Scheduling for and integration of an intelligent robotic handling system

Z. Katz,! M. KatzZand D.C. Levy?
(First received November 1994; Final version January 1995)

Abstract

An automated manufacturing system wusing industrial
robots, possesses an enhanced flezibility and efficiency as a
result of the use of intelligent materials handling systems.
A smart rotating platform, incorporated under hierarchical
computer control is described. The hardware development
leading to the implementation of a suitable algorithm is
presented for a case attempting an ezact solution aimed
at optimizing scheduling and active ttme. The use of a
branch-and-bound method, preceded by a simple heuristic
to determine the upper bound, ts discussed. The operation
of a smart materials handling system, its support hardware
and its interfacing with an assembly robot as administered
by a PC-AT is detailed.

Introduction

A robotic system for components handling, as applied in
an automated assembly environment, requires a variety
of subsystems for flexible and efficient performance. It
may incorporate aspects of intelligent operation, optimized
scheduling and use of expert systems. At times, when the
components manipulated are of a non-standard nature, the
difficulties are evident particular with non-uniformity in
shape, dimension, accuracy and operational features. The
cost becomes prohibitive and hence a decline in flexibility.

A manufacturing environment requires, in general,
a responsiveness to unforseen or fast changing circum-
stances. Computer-aided process planning is one approach
to deal mainly with problems related to specific require-
ments connected to planning of and scheduling for process
performance [1] or selection of manufacturing alternatives
while generating a non-linear process plan and simulation
systems for process scheduling [2; 3]. Concepts of optimal
assembly planning via genetic algorithms [4] contribute to
the analytical approach in optimization of processes.

For specific processes such as robotic assembly, the
scheduling of components delivery, handling and manipu-
lating could contribute to an enhanced productivity and
extended flexibility. A scheduling policy must respond
to discrete variations, from equipment failure to demand
changes, whilst possessing a computing capability easy for
implementation in real-time. A dynamic simulation model
for scheduling planning coupled with the development of

!Professor, Rand Afrikaans University, Johannesburg (Member)

2Post-graduate student, University of Natal
3Senior Lecturer, University of Sydney, Australia

R & D Journal, 1995, 11(1)

an experimental methodology for simulation validation, of-
fers a practical, low-cost approach for problems related to
components delivery scheduling in robotic assembly appli-
cations. This work presents an attempt in this direction.

The intelligent handling approach

There are many materials handling systems available to-
day. Most, however, are of a complex and costly nature
putting them beyond the reach of the smaller volume pro-
ducer with limited financial resources. This paper presents
an investigation of the conceptual design of a simplistic
handling approach which sacrifices costly hardware over-
heads while maintaining inherent intelligence under soft-
ware control.

The problem tackled deals with the accurate presen-
tation of selected components to one or more assembly
robots in an optimal schedule, minimising total delivery
platform rotation time. The materials handling platform
chosen for investigation is of a small scaled model of a
carousel-type platform, divided into six designated station
zones. The platform is rotated by a stepper motor driven
by supporting circuitry and directed by a PC-AT controller
which also provides the intelligent decision-making neces-
sary for scheduling optimality. A certain product has to be
assembled by an industrial robot. Space is limited on the
shop floor and therefore, the conveyor system needs to be
of a small size. The product to be assembled may be one
of several small parts, with each possible part comprised of
a unique sequence of individual components placed on and
presented by the platform. The part selection for assembly
is left to the discretion of the system operator.

Such a system would require an elaborate feeding sub-
system in order to provide the rotating platform with an
accurate supply of suitable components. These feeders
would require industrial standard and costly sensors. Sim-
ulation by software, of both the feeding to and the removal
of components from the platform, allows for a greater free-
dom in design. This simulation enables greater flexibility
in the system design and also permits a wider choice of
suitable components. This simulation is made as realis-
tic as possible by modelling the pseudo-random feeding
techniques of existing bin-feeding technologies in order to
present accurate representations of such devices. More-
over, if such simulation methods are not used, the result-
ing degradation of sensing capabilities would restrict both
the number and type of components usable for assembly
of any part. The sensing resolution would be too low and
consequently, component differentiation would have been

the number and type of components usable for assembly
of any part. The sensing resolution would be too low and
consequently, component differentiation would have been
severely hampered. Moreover, the size, shape and orien-
tation of the components on the platform could be highly
restricted. All these factors justify the choice of simulation
as an alternative to the real-time feeding and picking from
the test platform.

