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Abstract

Conuentional modal testing requires artificial ercitalion of
the test structure under well-con,trolled con,ditions. This
requirement has seaerely restrict ed the use of modal t,est-

ing for troubleshooting on large industrial structures. With
this worlc a technique fo, the identification of the modal pa-
rameters of naturally ercited stru ctures , requzrxn g no ar-
tificial ercitation or nteasurement of the input forces, is
succinctly presented. The lechnique utilizes tim,e series
analysis of the measured response data on,ly, assumin,g per-
turbation of the structure through initial displacement, im-
pulse or random ercitation. Th e t,iability of th e techn iqtte
is then inuestigated lhrough a n?t?tTerical erample designed
to illustrate seueral important featnres of ntodal testirtg irt
in, du stri al ap p li cati o ns.

Nornenclature

a vector of normally independent discrete-
time response samples

A continuous-time state matrix
A discrete-time input matrix
B continuous-time input mat,rix
c damping matrix with elements c

f excitation vector
iuq
I identity matrix
k stiffness matrix with elements fr

L discrete-time eigenvector matrix
m mass rnatrix with elements rn
M continuous-time eigenvector matrix

(-odal matrix)
rr autoregressive model order
// nurnber of discrete response sa,Inples

p number of variables
s dumrny variable
t time
x continuous-time coordinate vect,or
X discrete-time coordinate vector

with elements X
z continuous-time state space vect,or

Z discrete-time state space vector
6 discrete sampling interval
C darnping ratio
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) discrete-time diagonal eigenvalue
matrix with elements )

,L continuous-time dia,gonal eigenvalue
matrix with elements p

o real part of continuous-time eigenvalue
r discrete time index
0 autoregressive coefficient matrix
O discrete-time state matrix
u natural angular frequency

Subscripts

darnp ed

irrclex, i = I,...,fr
irrdex, j = 1,...,p
index
mode number
discrete time index

Sup erscript s

T transpose
complex conj ugate

Introduction

N{odal testing entails the identification of the modal pa-
ratneters of a structure through a test in which the struc-
ture is vibrated with a known excitation, usually out of its
normal operating environment.[1] The modal parameters,
which normally include the natural frequencies, damp-
ing factors ancl mode shapes, ffi&y then be used for trou-
bleshooting, structural modification, the verification or up-
dating of numerical models or even structural monitoring.
The technique has established itself as commercially viable
in severa,l inclustries. Ntlost notable a,re the aerospace and
a,utomotive industries.

However, the same degree of success has not been
achieved in industries like the petrochemical or mining in-
dustries'. This is largely due to the necessity of known
excitation.

Artificial excitation of the structure by means of shak-
ing or impact is usually not appropriate for the large struc-
tures typical of these industries. The huge amounts of en-
ergy required to induce measureable structural vibration
are not only difficult to provide but may well cause local
damage. Even the measurement of these excitation forces
a,re problernatic.

Fortunately ma,ny such structures are measurably ex-
cited through ambient conditions like wind or through the
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normal operation of the systern of which the structure
forms part. The turbulent process reactious of petrochem-
ical reactors which cause random pressure fluctuations and
the operational vibration of vibratory screens are typical of
such excitations. Of course no precise quantitative infor-
mation will usually be available on these excitation forces.

Several authorsf2;3;a] have investigated techniques
based on correlation principles and assuming unknown
random excitation for the identification of modal para,m-
eters based on measured response only. These techniques
generally apply to lightly darnped structures with well-
separated natural frequencies. Long response time histo-
ries are required for reasonable parameter estimates.

In a different approach based on incorporating the
concepts of time series modelling into that of linear system
theory, Pandit[5;6] presents a technique which holds sig-
nificant benefits compared to the Fourier transform based
techniques. These include the fact that no record averag-
ing or windowing of data are required, and the fact that the
spectral resolution is dependent on the model order, not on
the data record length. The disadvantage of this approach
is the increased computational burden. This may horvever
be more than offset by the reduced level of competence
and user interaction required by the analyst, compared to
Fourier transform based techniques.

With this work the applicability of such a time series
approach to modal testing of large structures, excited by
natural ttteans, is investigated. A four degrees of freedorn
systern with system paralneters select,ed to yielcl dynarnic
behaviour representative of large industlial a,pplications is
considered. The effects of different excitation conditions
on the system response are investigated through numerical
simulation. These simulated responses are then used for
modal paralneter identification rvithout using the input
forces.

It is detnonstrated that the tirne series approach ren-
ders acceptable resu lts for unknown natural excitation .

