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Som,e fondamental aspects of the finite-uolume nurneri-
cal flow analysis approach, which are generally assumed
to be understood but at times still incorrectly interpreted
in lhe literature, a,re reiterated. In this contert an ac-

curacy com,parison between linear, upwind quadratic and
Iocally analytic interface interpolation has been carcied
out. The formulations adopted were chosen with stability
and arbitrary non-orthogonal physical grids in mind. Ar-
tificial diffusion damping through flur blending has been

prouided for. A finite-aolume quality norm is proposed
as a qualitatiue measure to eualaate different discretiza-
tion approaches. Three laminar flow problems are em-
ployed as test cases, n.amelU, the concentric shear flor,
wall driuen flo, in a square cauity, and the midng of
two scalar streams. The results indicate that in the light
of growing compater pou)er, simple linear second order
'interpolation in conjunction with the ability to introduce
controlled artificial diffusion damping is adequately ac-
curate and likely to dominate finite uolume thinking xn

the carrent decade.

Nomenclature

fraction describing the interface
location € = aL

,4, B , C., D exponential functions and their
approximations

g global term characteristic for
the flow problem

H typical domain dimension
J interface convection-diffusion flux

vector
J flux component
L distance between nodes
m local property gradient
M neighbour number

number of nodes in one direction
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,nf node number
Pe local grid Pdclet number puLf p,

p pressure at a node

A finite volume quality norm
rL,12 inner and outer cylinder radii
Re Reynolds number

: i:::i ::t*xt,T'*i::i:s'urce
u normal interface velocity
U , V orthogonal velocity components at a node

f diffusion coefficient
0 control volume size

q local interface coordinate
) flux blending factor

l.t dynamic fluid viscosity

€ local interface coordinate
p fluid density
c control volume surface

0 any transported variable
absolute value of angular velocity

1 IxrRoDUCTroN
The segregated sIMpLE numerical finite-volume flow
analysis procedure, in conjunction with the pressure cor-
rection approach, continues to be extensively applied to
every flow problem imaginable. In this context the def-
inition of a fluid by Daugherty and Franzinil as 'any-
thing which deforms easily under stress' is useful because
it eneompasses modelling applications to plastic defor-
mation 'flows' for example. The phenomenal success of
the method can partly be attributed to the clarity of
the writing of its early contributors, e.g. Patankar and
Spalding,2 Patankar,3 and Gosman et al.a

During the past ten years the field of computational
fluid dynamics has experienced an explosion-like surge
of publications, some extensively mathematical and thus
often renderittg it difficult to appreciate the new insight
into the relationship between the numerics and physics
offered. The current paper presents an attempt to re-
iterate, in the context of a comparison between three
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interpolation schentes, solne fundamental aspects of the
sIMPLE approach, which in the experience of the authors
and their students are still often misunderstood.

2 PHYSICAL MODEL
For the purposes of this paper two-dimensional, incom-
pressible, steady,, constant viscosity laminar flow is con-

sidered, which is well described by the Navier-Stokes mo-
mentum equations and the continuity equation. In the
general form described by Patankar3
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u is the velocity vector as a measure of convection, fa
the diffusion coefficient and 56 the volumetric source
of any conserved scalar property O. In the case of the
momentum equations, / becomes the Cartesian velocity
component t/ (or V') as a measure of momentum per unit
mass, and ^94 the respective negative Cartesian pressure

gradient sources. Since the Cartesian velocity compG-
nents are transformation invariant in space,5 they can

be regarded as scalar quantities, which is significant for
the analysis in non-orthogonal geometries. The continu-
ity equation will emerge from equations (1) and (2) by
setting ,/ equal to unity and 54 (and IO) equal to zero.

