
The use of an

Abstract

This work inaestigates the stability of a spatially deueloped
pipe flow impulsiuely started from rest. The laminar base

flow was established asing an inlegral method and eigen-
ualues of lhe Seul stability equalion were ohtained asing 0,

finite difference approach in conjunction with the Q-Z al-
gorilhm. A strong qualitatiae correlation was obtained be-

tween the present dota and those for a steady pipe enlrance

flow, Utilisation of a dimensionless shear slress pararne-
ter to plot these results in o coTnrnon framework results in
the inference that the aelocily profiles and hence stability
characteristics of the two flow systems become coincidental
only towards the Hagen-Poiseaille limit. n il shown that,
beyond 0, well-defined dimensionless time in the process,
the flo, beeomes unconditionally stable to small distur-
bances. Unlike the sitaation fo, steady pipe entrance fl,ows,
rneasarernents taken in o temporally deaeloping flo, at a

spatially deaeloped downstream station rnay for a period
of time be isolated from the effects of upstream-genernted

finite amplitade disturbances. It was concluded that such

flows potentially prouide 0, rneans of erperimentally resolu-
ing the contentious pipe flow stability problem.

Nomenclature

Phase velocity
Dimensionless phase velocity lrlul
Fluid pressure
Reynolds number based on radius lU Rlal
Reynolds number based on displacement
thickness lU6 * /ul
Radial co-ordinate
Dimensionless radial co-ordinate l, I Rl
Pipe radius
Dimensionless shear stress parameter

lTr,Rl jru)l
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pipe flows impulsively started from rest
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t Time
i Dimensionless time pt I R2)
u Base flow a:rial velocity
E Dimensionless base flow axial velocity l" IUJ
U Pipe cross-sectional mean velocity
U, Pipe centreline velocity
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U " Dimensionless pipe centreline velocity lU"/Ul
a Axial co-ordinate (distance from pipe inlet)
i Dimensionless axial ceordinate l, / @.Er)J
y Wall co-ordinate

T Dimensionless wall co-ordinate ly / 0l

Greek

a Wave number
d Dimensionless wave number ["n]
6 Boundary layer thickness
61 Dimensionless boundary layer

thickness 16 I R)
Displacement thickness
Angular co-ordinate
Pressure gradient parameter

[(d, l") du ldr)
Wavelength
Dimensionless wavelength l2r /al
Fluid dynamic viscosity
Fluid kinematic viscosity
Dimensionless amplitude function
Stream function
Dimensionless stream function lrl t (U R')l
Dimensionless perturbation
of stream function

Introduction and background

Steady pipe entrance flow stability is a classical unresolved
problem, in that the only experimental results [1] differ
markedly from predictions .12-41 To illustrate, Figure 1

shows comparisons between computed [3] and measured [1]
variations of critical Reynolds number (the smallest pos-
sible Re at which an infinitesimal disturbance will begin
to grow) with dimensionless axial distance from the inlet
plane. While such disparities were thought to arise from
the theory neglecting the streamwise acceleration which
exists in practice, recent work [ ] has disputed this hypoth-
esis, showing that non-parallel effects formally become zero
at a well-defined position (about 3.770 of the entrance re-
gion) beyond which no critical Reynolds number exists,
and suggesting that the finite amplitude nature of the dis-
turbances in the experimental system was the more likely
cause.

Non-parallel effects are inherently absent from start-
ing pipe flows sufficiently far from the pipe inlet, as are the
wash-down of unwanted disturbances in the experimental
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system. In other respects starting pipe flows conceptually
resemble steady entrance flows: both are characterised by
an evolution of velocity profile shape from essentially flat
(commonly referred to as 'top-hat') to parabolic, the differ-
ence being that the former development occurs in time and
the latter in space. Therefore, a spatially fully-developed
impulsively started pipe flow is a system which provides an
opportunity to explore flow stability and transition under
controlled conditions, ir contrast to its steady entrance
flow counterpart, without streamwise effects. Although a
few experimental studies have been performed on transi-
tion in unsteady pipe flows,[5-7] this system has received
little analytical attention.

where u, = pressure, t = time, r = radial co-ordinate and
u - fluid kinematic viscosity.