This is accornplished with significant reductions in exper-
imental complexity and testing time (and hence a,lso cost)
compared to the traditional modal testing approach.

To enhance uuderstanding of the technique a, blief
overview of the procedure followed in this work is first
given. In essence continuous-time as u'ell as discrete-time
models of the structural behaviorlr are fonnulated in state
space format. By enforcing agreement, of the responses
at the samplillg moments a relationship betn'een the rnea-
sured response and the moda,l parameters of the system
lnay then be found.

Continuous-time state space ltlodel

The equatiolls of motion for a linear multivariate system
may be expressed as

mii*cx*kx-f

in terms of the system mass matrix
k and the damping matrix c. x(t)
for a given excitation f(t).

Defining a state vector

m, the stiffness matrix
is the system response

(3)

(4)
it follows that

with

h (t) - Az(t) + sr

A-

Assuming the state matrix A to be diagonalizable so that
A - MpM-1, the solution can be written as t6]

B - [*'-,] 
(5)

Fr, ltr - cr. L iwa,

wlrere i- f1 ald

ot = -Cru, u)d, - u)r

Z,

it follorvs that
Zr: OZr-r+4,

(7)

(8)

Discrete-time state space model

Considering a,n n,-th order p-va,riate AutoRegressive Vector
rnodel ARV (r,, p) it follorvs that the discrete response data
may be rnodelled by the matrix difference equation

x, : QrXr-r * QrXr-z *''' + 6nXr-r. * 8" (9)
n

- Ddtxr-; * ?,
d=l

where X, = [X, tXrz...Xro)',Q; is a p x p matrix of au-
t,oregressive coefficients and r - t/5 rvhere 6 is the discrete
sampling ittterval rvith r - 0,L,2,...,.,4/ - 1, aud l/ is the
number of discrete response sarnples of each variable. ar
is a vector of rlonnally independently distributed residuals
rvlrich cannot be explained rvith t,he assurned ARV(rr,p)
rnodel and a,r'e a rnea,sule of the discrepancies between the
rnodel and the data.

Defining a discret,e-t,ime state vector

(1)

(2)

(10)

(1 1)
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or
;i+rn lcx*m-lkx-rn-1f
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with

o-
Q, Qz
IO
OI

and
A,-

AssumrngZ, - Zs and Ao =
recursive substitution that

( 13)

- 0, it follows through

0^
0
0

000

6n-r
0
0

impulse responses, it may be shown that equation (15) is
equally valid for impulse as well as random excitation .[5;6]

Using equation (15) in conjunction with equation (7)
and the definition of the logarithm of a complex number,
it may be shown that

ar - *rn ()",r) and u,dr- * tan-' [*ffi] (16)

The natural frequencies and modal damping factors are
then found from a" and u) dr

( 12)

Z,
r-L

Q'zo * D llk A,-n (14)
lc=o 

t-l
Ll"L-'zo+ I L,\kl-t A,_*

,t=0

in which it is assumed that O ffi&y, similar to A, be diag-
onalized as O - L,\L-1.

Xn+r

Xn+2

Xn+3

Xtt

ARV (n, p) model parameter estimation

The autoregressive parameters 6; of equation (9) may be
determined by the successive application of the simple
least squares solution of

07 + r2a,

Xn-l,1 "' Xn-l,p''' Xt,p

Xn; "'Xr,p"'Xz,p

:::
Xy-2,L''' Xl,' -2,p''' Xiv -n,p

and, sr = -cr
ur

( 17)

Xn,l " ' Xn,p

Xn*l,1.' 'X n*r,p

.:

Xiv-1,1 " 'Xiv -L,p

6t,t

o),,,

Qr,o

6n,t

d,,, r 
(18)

be constructed
Relation between continuous-time and

discrete-time models

Comparison of equations (6) and ( 14) reveal that
continuous-time and discrete-time state space models lead
to very similar equations. In both these equations the first
terms on the right correspond to the homogeneous and the
second terms to the particular solutions, respectively. If
the system is perturbed by imposing non-zero initial con-
ditions the total response may be described by the homo-
geneous term, and by forcittg the continuous-tirne response
at t to correspond to the discrete time response at the sam-
pling moments r, the eigenvalues of the continuous-time
and discrete-time models become related by [5;6]

for each variable 7 - I,2, ..., p.6; may then
as follows for each i - I,,2,...,fr i

0T-
6t,t

6o,o

6t,r

6o,o

Q;,.,t

60,,I
1e)

By recognizing that the response to an impulsive force
may also be described by a homogeneous solution with
the appropriate initial conditions and that the response to
random excitation may be viewed as a series of successive

36

Application of the method

The method as applied here entails the estimation of a
suitable O matrix through least squares for different model
orders. The eigenvalues of O are determined and using
equation (17) the natural frequencies and modal damping
factors may then be determined. The mode shapes are
determined directly from the appropriate columns of L.
The model order is determined based on the consistency
of the parameter estimates.

