
' 17
3
Was = Wiz Cp (T3 —T4) — Cp (T2 — T) Ty l-a
= — — = plT7 1 a (18)
n Q32 Cp (T3 - T) RTy (£ - 1)

1A derivationof a = f (p2, R, 7, Ti, G, 0) is given below.
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