Consideration of an impulsively sta,rted flow will re-
veal that instabilities are possible only well within that
period of time preceding merging of the annula,r boundary
layer at the pipe centreline. For this special case a velocity
profile may be assumed of the form [8]

u,=; -T,tF(s) * Arc(?)l (s)

where the various parameters are defined as follows:

F(il=fi-Ws +f;
G(il =(Ll6)@-W, +sy3 -Tn);
Ar = (A - 26t) I $* 6r) = h (6t) ;

A 
" = Vvfz(6t) * Fs(6r)l-1'

A = (o6, lU") dtr"ldt;
Tt = 12(616r - 1) ;

fz:_ hl60 _ 6?/180;
Te:_ (2/ lb) 6i - @lb) 6r * 1;

6r -_ 6l R;
T = vl6;
y: R-r:,
T" = U"/U;
6 = boundary layer thickness;
R = pipe radius;
y : wall co-ordinate;
U = centreline velocity;
U = cross-sectional mean velocity.

The equation that follows was obtained by substitut-
ing eq. (3) into eq. (1) after eliminating the pressure term
and performing a transverse integration on it across the
boundary layer.

40000

oo Measurerrents
ooo o ...r1

4.5 4 -3.5 -3 -2.5 -2 - t.5
Wrlx/(R.Rc)l

Figure 1 Variation of critical Reynolds number with
dimensionless axial co-ordinate, comparing Sarpkaya't [1]

measurements (axisymmetrical disturbances) with the
analytical predictions of da Silva 8L Moss [3] for a steady

pipe entrance flow.

The purpose of this research was to obtain stability re-
sults for an impulsively sta^rted flow and to compare them
with existing data for steady pipe entrance flows in a com-
mon frame of reference. The. laminar base flow data to
be used were those obtained using an integral approach,[8]
the rationale being that this is a simple and efficient way
of providing accurate data in the limit where the bound-
ary layer is thin, et the start of the process. To achieve
equivalent accuracy using a finite difference solver would
require considerable computational effort.

Analysis

Base flow model

The governittg equations for an impulsively started laminar
pipe flow, sufficiently down-stream of the inlet plane that
streamwise variations may be neglected, are

where I - utlR2.
Solution of ( ), together with the relations that suc-

ceed it, embraces a complete description of the flow system
as it evolves with time, prior to merging of the boundary
layer. Of particular pertinence for the matter at hand are
the velocity profiles (see Figure 2), whose stability char-
acteristics are required, while it will prove necessary to
evaluate the dimensionless displacement thickness below
in order to obtain the critical Reynolds numbers based on
displacement thickness.
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Flow stability

The method briefly reiterated below closely follows that
used in da Silva & Mosr [3J for steady pipe entrance flows.

The linear stability is required of an axisymmet-
ric, parallel, laminar base flow with velocity components
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[z (r) , 0, 0J in cylindrical co-ordinates (2,r,0), which is
perturbed by an acisymmetric disturbance with the math-
ematica[y convenient form ,1,' = 0 F)exp [ala (z - zi)] ,

where T - r / R. For the temporal stability problem under
consideration d is a complex amplitude function given by
6, *frf; and the dimensionless celerity of disturbance prop-
agation (phase velocity) is defined. by Z = clu -v, * te;
where -c" is the velocity of wave propagation in the base

flow direction and V; determines the degree of damping
(negative) or amplification (positive). The dimensionless
wavenumber d (= o.R) is real and related to the dimen-
sionless wavelength by ) = 2r /d.

t! 0.t

0.4 0.t
7

Figu re 2 Laminar velocity profiles at various dimensionless
times for an impulsively started pipe flow, far from

the inlet plane.

Implementation of the above into the full incompress-
ible form of the Navier Stokes equation in cylindrical co-
ordinates and linea,rization leads to t9]

(t -a')' O = (z - z) (L - d2) O -r (fr, lr)o Q

with the boundary conditions d (0)
0; d(0) lr= rfu(0) fr=0.