3 FrNrrE voLUME METHoDoLocY
A conservation law becomes useful through the fact that
the property under consideration is conserved, but its
distribution or concentration in space (and time) is not.
An equation can therefore be formulated from the bal-
ance of the integrated convection-diffusion transport , J ,

of the property through the boundary of a control vol-
ume and the balancing integrated change of state, Sd, in-
side this volume. This classical (computational) thermo-
dynamic approach is directly implemented in the physi-
cal finite-volume method. The typical cell-centred nodal
arrangement (as opposed to corner or interface nodal po-
sitions) shown in Figure 1 reflects the unique association
between the control volume, the conservation equation
and the location of the property value sought. To save
space, a local € - ,l interface coordinate system is also
indicated in Figure 1. This is further referred to below.

The partial derivatives contained in equations (1) and
(2) can either be approximated through finite differences
or determined exactly from a shape function, which ap-
proximates the local property field based or, for exam-
ple, the nine nodal values shown in Figure 1. In the
current work, finite differences have been employed, €X-

cept where otherwise indicated in the following sections.

Figure 1 Typical cell-centred control volume and nodes

Specific to the cell-centred formulation is the require-
ment to determine the interface convection-diffusion
flux, which Schneider and Raw6 referred to as the first
closure problem of the method. Spaldin1,T for exam-
ple, implicitly showed that a stabilizing feature of fluid
flows is the fact that, due to the effects of convection,
the downstream events in the flow become less influen-
tial than upstream events when the local P6clet number
exceeds approximately 2. Linear, quadratic or locally
analytic interpolation is therefore practical, provided nu-
merical measures are taken to simulate this stability ef-
ficiently. Khosla and Rubin8 showed that, analogous to
Spalding's7 idea, this can be substantially and conve-
niently achieved by transferring mainly downstream in-
fluences in the interface fluxes, J, from the left hand
divergence side of the discrete integrated form of equa-
tion (1), from which coefficients in the matrix equations
to be solved are assembled, to the right hand source term
side. This idea, previously used for example by Dentone
and later by Peric',to remained surprisingly neglected
during the 1980s.

In the current work the central difference or linear
interpolation formulation adopted is given by

Qil=6Ntrn€ (3)

where rn is the discrete gradient defined by the two nodes
adjacent to the interface. Substituting this expression
in equation (2), and employing a maximum function to
heed the stability considerations previously mentioned,
results in

Jor - put +;max(0, 1 - Pr)(6x - du)
(4)

+)l [( 1 - a) Pe - max (0, Pe - 1)] (6N - 6u)

(1)

(2)
o o3
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The flux blending factor ) described by Peric' 11 iden-
tifies those terms, which, upon integration, are to be
transferred to the source term side of equation (1), where
they then might be referred to as secondary sources.
This factor is norinally of unit value, but can be reduced
to enhance stability by effectively weakening the down-
stream influences. When this is necessary, it is an indi-
cation that the numerical and/or physical model repre-
sent the physics inadequately. This is especially the case

in high Reynolds number or turbulent flows. Pulliaml2
showed how the reduction of ) is equivalent to generat-
ittg false or artificial diffusion damping, with of course
an associated reduction in accuracy.

Employing the quadratic upstream interpolation fo'
convection kinematics (qutcx) referred to by Lconard
and Drummond,l3 the coefficients of an interpolation
parabola can be determined from the two nodal val-
ues adjacent to the interface and the upstream nodal
property gradient in the interpolation direction. Such z"

formulation is suitable for flow analysis based on arbi-
trary non-orthogonal physical grids, since three collinear
nodes are not required. The two resultant equations (see

Appendix 1) can be combined to yield

dor, : 4x * a[alPel - zmax (-Pr,0)] lP"

@u - dx) + "(I - a) Ifmax (0, Pe)*ru

* max (- P",0) **rll P"

6or : 6x + C (a, Pe) (6u - 6Nl

++ B - D (o, -P"),Sn * L] a . D (1 - a, Pe:) S,w

Jor, - puQnr * lA(P") (pn - Q*r)

+^ILB -C (o,-Pr) Sr - LB -C (1 - a, Pe\ Su)
(8)

Typically, for the U-component, the source Sl,' would
consist of

(7)

(e)

( 10)

and

J or - PuLnr * lzfa * max (-Pe, 0)

t- (1 - 2o) lP, * ol) (6r, - dx)

+)( - lPrl"'E @x - 6x) (6)

+f [o (1 - a) - (1 - 2a) lPr]

fmax (0, Pe) *rv * max (- Pr,0) *u])

For the exceptional case of Pe - 0, equations (3) and
(4) replace equations (5) and (6).