The experimental hardware setup

The heart of the system lies with the platform itself. The
platform comprises a small diameter disk built as a belt-
driven platform on top of a rotating shaft. The toothed
belt prevents excessive slipping and backlash and the me-
chanical assembly is designed to minimise rotational fric-
tion between the moving parts.

The number of designated zone areas on the platform
was set as six. A larger number would have made the sys-
tem impractical because the zone surface area would have
been too small to facilitate carrying a sufficiently large
component. The platform surface is divided into six equal
segments. The robotic cell comprised three major compo-
nents: the AT controller, the handling platform and the
‘simulated’ robot arm and bin-feeder. Interfacing between
these three major components has to ensure a steady and
accurate data flow. The AT controller is linked via cable
to the platform motor-drive interface circuitry, enabling it
to direct the platform movements under software control.

Figure 1 refers to the flowchart of hardware and sig-
nal flow in the experimental system setup. The three main
hardware components comprise the AT controller, the ro-
tating platform and its supporting hardware, as well as
the robot arm for picking.

The user is prompted for part selection following
which the suitable components required for the designated
part assembly are fed onto the rotating platform stations.

If, for example, the user selects part A for assembly,
and its unique four components sequence is defined as x,
¥, z and x (where x, y and z are from a larger set of unique
possible components), then pseudo-random placements of
only these types of components will occur on the platform,
neglecting those other unique components not required for
part A’s completion. As the simulation of bin-feeding en-
sures a pseudo-random component feed to the platform
the final assembly objective is determined as either fea-
sible or not, given the real-time component distribution
on the platform. The BAB-algorithm-based software de-
termines either a total optimal schedule in the case of all
the required components being present on the stations, or
else a partial schedule in the case of an incomplete set
of components being present. At the completion of such a
partial optimal schedule, renewed feeding is prompted and
scheduling is continued, until the final component required
for part A’s assembly is picked off by the robot arm.

Although the experimental system did not include a
physical bin-feeder and robot arm the software simulation
of these devices provided an embedded virtual flow of data

between these system components. Control signals for the
stepper motor was generated by software and implemented
via a PC-30 interface card over a serial link. The PC-30
card allows for 48 input/output lines by incorporating two
8255 PIO chips on board. The drive electronics, however,
required only two signal lines, one each for the platform-
rotation’s direction and duration.

The algorithm

Several options for solving the problem of optimal platform
time utilisation were considered. Such issues included the
analysis of the cost function complexity, the complexity of
the search space and the practicalities involved.

The cost function is taken as the number of rotation
steps, which would involve a simple summation process
that could be completed in 0(n) time, meaning a number of
steps proportional to the problem size. The search space,
(the universal set of options that have to be inspected for
the optimal) was of an exponential complexity (including
factorials). The analysis requires further refinement by
specifying whether the components would be replaced or
not after picking.

The problem was assumed to be NP-Hard because
this is the usual case for problems with easily calculable
cost functions and exponential search spaces.[5] In the case
of NP-Hardness, the further selection of algorithms de-
pended on such factors as the size of the problem (how
many components are present on the platform), the speed
at which optimisation had to be achieved, the equipment
available (an embedded solution such as an 8051 or a PC
such as an 80386) as well as the quality of the solution
required, in other words, was a schedule within a few
percent of optimal sufficient? The problem size is small
enough in nature to be able to achieve an exact optimal
solution. (Six components of four unique types assured a
small enough problem size.) For such a solution, a branch-
and-bound type algorithm involving relatively few lines of
code while using recursion is selected. The branch-and-
bound method (BAB) used implicit enumeration methods
(or a tree search) which can find an optimal solution by
examining the subsets of feasible solutions.