= h$)
The subscript 7 refers to differentiation with respect

to F while L = d'lfr'- (Lft) dle and Re: U Rla.
Eq. (6) is a singular eigenvalue problem of the form

F (d,V, Re) = 0, which after finite difference discretiza-
tion becomes a system of equations possessing the struc-
ture (tA] '+VlB)) 6 = 0 (the complex matrices A and B
are pentadiagonal and tridiagonal, respectively). The q-Z
algorithm [10] was used to obtain the complex celerity Z for
various values qf fte and A. This proceeds in four stages.
In the first, which is a generalization of the Householder re-
duction of a single matrix to Hessenberg form, .4 is reduced
to upper Hessenberg form and at the same time B is re-
duced to upper triangular form. In the second step, which
is a generalizdtion of the standard Francis implicit double
shift Q-R algorithm, A is reduced to quasi-triangular form
while the triangular form of B is maintained. In the third
stage the quasi-triangula,r matrix is effectively reduced to
triangular form and the eigenvalues extracted. Finally the
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eigenvectors are obtained from the triangular matrices and
then transformed back into the original co-ordinate sys-
tem. This process enables the locus Zi = 0 to be deter-
mined, thus defining the curve of neutral stability for any
given velocity profile. The critical Reynolds number of sta-
bility is the point on the a - Re curve where the Reynolds
nuinber has its smallest value. It defines that condition
at which small (in the limit , zero magnitude) disturbances
just begin to grow: therefore they do not affect the base
flow, for which consequentially the original assumptions
remain valid. The computational efficiency of the current
system was improved by transforming the hydrodynamic
stability equation accordittg to Y = sinh (6)l"inh(C) , ef-
fectively stretching the radial co-ordinate (the variable C
is essentially a grading parameter) and giving a distribu-
tion of points that is dense near the wall where the flow
variables change rapidly.

Results and Discusslon

Figure 3 shows the variation of critical Reynolds number
with time, indicating that the flow is stable to infinitesi-
mal disturbances for the limiting cases pertaining both to
small and to large times. In interpreting this pattern it
should be noted that the velocity profile in the limit 7 -' 0

is 'top-hat', while as I oo it is parabolic. As shown
in Figure 1 the equivalent limits of n 0 and t + oo

for steady pipe entrance flows are also stable, consistent
with the trends observed in the current situation. The
stability as x,t + 0 is easily explicable by the fact that
the flow is boundary-like, and 6 + 0. The stability as

t,t + oo follows from well-established predictions [11;12]
that Hagen-Poiseuille flows are unconditionally stable to
infinitesimal disturbances.
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Figure 3 Variation of critical Reynolds numbcr with
dimensionless time for an impulsively started pipe flow.

The variation of Reynolds number based on displace-
ment thickness Re5. = U 6* /u with a dimensionless shear
stress parameter S = 2rrRl jtu) (r, - wall shear stress;
p - fluid dynamic viscosity) is shown in Figure 4. The
parameter S is chd,racterised in the current context by the
fact that S = oo and S = 8 correspond to 'top-hat' and
parabolic velocity profiles, respectively: therefore it is a
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useful (though not necessarily unique) indicator of veloc-
ity profile shape. It is clear that the stability curves for
the two different situations become synonymous only for
the lower values of ,S. By inference the velocity profiles,
although of a qualitatively similar nature, are sufficiently
different to yield fundamentally divergent stability char-
acteristics for the spatially and the temporally developing
systems.