Finally, equation ( 1) can be solved to yield the locally
analytic interpolation function (loADS) of Wong and
Raithby,r4 if multi-dimensional terms on the left hand
side are transferred to the right and the resultant source
terms on the right hand side are treated as piecewise
constant. This idea was previously tested by Prakash,ls
Huang et al.r6 and the present authorslT who adopted
the followi.tg form:

The exponential weightittg functions A, B, C., and D
(see Appendix 2) were here approximated as previously
described by the authors,lT although more efficient ex-
pressions are now indicated.18

Since secondary source terms arise in all three schemes
as the result of the deferred correction approach, it is
suggested that these schemes are computationally com-
petitive among themselves. This assumes that the vari-
ous interpolation expressions are optimized with regard
to computational expense and comparative associated
accuracy. The formulations presented have however been
chosen such that the coefficients of the discretized con-
servation equations approximate those resulting from
the locally analytic solution of the homogeneous one-
dimensional form of equation (1), i.e. the exponential
coefficients described by Patankar,3 with the view to
maximizing stability. All three schemes are of second or
higher order accuracy, dependittg on discretization op-
tions and flow conditions.

4 STwGLE GRrD
When equations for the velocity components U and V
based on equation (1) are differentiated with respect to
r and y in turn and the result summed, the followittg
Poisson equation for pressure results

-v vp-*r" I+ fir" t

(5)

This situation is indicated in Figure 2. For an equal
order discretization of the Laplacian, it is necessary to
obtain a local solution of the momentum equations in the
space between nodes. In other words, deriving equation
( 10) through the classical route3 of enforcing mass con-
servation over the control volume interfaces, a function
is needed which expresses the interface velocity in terms
of the interface pressure gradient. The first of three
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routes to obtain this is the solution of the momentum
equations on staggered grids, as described by Patankar.3
Lee and Chiule recently summarized the disadvantages
of this initially mathematically attractive route, which
must now be rejected a"s unergonomic, because it com-
plicates the mental task of the analyst. Difficulties gen-
erally arise in three-dimensional non-orthogonal physical
geometries, especially where the grid structure is com-
plicated.

Figu re 2 Divergence of momentum flux divergence

An alternative route therefore to obtain a velocity-
pressure coupling at the control volume interface is pro-
vided by equation (7). Since provision is made for the lo-
cal pressure gradient in the source term, equation (7) can
simply be differentiated with regard to the local pressure
gradient to obtain an expression of velocity correction to
compile a pressure correction equation.3,17

A third method was proposed by Rhie and Chow,2o
who simulated a staggered grid by linearly interpolating
the interface velocities in terms of the neighbouring dis-
cretized momentum equations, except for the pressure
gradient contained therein. In this respect the approach
is identical to the unequal order method described by
Patankar and Baliga,2l who solved for pressure at al-
ternate grid points only. In the method of Rhie and
Chow2o the pressures at four nodes, which define the
pressure gradients at the two adjacent control volumes
in the direction of the interpolation, are assumed to lie
on a parabola, i.e. a linear pressure gradient field is im-
plied. This reduction of the degree of freedom, i.e. from
an at least cubic to a quadratic pressure profile, provides
the pressure field smoothing necessary to avoid checker
board pressure fields.3 It is however also the reason why,
when grids are too coarse, the computed interface veloc-
ities can produce a checkerboard pattern with regard to
the nodal velocities.