Implementation of the above computational proce-
dure was done in MATLAB 4.0, a numerical computation
and visualization software package.[7]

sF'6 - .\" or F, - * 
ln ()r) ( 15)

R & D Journal, 1995, II(2)



Nurnerical exarnple

To investigate the feasibility of modal analysis with nat-
ural excitation using the time series approach, the simple
four degrees of freedom system depicted in Figure 1 was
considered. The system matrices can easily be shown to
be

TTtl000
0Tfl,200
00Trts0
000Tr,4

fourth and fifth order pair was used to integrate the equa-
tions of motion.[7;8] The computed response was then in-
terpolated to find discrete response functions at a 1 000
equally spaced instants over a 25 s response period. This
corresponds to a sampling frequency of 40 Hz (m order of
magnitude higher than the highest frequency of interest).

Table 2 System modal parameters based on direct
eigensolution

Figure 1 Four degrees of freedom system

In the first investigation the system was perturbed by
specifying initial displacements of 10 mm, 5 mm, 0 mm and
10 mm on masses 1 to 4, respectively. A modal analysis
was then performed and based on the response data only
and assuming an ARV(10,4) model, the system modal pa-
rameters were estimated as shown in Table 3. Very good
correlation with the direct solution of the eigenproblem
(Table 2) was found on all four modes.

rabre 3 
:f,:;,H fll Hffffi:J,n:1,:l,l* 

( 1 0'4)

kn*krs*kro

-len

-ktt
0

- k,,z

kn*kzq*kzg

0

-kzo

-&tt
0

frrs*frs.r*ksg

- kro

(20)

0

- kzo

- f,'.'

lezt*ksa*kqc

(21)

-czq

-cs.t

k-

and

c-

cn*crs*crc

-Cn

-crg

-ctz
ctz * czt * czs 0

0 crr * csq * csg

-crs 0

)

-czt -Csa czt * cst

Using the system characteristics of Ta,ble 1, and solv-
ittg for the eigenvalues and eigenvectors of the state rna-
trix A, the modal parameters of the system are shown
in Table 2. Two i-portant features of the system un-
der consideration are clear from this table. Firstly, the
modes are complex. This is clear from the phase angles
which differ significantly from the 0o and 180o found for
real modes. This was done intentionally to simulate the ef-
fects of non-proportional dampirg which is typical of most
industrial structures. Secondly, modes 3 and 4 are very
closely spaced to resemble a phenomenon which is often
observed on almost symmetrical structures. This was done
to investigate the ability of the analysis method to distin-
guish between these modes.

Table 1 System characteristics

Ivlass [kg] Stiffness
coefficients [N/m]

Damping
coefficients fNs/ml

rnt = 6,L2

mz : 6,63

ms = 3,24

mr = 3,10

A'rg = 3335

krz: 52

ftrr = 101

kzc = 1243

kzt:294
&rg = 999

&sa = 264

ke" = 1007

C1e = 015

ctz : lr0
ctr = 1,0

c29 = 0,5

c21 : 1,5

c3, = 015

csa = 1,5

cro = 0r5

A series of numerical investigations were then per-
formed to study the effects of different excitation condi-
tions on the performance of the analysis method. For
this purpose an automatic step-size Runge-Kutta-Fehlberg

R & D Journal, 1995, I1(2)

a cae

(22

Modal
parameters

Mode I Mode 2 Mode 3 Mode 4

Frequency [Hz]
Damping factor
Il{ode shape

ffl 
1

tTt2

rTL3

rTt4

2,3735

0,0102

0,0332 (15,23

1,0000 (0")
0,1636 (5,294

0,3856 (2,598

)

)

)

3,0842

0,0157

0,0782 (10,45")
0,1780 (165.6')
1,0000 (0')
0,5301 (0,6142")

3,7948

0.0168

I,0000 (0")
0,1210 (273,5')
0.5014 (263,7")
0,8465 (100,3')

3,7951

0.'0252

0,5894 (272,6")
0,1415 (178,0")
0,5872 (172,8')
1,0000 (0')

Modal
paranreters

Mode I Mode 2 Mode 3 Mode 4

Frequency IHz]
Damping factor
Mode shape

tTI l
ft72

rft3

Tfl,4

2,3735

0,0102

0,0332 (15,16")
t,0000 (0")
0.,1636 (5,2S9")

0,3855 (2,597')

3,0842

0.0157

0,0782 (10,52.)