Several precautions have to be taken prior to imple-
mentation of such an algorithm. The efficiency of the BAB
algorithm is determined by the method of selection criteria
in the branching of the subsets, successively starting from
all feasible solutions. The more precise the lower bound
of the subset was made, the fewer the number of nodes
that had to be searched. Since the total computation time
became large with complicated lower bounds, there was
a distance tradeoff between preciseness and the complex-
ity of the lower bound. Consequently, a simple heuristic
was included to precede the BAB algorithm in order to
determine an upper bound, as this would speed up the to-
tal computation time. A greedy heuristic seems to be the
simplest.[6]

The required pick-up sequence is listed. Accordingly,
components are picked up from the nearest position on the

R & D Journal, 1995, 11(1)

START

INITIALISE

PERSONAL COMPUTER
CONTRCLLER

INTERFACE WITH USER
PART SELECTION REQUESTED

FEED PLATFORM WITH
SUITABLE COMPONENTS

YES ARE GOALS POSSIBLE NO
WITH CURRENT
PLATFORM STATUS?
FIND OPTIMAL
SCHEDULE " SCHEDULE

PERFORM PLATFORM

J

PERFORM PLATFORM

ROTATIONS =——=>| PLATFORM |<———= ROTATICNS UNTIL NEW

&

FEEDING REQUIRED

UPDATE STOCK LIST @

RE-FEED PLATFCRM

UPDATE STCCK UIST
PLATFORM ROTATES TO

BRING REQUIRED COMPONENT
TO ROBOT ARM
PICK-UP POINT

ROBOT ARM PICKS UP
COMPONENT FOR ASSEMBLY —>>

d

LAST NO
COMPONENT REQUIRED

R & D Journal, 1995, 11(1)

FOR ASSEMBLY OF

REQUIRED PART

@YES

PAUSE

Figure 1 Hardware and signal flow

platfom recording the number of platform rotations as well
as the order in which this number of rotations is achieved.
The solution, although not necessarily the best, is not the
worst case either.

This solution is called MAX. Then, all possibilities are
enumerated, with calculations for the number of rotations
for both full as well as partial choices. If any partial choice
is found to have rotations that are larger than MAX, enu-
meration from that partial choice onwards ceased, auto-
matically eliminating all choices that would have followed.
This is termed pruning, which discards futile routing of
searching space. If one particular full choice required less
rotations than MAX, MAX is set to this new value and
the process renewed until all possibilities were either in-
vestigated or eliminated by pruning.

USER SELECTS PART TO BE ASSEMELED

REQUIRED PICK-UP SEQUENCE OF
CCOMPONENTS FOR SELECTED
PART IS REFERENCED

4

RANDOM SELECTION OF COMPONENTS
REQUIRED FOR THIS ASSEMELY
FED ONTO PLATFORM

b

CHOOSE FIRST COMPONENT OFF
PICK-UP SEQUENCE LIST

4

FiND NEAREST POSISTICN CN PLATFORM
WITH THIS COMPONENT

RECORD NUMBER CF
STATICN TO STATION ROTATICNS
OF PLATFORM

(MAX)

RECORD ORDER (DIRECTICN)
IN WHICH THIS NUMBER OF
ROTATICNS IS ACHIEVED

(CRD)

4

REPEAT UNTIL LIST COMPLETED

{

HAVE A SOLUTION (MAX) NOT
NECESSARILY THE OPTIMAL ONE

4

RETRY USING ANY REQUIRED COMPONENT
POSITION, NOT THE CLOSEST ONE

4

IF ROTATION OF PARTIAL CHOICE > (MAX)
STOP ENUMERATING FROM THAT
PARTAIL CHOICE ONWARDS.
ELSE RECORD NEW VALUE OF (MAX)

4

ENUMERATE ALL POSSIBILITIES
LOWEST (MAX) = CPTIMAL SOLUTION

Figure 2 Logic of decision making process for part assembly

Figure 2 shows the logic of the decision-making pro-
cess for a part’s assembly to be successful. It is self-
explanatory, although the choice of variables MAX and

ORD provide a valuable clue which leads to the imple-
mentation of a branch-and-bound technique. MAX will
contain the total number of platform rotations in the case
of an optimal scheduling solution, and ORD will contain a
record of directional information showing the sequence of
clockwise and anti-clockwise rotations. Whereas MAX is
the final optimal and therefore objective solution, ORD is
included for testing and statistical analysis purposes and
bears no direct indication on the overall system perfor-
mance.