5 QuALrrY NoRM
Equation (1) suggests a way to quantify the performance
or quality of a finite-volume analysis. If the divergence
over a control volume is large, or, alternatively the source
term is large, an indication is provided that local changes
in the flow field are severe. It is then useful to plot
contours of absolute integrated source terms to obtain
an immediate visual indication of difficult flow regions,
where for example grid refinement might be called for.

Such difficulties would hot only arise due to say severe
physical property gradients, but also due to the numer-
ics. It was discussed above that for numerical stability
the upwinding divergence remains on the left of equa-
tion (1). As a result, if the net effect of the secondary
terms transferred to the right becomes relatively signif-
icant, this will also be indicated on the contour plots.
The same would apply to non-orthogonal interface flux
contributions, which are treated explicitly.

Summittg the absolute integrated source terms over
the entire flow domain may serve as an attempt to quan-
tify the quality of the solution by a single norm. The con-
ververgence of such a number will indicate to what de-
gree a grid independent solution has been approached by
comparison of the value obtained on successive smaller
grids. The number should also add useful information for
the comparison of different discretrzation options. Fur-
thermore, the information is a prioi,i in the sense that
it does not depend on a known solution. If the value
is normalized by a characteristic global (g) flux of the
problem concerned, the resultant number, Q, may give
a comparative indication for different flow problems of
the relative significance of 'source term activity' therein:

Dllf"sdol

oo

( 11)

( 12)
@lalQL)o

6 IvTPLEMENTATToN
Instead of the classical3 geographic indentification of
fluxes over different control volume faces', nodal neigh-
bours (and the associated interfaces) are numbered se-

quentially and only one interface flux calculation is pro
grammed a^s part of a loop. This calculation is based
on a local coordinate system, which has been indicated
in Figure 1 for interface number 2. This approach pre
vides maxirnum freedom with regard to the shape of the
control volume in more complex geometries.

In the current work boundary conditions are treated
explicitly, i.e. Neumann boundary conditions are con-
verted to Dirichlet conditions through extrapolation. As
a result boundary interface fluxes are treated exactly as

div Jy

div Jy

div JU div JU
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internal fluxes, since equations (4), (6), and (8) will re-
cover the boundary values automatically, when whole
boundary control volumes are employed, i.e. a Patankar3
type B grid. Steady flow under-relaxation as described
by Patankar3 has been applied and the tri-diagonal, line-
by-line algebraic equation solver has been employed.

7 TPST CASES

7.L CoNCENTRIC sHEAR FLow

The configuration of the concentric shear flow problem
is shown in Figure 3. This frequently used test case

previously employed by the authorsl7 has an analytic
solution given by e.g. Schlichting.22 It may represent
the first configuration towards modelling a mixing ves-

sel for example. A regular square grid implies values
of the interpolation ratio a of 0.5 and 1, i.e. the in-
terface lies halfway between nodes or at the location
of a global boundary node. Analytical velocities were

implemented as Dirichlet boundary conditions and the
analytical pressure difierence was used as a Neumann
condition. Following Prakash23 the problem can be non-
dimensionalized in terms of a Reynolds number given
by p (rrr) (r, - 11) lf . Laminar flow tests were run at
Reynolds number 1000 using 9 x 9, 2I x 2l and 41 x 41