0,1780 (185,6")
I,0000 (0")
0,5301 (0,6187")

3,7949

0.0168

I.'0000 (0")

0,1208 (273,4")
0,5007 (263,7")

0,845 t ( 100,3")

:],7950

0,0252

0,5874 (272,,7')

0,1415 (178,1")
0,5871 (172,9.)
1,0000 (0")
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Equally good correlation was found in the second in-
vestigation in which the system modal parameters were
found based on simultaneous impulse excitations 10 N, 5

N,0 N and 10 N on masses 1 to 4, respectively (see Table
4).

Table 4 System modal parameters based on ARV(10,4)
estimation with impulse excitation

A much more demanding test is the modal parameter
estimation based on randorn response measurements. S.p-
arate random force sequences were generated and applied
to the system, limitittg the maximum peak-to-peak force
on masses l and 4 to 10 N and 5 N on mass 2. Again no
force was applied on ma.ss 3. Parameter estimates based on
the corresponding responses, a,re shown in Table 5. Even
though not as accurate as the previous estimates, they
are generally still in good agreement with Table 2. The
damping factor estimates on modes 3 and 4 are, however,
poor. To facilitate the comparison of mode shapes the
mode shape information is graphically depicted in Figure
2. Once again estimates of the closely spaced rnode shapes
3 and 4 are fairly poor compared to the well-separated
rnodes 1 and 2.

Mode 1 Mode 2 Mode 3 Mode 4

Figu re 2 Compa rison of mode sha pe vectors
( Eigensolution /A RV estimate)

rabre 5'::f,T#li*,ifr'il1::1i'' 
*Ti,lil, 

A RV ( 1 0'4 )

Because random excitation of industrial structures
will never be ideally white, uncorrelated white noise sig-
nals were generated and then contaminated by bandlim-
ited white noise signals superimposed on the original sig-
nals. For this investigation a band of 3,1 to 3,7 Hz was
considered. A typical example of such a contaminated sig-
nal is shown in Figure 3.

10 15
Time [s]

Contaminated white noise

-20
0 10 15

Time [s]
PSO of contaminated white noise

10

z
Eo
o
l.l-

-10

2
10

N

e.l

z
oa
o-

o 2 4 
rr"qr"l.y [Hz] 

I 10 12

Figure 3 Typical excitation signal

Frour Table 6 it follows that, while it is still possible to
obtain quite reasonable estimates of the natural frequen-
cies and mode shapes, all the damping estimates are now
unreliable.

Table 6 System rnodal parameters based on ARV(10,4)
estimation with random excitation and superimposed

Subsequently a series of tests was performed to inves-
tigate the use of the proposed time series method with a
simple two-cha,unel analyser. Excitation levels similar to
those used in the previous test, a,nd similarly contaminated
by bancllinrited random noise, were used in three separate

Modal
parameters

Mode I Mode 2 Mode 3 Mode 4

Frequency [Hz]
Damping factor
Illode shape

fftl

m2

fft3
fft4

2,3735

0,0102

0,0332 ( 15,2" )

I,0000 (0")
0.1636 (5.299")

0,3855 (2,589")

3,0842

0,0158

0,0783 (10,49')
0,1780 (185,6")
I,0000 (0')
0,5302 (0,6318" )

3,7949

0,0168

1,0000 (0")
0,1208 (273,1")
0,5007 (263.6" )

0.8152 ( 100,2" )

3,7950

0,0252

0,5882 (272,5.)
0,1415 (178,8")
0,5868 (t72.9")
I,0000 (0")

0
10

-2
10

t
.l

*wh
10

Modal
parameters

Mode 1 Mode 2 Mode 3 Mode 4

Frequency Illz]
Damping factor
IVlode shape

Tft 
1

flL'z

fTl 3

ffl1

2.{126
0,0215

0.0635 (42,90" )

1.0000 (0")

0,162t (2,009")

0, I167 (3,1{7")

3.0809

0,0123

0,0337 (36,28")

o, 1455 ( 183,2")

I,0000 (0" )

0,6157 (7.671")

3,775
0,0072

l.0ooo (0" )