The dimensionless shear stress of S ,\" 13.91, estab-
lished in Abbot k Moss [4] for steady entrance flows as

being that value of S less than which critical Reynolds
numbers do not exist, appears from Figure 4 to apply
equally to impulsively started flows which are spatially
fully developed. In this latter context S = 13.91 corre-
sponds to I ^) 0.0108; the approximate value of the di-
mensionless time greater than which the flow is uncondi-
tionally stable to infinitesimal disturbances. This result
is fundamentally important from the viewpoint that those
disturbances which grow beyond this time must necessar-
ily possess a form and/or magnitude which falls outside of
the limitations embodied in the analysis.

the primary cause,[4] two of the possibilities (or combina-
tions thereof) are as follows:

1. Even for entrance flows with infinitesimal distur-
bances the (analytical) sensitivity of stability patterns
to the form of disturbance has not been categorically
established. The literature commonly cites distur-
bances with an azimuthal wavenumber n of unity as

being most 'dangerous' for pipe-Poiseuille flows, and
applies the same tenet to pipe entrance flows. How-
ever this rather centrally i-p ortant hypothesis has
not yet been proven, and other azimuthal wavenum-
bers in the developing region might yield lower values
of critical Reynolds number over a larger axial extent.

2. Sarpkaya's [1] core flow disturbance levels were at
the significant level of approximately 0.7To. Even for
boundary layers, very few data exist showing the com-
bined influence of free stream turbulence and pressure
gradient on stability, although some studies [13] have
partially dealt with transition in this context. More-
over, the stability of a pipe flow is rapidly affected by
the incidence of its axisymmetry: i.e. once the annu-
lar boundary layer has grown (ir time or space) be-
yond a very small value its critical Reynolds number
diverges increasingly from that of a boundary layer
growing on a flat plate under an equivalent pressure
gradient. The effect of non-infinitesimal disturbance
levels in these circumstances is largely unknown.

The above issues highlight a possible advantace of ex-
perimentally investigating unsteady pipe flows. The en-
trance length of an impulsively started pipe flow increases
with time from zero a,tt - 0. It follows that measurements
taken at a sufficiently dorvnstream station should be iso-
lated from the influence of upstream disturbances which
have evolved at sorne earlier tirne. Therefore, aside from
the absence of norl-parallel effects, a well-designed facility
has the potential of providing experimental stability infor-
mation for pipe flows in the absence of finite amplitude
disturbances, thereby allowing the effects of disturbance
form in axisymmetric florv systems to be studied in isola-
tion.

Conclusions

1. An impulsively started pipe flow far from the inlet
plane is unconditionally stable to infinitesimal dis-
turbances, both for sufficiently small and sufficiently
large times.

2. The use of a dirnensionless shear stress parameter (^9)

shows that a steady pipe entrance florv exhibits quali-
ta,tively much the sallle behaviour as its temporally

3; ,. : Tli" :il'l:il T:, n l iJ,iJ,l'",',H, T'r:' 
ab' i t v

3. Beyond 7 ^/ 0.0108 the flow is unconditionally stable
to infinitesimal dist,urbances.
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Figu re 4 Variation of critical displacement thickness
Reynolds number with a dimensionless shear stress

parameter, illustrating the qualitative simila rity between the
present predictions for an impulsively started pipe flow, and
those of da Silva & Moss [3] for a steady pipe entrance flow.

It is appropriate to mention that the stability of
Hagen-Poiseuille flows has been the subject of much de-
bate over the years, for the primary reason that the rnath-
ematical prediction of stability is at variance with the
fact that turbulence is usually observed far downstream in
steady pipe flows. This is generally attributed to the fact
that the upstream system is not stable:[l-a] thus transi-
tional/turbulent structures, even when considerable care
has been exercised to provide a smooth inlet contraction,
may evolve in the developing upstream boundary la,yer re-
gion and be washed downstream. If the inlet contraction
is not well-designed, gross disturbances are carried down
from this source, with the sarne result.

The reasons for the poor correlation betrveen predic-
tions and experimental data for steady entra,nce florvs are
more subtle. If non-parallel effects are excluded as being
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4. In the context of experimentation an impulsively
started pipe flow should, within limits, provide a
means of effectively isolating a measuring station,
both from. non-parallel effects and from upstream-
generated finite amplitude disturbances which have
been convected to the mea^suring station. Thus it has
a potential role to play in providing pxperimental con-
ditions which more closely approximate those of the
analysis: this might lead to an improved understand-
ittg of the fundamentally important and unresolved
problem of instability and transition in pipe flows.
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