nodes. The three interface interpolation schemes, de-
scribed by equations (4), (6), and (8), were employed.
Relaxation factors for velocities and pressure were 0.5
and 0.2, respectively, and the net secondary (higher or-
der) source contribution in the momentum equations was
relaxed by 0.04 on the finest grid. The latter value is ar-
bitrary and not optimtzed. Some additional relaxation
seems necessary when the velocity/grid size ratio be-
comes large, i.e. the iteration 'time step' required sorne
reduction. The interface velocity-pressure coupling of
Rhie and Chow20 was used in all cases. For central
difference interpolation on the 9 x I grid some artifi-
cial viscosity proved necessary to obtain convergence.
This was applied by setting ) equal to 0.9. Starting
with a constant radial outward flow field (approximately
50To of maximum analytical tangential velocity), the to-
tal number of outer iterations allowed varied between
195 on the smallest to 4182 on the largest grids. In
all cases the normalized summation of absolute residu-
als suggested by Peric' et al.2a for momentum and mass
were less than 10-6 when iterations were halted. The
normalization is based on the above Reynolds number
e.g. momentum related quantities were normalized by
p (wrr) (rrr) (r2 - ,r). In terms of computational costs
such convergence is not normally required. It was how-
ever applied to enhance the reliability of the comparison.

Figure 3 Concentric shear flow schematic

In Figure 4 the average absolute percentage errors of
the computed U-velocity components for the three grid
sizes and interpolation methods are shown.

In terms of accuracy on the coarsest grid the higher
order schemes perform well. The physically based LoADS
is slightly better than the numerically based qLIICK

scheme. On the other hand,, &s the grid is refined,
the second order central difference scheme rapidly ap-
proaches the accuracy of the other two schemes. From
equations (4),(6), (8), and (9) it follows that the cen-
tral difference scheme is the simplest to employ. In the
context of very large problems, as occur in climatology
or oceanography for example, and also hardware lirnita-
tions, e.B. array sizes, the use of more accurate schenres

might on the other hand still be worth while for some
analyses.

In Table 1 the final values of the tl-momentum qual-
ity norm obtained, i.e. as defined by equatiotr, 12 are
presented. The values are essentially the same, which is
to be expected. All three schemes use similar upwinding
coefficients, which follow from equations (4), (6), and
(8), and the total integrated source should be indepen-
dent of grid size. Since this is a relatively regular florv
field, these figures may serve as a comparison with data
obtained in subsequent test cases.

For this well-behaved tlow, contours of absolute in-
tegrated source terms do not highlight any significant
features. However in Figure 5 absolute lJ-velocity com-
ponent source term contours for the LoADS scheme, in
this case locally normalized, can be compared to the
contours of the locally normalized percentage error plot.
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The maximum error is then found in the vicinity of the example be observed in a fume extraction hood over a
fixed inner shaft, where the velocities used for normal- convevor belt.
ization tend to zero. Some correlation between the two
figures can be detected.

a- -centnal drf fenence

- OUICK

--)+- L0ADS
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o2 .04 .06 .O8 .r .12 .14 .16
gnid size L/H

Figu re 4 Average absolute percentage error of computed
U-velocity com ponents

Table 1 U-velocity component quality norms

Grid central difference QUICK LOADS
9 x 9 0 .0773 (damp.d) 0.0818 0.0743

q

L
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L
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7.2 Wall DRIVEN FLow IN A seuARE cAV-
ITY

Figure 5 Contours for the absolute locally normalized
U-velocity components 9 x 9 nodes

a) integrated source terms; b) percentage error

Huang et al.r6 did report failure to obtain conver-

2I x 21 0.0806
4I x 41 0.0863

0.0743 0.0757
0 .0775 0.0760

The steady incompressible lid driven flow in a square gence when applying the lo.q,os scheme of Wong and
cavity complements the previous case in as much it is Raithbyla to the cavity problem. Prakash23 showed that
not a through-flow problem, but relies on the presence convergence could be obtained for his implementation
of viscosity to establish a recirculating flow pattern, to of lo.e.Ds, with the help of near boundary grid refine
be captured using a non-flow aligned square grid. The ment. This was confirmed by the current authorsrT for
essential features of such a resulting flow pattern can for the loeos scheme. As a result the cavity problem might
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also provide a test of the quality norm approach pro-
posed.