It became evident that the platform size was not an
input to the algorithm implementation. Recursion in the
enumeration is not needed and a number of nested loops
equal to the number of components in the part being as-
sembled are implemented instead. Each loop enumerated
the possible selections from the platform and pruning is
achieved by the manipulation of the index in the ‘for’ loops
within the routine.

An analytical approach to the BAB algorithm

If fis the objective which requires minimization, then the
Branch-and-Bound method excludes the subsets found not
to include any optimal solution; and then leads to at least
one optimal solution. The priority of the corresponding
node is decided by the lower bound (LB) of the values of
f of feasible solutions contained in each subset. Usually, a
node with the least LB is branched further to decompose
the related subset into its own further subsets.

An upper bound of the minimum fy of the objective
function fis defined as the minimum f* of the values of
f of all feasible solutions found up to date. If no feasible
solution is known, then the initial f* is taken to be infinity,
until the acquisition of the first feasible solution.

After the search ending at a subset which also gives a
feasible solution, the algorithm needs to backtrack to the
nearest incompletely searched node with an LB less than
the present f*. This node is again branched to new nodes
(subsets). Hence, exclusion of subsets with no optimal so-
lution is made by excluding any node (subset) with LB not
less than the upper bound, f*. Backtracking in the solu-
tion tree causes the branching of an incompletely searched
node only in case there exists a node with LB less than the
then f*, and if LBs of the newly created nodes are greater
than or equal to the then f*. Then, backtracking is again
used to search further incomplete nodes.

Finally, when lower bounds of all the incompletely
searched nodes in the solution tree are greater than or
equal to the then f*, a feasible solution with this f* is an
optimal solution.

It can be proved that the BAB method determines an
optimal solution after the search of a finite number of sub-
sets (nodes). The number of nodes created in the solution
tree is finite, since the original problem had a finite num-
ber of feasible solutions and each node in the solution tree
is branched to at most, a finite number of nodes. Then,
by branching under the condition LB < f* finally lower
bounds at all incompletely searched nodes become greater

R & D Journal, 1995, 11(1)

than or equal to the then f*. All lower bounds of the nodes
branched from such incompletely searched nodes are also
greater than or equal to that f* by the fact that,

LB[Sj] - LB[Si] (1)

where S; — S; for any two subsets S; and S of all feasible
solution sets. (1) can be proved by noting that S; contains
a part of the set of feasible solutions. Hence, a feasible
solution with that f* becomes an optimal solution with
fo, that is,

fx="fo

after the search of a finite number of nodes.

Optimization of scheduling

In this particular design problem it is noted that there
are a finite number of distinct processing sequences, with
each sequence defining a unique schedule. Moreover, it
can be shown and proven mathematically that an opti-
mal scheduling solution will always exist as a function
is minimised over a finite set.[7] In this particular case
study, there is no need to consider typical scheduling data
that are usually of paramount importance, namely pro-
cessing time, ready times and due dates, as this is a con-
ceptual and simplified case under investigation. The con-
ceptual approach made simple yet effective assumptions
which negated the need for further investigations into these
terms. It is important to distinguish between information
that is known in advance and that which is generated as
the result of the scheduler’s decisions, such as the optimal
schedule itself

The absolute need for optimization of platform
scheduling is a direct result of the selection of an intel-
ligent system approach over, say, a dedicated approach.
The software alone determines the movement of the plat-
form and its components, and the selection emphasis is
removed from the duties of the feeders and pickers. The
simulated feeder provides a pseudo-random supply of com-
ponents to the platform from those that are required for
the selected part’s assembly.

The obvious advantage of having such a software-
driven handling system lies with its inherent modifica-
tion capability. The parts to be assembled can be var-
ied and modified with no need of any hardware adjust-
ments. Rather, the shop-floor operator instigates changes
via the software interface allowing for quick and user-
friendly modifications with no overhead. The optimization
of scheduling which was currently investigated for total
time/rotation minimisation can be redirected, with little
alteration to the software, to include other scheduling cri-
teria that have been omitted in this approach because of
its conceptual nature alone.