0,0666 (2S1,2" )

0,2861 (269,8")

0,52!6 (l I8,6")

:1,7425

0.0430

0,2751

0. r664

0,6198

r.0000

294.6")
167,7o )

t 72,8" )
0")Modal

parameters
Mode I Mode 2 Mode 3 Mode 4

Frequency [{z]
Damping factor
NIode shape

rfl1

rft2

fTlt

fn4

2,3657

0,0096

0,0499 (42,S6")

1,0000 (0')
0,1819 (9,034")

0.1309 (5.31 l")

3.0615

0,0145

0,0692 (46,02")

0,1790 (1E7,7")

1,0000 (0')
0,6101 (359,7')

3,798-{

0.0087

1,0000 (0")
0.0539 (285,7')
0,2285 (260,4" )

0.{ 173 ( 123,7')

3,7278

0.0782

0,9526 (333,5")

0,2I09 (175,0")

0,7951 (151.6")

l.0ooo (0')
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simulation runs (a different random sequence was used for
each run). Using the response of mass 1 as a mutual ref-
erence and recording the responses of masses 2, 3, and
4, respectively, as the second measurement in the three
consecutive simulation runs, another modal analysis was
performed (see Table 7).

Table 7 System modal parameters based on two-channel
ARV(40,4) estimation with random excitation and

superimposed noise

Modal
parameters

Mode 1 Mode 2 Mode 3 Mode 4

Frequency [HzJ
Damping factor
lvtode shape

fTL 1

fft2

rftg

fftt

2,3174
0,0428

0,0609 (86,72')
1,0000 (0')
0,2096 (8,227")

0,4447 (1,790")

3,0860

0,0290

0,0227 (98,46")
0,1215 (172,1')
1,0000 (0")
0,5078 (1,940')

Several interesting phenomena could be observed
during this test. Firstly, it was necessary to use an
ARV(40,4) model for these two-channel tests, compared
to the ARV(10,4) model used for the four-channel analy-
SCS.

Secondly, because of the closeness of modes 3 and 4, it
was not possible to determine which mode shape elements
correspond to a particular mode. As was previously the
case, ffiode 2 was identified quite well with an inaccurate
estimate of the damping.

It is interesting to note that the frequency and mode
shape estimates for mode 1, although still reasonable, are
not quite as good as expected. This can be attributed to
the fact that the participation of mass 1 in mode 1 is small
(see Table 2).

Conclusions

Based on the simulation results presented there is good
reason to believe that a time series approach with natural
excitation could well provide a viable procedure for per-
forming modal analysis and vibration problem solving on
large industrial structures. The method perforrns very well
in cases where the system is initially perturbed or excited
through impact. Performance for random excitation, even
with noise-contaminated signals, is still quite good. A no-
table exception is the damping estimates which will have
to be investigated further.

The method is capable of identifying complex modes
and can separate repeated modes in suitably designed
multi-channel tests. In principle it can also be applied for
repeated application of two-channel measurements. How-
ever, this must be done with some care. In this case it
is no longer possible to distinguish between closely spaced
modes. Significantly higher model orders are required in
this application.

Generally the computational times are only a few min-
utes and are quite acceptable for practical application.
Since no averaging is required, testing times may be very
significantly reduced.

References

[1] Ewins DJ. Modal testing: Theory and practice. Re-
search Studies Press, Letchworth, 1986.

12) Luz E k Wallaschek J. Experimental modal analysis
using ambient vibration. The International Journal of
An,alytical and Erperirnental Modal Analysis, 1992, 7,

pp.29-39.

t3] Bao ZW k I(o JM. Determination of modal parame-
ters of tall buildings with ambient vibration measure-
metrts. The International Journal of Analytical and
Erperimenlal Modal Analysis, 1991, 6, pp.57-68.

[4] James GH, Carne TG, Lauffer JP & Nord AR. Modal
testing using natural excitation . Proceedings of the
1?th International Modal Analysis Conference, San

Diego , 1992, pp.1209- 1216.

t5] Pandit SM & Wu SM . Time series and system analysis
with applications. Wiley, 1983.

t6] Pandit SM . Modal and spectram analysis: Data depen-

dent systems in state space. Wiley: New York, 1991.

t7] The Mathworks. MATLAB Reference guide. 1992.

t8] Press WH, Teukolsky SA, Vetterling WT k Flannery
BP. Numerical recipes in noRTRAN . The art of scien-
tific computing. Second edition. Cambridge University
Press , 1992.

R & D Journal, 1995, II(2) 39