Thus the shorter side length of half size boundary con-
trol volumes of an otherwise regular grid is calculated
from H l(n - 3) 12. The values of the interface interpe
Iation ratio a occurring are therefore 0.33, 0.5,0.67 and
1.0. The Reynolds number in terms of lid speed and
side wall length H tested was 400 and 1 1 x 11, 2I x 2I
and 4I x 4l node grids were employed. Relaxation fac-
tors were the same as for the previous case. Apart from
the moving top side velocity of unity, all other boundary
nodal velocities were set to zero. Using a unity side wall
length results in a normalizing factor of unity. Iterations
were halted when normalized summation of absolute
residuals of momentum and mass were less than 3. 19-0.
This was achieved after allowing between 500 and 6 000
iterations respectively for the grids used. Again the in-
terface velocity-pressure coupling of Rhie and Chow2o
was used.

In Figure 6 the computed U-component on the vertical
centreline obtained for the various schemes are compared
to the results obtained by Winters and Cliffe.2a Their
grid consisted of 57 x 57 finite element nodes with addi-
tional local grid refinement in the lid side corners. On
the coarsest grid the resolution of the flow field must be
considered inadequate. The accuracy improves substan-
tially with grid refinement, the central difference scheme
proving once again adequate. The same weak hierarchy
of accuracy among the three schemes as indicated in the
previous test case can be detected.

Table 2 U-velocity component quality norms

Central difference QUICK LOADS

term contours of the central difference ca^se shown in Fig-
ure 7 (contours for the other interpolation schemes being
similar). The finest grid used appears necessary to re-
solve the severity of the flow field in the top two corners,
where relatively large pressure gradients are required to
change the direction of the flow.

Figure 7 Contours of the absolute U-velocity component
integrated. source terms for central difference

discretization - 41 x 41 nodes

7.3 ScnLAR DIFFUSIoN TEST
Another frequently used test case to examine interpo-
lation schemes is the transport of a scalar step discon-
tinuity resulting from the joining of two uniforms flows
transporting the same scalar at different magnitudes and
at various directions relative to the grid. Specifying a
'sharp' inlet profile not only allows an examination of
false diffusion 'smearirg', but alsc the capacity of the
method to deal with steep property gradients in the flow.
Furthermore this test tends to give a clear indication
of the extent of the inherent dispersion associated with
higher order schemes.

The typical configuration is shown in Figure 8. The
flow direction is described by the elevation (relative ve
locity components) of the line, at which the discontinuity
occurs. In the current ca^se only a 45o fixed (not com-
puted) flow field is employed. The scalar step profile is
imposed by the boundary conditions indicated in Figure
8. In order to examine the three schemes in the context
of the general formulations adopted in equations (4), (6),
and (S), the diffusion coefficient, e.g. in equation (1)

Grid
11 x 11

2Ix2l
4Ix4l

0.0972
0.16
0.22

0.0982 0 .r2
0.15 0.17
0.18 0.17

In Table 2 U-momentum quality norms obtained ac-
cording to equation (I2) are presented. Although the
data is too limited to make conclusive statements, the
following tentative observations can be added to the ex-
perience gained in the previous test case. With regard
to the first two schemes a grid independent solution has
not yet been obtained. All numbers based on LoADS
tend towards a lower value than the those based on the
other schemes. All the numbers appear to converge to a
significantly larger value than those obtained in the pre-
vious test case, which might be attributed to the effect
of normalization. The accuracy results of both test ca^ses

seem to suggest that a lower norm value can be associ-
ated with a better quality resolution of the flow field.
The particular difficulty of the problem can be identified
from a typical absolute integrated U-component source

R & D Journal, 1997, I3(I) 27



was set at 10-10 and the primary source term was set

to zero. The general formulations are not suited for zero

diffusion. The value of 1g-t0 was arrived at by noticing
no further graphical changes in the scalar profiles ex-

amined for a coefficient smaller than 10-6. The regular
grid sizes examined were 11 x 11, 2I x 2l and 4I x 41.
The initial scalar field value was set to 0.5. In all cases

no relaxation was employed and less than a hundred it-
erations were required to reduce the normalized (bV a
factor one) scalar residual to below 10-6. However, a

non-optimized value of 0.9 was assigned to the value of
) for the central difference interpolation to introduce
some artificial diffusion. Without this remedy conver-
gence was either extremely slow or produced 'sawtooth'
results on the finest grid.