Dynamic programming is an optimization technique
related to a multistage decision problem. It is an implicit
enumeration approach (similar to BAB) and can be very
useful in reducing the computational effort. However, its
large number of intermediate calculations that have to be

R & D Journal, 1995, 11(1)

recorded, reduces its attractiveness for problems of opti-
mization arising from scheduling requirements.

Dijkstra’s algorithm, as an alternative method for op-
timization, is appropriate for the finding of shortest paths
particularly in cases similar to weighted directed graphs.
The optimization problems, relating to roads, communi-
cation or telephone networks cases using this method, are
far from similar to our case of optimal parts delivery for
their predetermined assembly procedure.

Heuristic methods of optimization were also consid-
ered and sub-optimal solutions produced by such a heuris-
tic could play an important role as an initial upper-bound
solution. The BAB technique uses this as a complemen-
tary step.

The use of BAB as the optimization technique in this
work was based on the fact that being a relatively small-
size problem, the optimization of parts scheduling for flex-
ible assembly is performed via an attempt for an exact
solution.

Discussion

The system design is a conceptual one and serves as initial
research into what is a fully upgradable intelligent robotic
handling system. The results prove the initial concepts to
be both valid and practical. However, several obstacles
faced in this design approach need to be addressed. These
include problems arising from a more complex variation
in possible component orientations and dimensions. The
initial approach assumes an ideal case of perfect orienta-
tion in the placing of all components on the platform by
the feeding mechanism, achieved by software simulation.
In a more practical approach, actual bin-feeding inaccura-
cies need to be overcome. Any reject component on the
platform will need to be removed from its station and by
doing so could waste valuable assembly time.

The system’s main advantage lies in its inherent capa-
bility of accommodating a wide variety of assembly tech-
nologies. The exact feeding strategy is interchangeable
with no major software adjustment required. Knowledge-
based or expert systems can be incorporated into the over-
all system performance and to ensure a gradual learning
process. The small scale design approach, with a corre-
spondingly small scheduling solution-tree size, will shorten
learning time in such an expert system and enhance overall
optimal scheduling execution time.

The software features can be modified in order to vary
factors for minimization. In this prototype system, the
dominant factor is taken to be the ‘total platform rotation
steps’. This could be altered to allow for other constraints
to be minimized. It can be achieved on-line, providing
dynamic optimization of system scheduling. The modular
design ensures that any failures are isolated to minimize
their effects on the remainder of the system. Moreover,
such modules can be used as building blocks in the con-
struction of larger cells or systems.

The section of the research presented in this paper
displays its initial stages. Additional work is performed to-

wards the reduction of simulated steps, introduction of ad-
vanced hardware, pattern recognition software, improved
assembly cell management, artificial intelligence methods,
expert and learning systems and use of approximation
techniques for scheduling of large numbers of assembled
parts.

Acknowledgement

The authors wish to acknowledge the Foundation for Re-
seach Development support via its Manufacturing Tech-
nology research grant.

References

[1] Cryssolouris G & Chan S. An integrated approach to
process planning and scheduling. CIRP Annals, 1985,
34, 1.

[2] Kruth JP & Detand J. A CAPP system for nonlinear
process plans. CIRP Annals, 1992, 41, 1.

[3] Larsen NE & Alting L. Requirements to scheduling
simulation systems. Proceedings of Summer Computer
Simulation Conference, Canada, 1990.

[4] Wong H & Leu MC. Adaptive genetic algorithms for
optimal PCB assembly planning. CIRP Annals, 1993,
42 1.

[5) TalarageJ & Hannam RG. Flezible manufacturing sys-
tems in practice, applications, design and simulation.
Marcel Dekker, 1988.

[6] Caffman EG. Computer and Job/Shop scheduling the-
ory. John Wiley, 1976.

[7] Baker KR.. Introduction to sequencing and scheduling.
John Wiley, 1974.

R & D Journal, 1995, 11(1)