e - I

6:0
Y= l-x

Figure 8 Scalar transport diffusion schematic

In Figure I a comparison between the three interpo-
lation schemes is presented in the form of scalar profiles
along the line y : 1 - n. In the context of yielding a

vertical step face, the eUICK scheme seems to perform
best. On the coarsest grid, all three schemes produce al-
most equal order unboundedness. With increasing grid
refinement, the dispersive overshoots in the damped cen-
tral difference based results rapidly disappear while they
increase for the other two schemes. In terms of accuracy
the central difference scheme performs therefore best,
although, through the introduction of artificial diffusion
damping, unboundedness was introduced.

In Table 3 the computed quality norms associated with
the results presented in Figure 9 are provided. The norm
will diminish, as the step is approximated more accu-

rately and the regions of 'flatness', where the first order

divergence vanishes, expand and the overshoots disap-
pear. The rapid improvement in the damped central
difference based results is clearly distinguishable.

Table 3 Secondary sources based quality norms

Grid

11 x 11

2L x 2I
4lx4L

Central difference
(damped)

0.254
0.223
0.180

QUICK LOADS

0.315 0.245
0.262 0.237
0.269 0.219

analyt!c

centr cttf f llxll2lx?l 41x41 all damoeo

0UICK llxtl 2lx?l 41x41

L0A0S llxtl ?tx?t 4)xdl

, U'r

e

TI
0

v/H
Figure 9 Comparison of scalar profiles along the line

y-r-r
In Figure 10 contours of the source term distribution

are provided for the 4Ix41 nodes central difference case,

the other cases being similar. The severity of the bound-
ary condition imposed on the scalar field at the inlet flow
corner is quite recognizable in all cases.

8 CoNCLUSIoI{
Due to its simplicity, inherent boundedness and the
transparent manner described by Peric',ll in which ar-

W

{, ,t/lx-1
<---
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tificial damping or downwind decoupling
duced, it is likely that central difference
will be widely employed.

can be intro-
interpolation

Figure 10 Contours of the absolute integrated secondary
scalar source terms for central difference discretization

41 x 41 nodes

The alternatives are more accurate, but also more
complicated and less transparent. In the light of rapidly
rising computer power, the latter disadvantage is gain-
ing in significance. The results of the test cases do not
indicate that grid convergence is substantially enhanced
by non-linear interpolation. However, physical circum-
stances, where the use of non-linear interpolation is es-

sential, ffi&y occur.
The analysis of source term distribution is apt in fi-

nite volume methodology. The quality norm proposed
is a heuristic quantitative tool. Its formulation is pre-
sented as a first attempt to generate a simple but useful
index. It is hoped to report on alternatives and their
implications in the future.
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App"ndix 1

Quadratic upwind interpolation
With reference to Figure 1 consider the interpolation
equation

g-ct€z*cz€*cs
Employing the boundary values 4 rv (€ - 0) and

Qu (€ - ^t) and either their nodal derivatives rrllr or Ix;4
in the (-direction, depending whether the interface ve-
locity u is positive or negative, results in

6or = 6N I a2 (Qu - Qr'r) t a(l- a) Lml,r

6or = 6x * a(2 - a)(6u - Qx) - a(1 - a\ LmM
These equations can be combined resulting in equation
(5).

App"ndix 2

Exponential weighting functions

A (Pe)

B (o, Pe) -

C (o,Pr) =
2r.

D (o,Pr)

A removable singularity appears in these equations
when Pe :0. This is accomodated through the numeri-
cal approximation employed. 17
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