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Th,e non-stationary oscillations of slowly uarying oscilla-
tory distributed one-dimensional systerns can be analysed
using a combined perturbation and naTnerical technique.
This approach is used to inuestigate a pnssage through
resonance in a hoisting cable system. Due to the time-
uarying length of the cable the natural frequencies of the
system aary slowly, and 0, transient resonance rnay oc-

cur when one of the frequencies coincides with the fre-
quency of an erternal ercitation at soTne critical time.
The method of multiple scales is used to formulale a uni-
formly ualid perturbation erpansion fo, the response near
the resonance. A system of f,rst order ordinary differen-
tial equations fo, the slowly uarying amplitude and phase

of the response results. This system can be easily inte-
grated nuTnerically on a slow time scale. A model eto,rn-
ple is discussed, and it is shown that the amplitude of
,!r:"t:#llu.tions remains large after the p&ssz,ge through

1 INTRODUCTION
Cable structures are widely used in various industries
to transmit forces, to carry payloads, and to conduct
signals. Perhaps one of the most significant is the ap-
plication of hoisting cables to a vertical and inclined
transport, especially in the mining industry. Hoisting
cables, due to their flexibility, are susceptible to oscil-
lations. Therefore, the design methodology of hoisting
systerns requires a thorough dynamic analysis in order to
predict the dynamic loads and to evaluate the response
stability during various operational modes.

The typical design of a hoisting cable system comprises
a winder drum, a single cable, and conveyance. Usually
in the dynamic analysis a motion of the winder drum is
assumed to be prescribed through a known velocity or
acceleration time profile. Therefore, in this approach,
the driving system is treated as an ideal source of en-
ergy, and its dynamic behaviour is not taken into con-
sideration. Three major types of vibration may occur
in the hoisting cable, namely longitudinal, transverse,
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and torsional. These vibrations are caused by various
sources of excitation. A load due to the winding cycle
acceler atronf deceleration profile is the most significant
in the longitudinal transient response. A mechanism ap-
plied on the winder drum surface in order to achieve a
uniform coilit g pattern forms the primary source of sta-
tionary periodic excitation during the constant velocity
winding phase for both the longitudinal and the trans-
verse response. The torsional response is coupled with
the longitudinal response, and occurs in triangle strand
rope, which is known to respond in torsion to applied
axial loads. During the wind the system parameters are

changing due to the time-varying length of the cable.
The rate of variation of the length ir, however, slow,
and the oscillations represent waves in a slowly vary-
ing domain. Hence, the hoisting cable is essentially a
nonstationary oscillatory system with slowly varying fre-
quencies and mode shapes. Therefore, a passage through
resonance may occur during the wind when one of the
slowly varying frequencies coincides with the frequency
of the periodic excitation at some critical time instant.

The study of vibration problems in hoisting cables has
attracted wide attention. Savin and Goroshkol analysed
a motion of a hoisting cable using integro-differential
equations taking into account a slip of the cable on
the winder drum. Kotera2 considered the longitudi-
nal dynamics of a mining lift model and proposed a
method to determine analytically a free and forced vibra-
tion response via a suitable transformation of variables.
Greenway3 analysed the influence of physical parame-
ters of a mine hoisting system on the dynamic longitudi-
nal response using an analytical approach. Mankowskia
investigated the nonlinear dynamic behaviour of mine
hoisting cables taking into account both longitudinal and
lateral behaviour. Various mathematical models were
developed, and the system wa^s studied through an ex-
tensive computer simulation of the forced response of
the system. The results of the simulation were corre-
lated with measurements made on industrial installa-
tions. Constancons extended this study by an analytical
stationary analysis of the system stability, validated by "
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laboratory experiment. An intensive numerical simula-
tion of a nonstationary model of the system, intended to
be used as the final validation. was also performed. Ku-
maniecka and Niziol6 also investigated the longitudinal-
transverse vibration of a hoisting cable. The cable ma-
terial non-linearity was taken into account and unstable
regions were identified by applying the harmonic balance
method.

Perturbation techniques can be used to study slowly
varying oscillatory systems. MitropolskyT established
fundamental concepts in this field and developed an
asymptotic method to analyse non-stationary oscilla-
tions in systems with slowly varying parameters. This
method was further developed and modified by Agrawal
and Evan-Iwanowski.E,e Nayfehlo proposed the general-
ized multiple scales method to deal with the problem.
KevorkianlL,L2 used the multiple scales method and av-
eraging techniques for systems with slowly varying pa-
rameters.

The perturbation methods present a useful tool in in-
vestigation of resonances. The phenomenon of passage
through resonance in a hoisting cable system, referred
to as transient resonance,l3 is studied in this paper.
A general rnathematical model describittg vibrations of
one-dimensional distributed systems with slowly varying
length is presented. A simplified longitudinal model of
the hoisting cable system is formulated in order to il-
lustrate the techniques needed to analyse the passage
through resonance during the constant velocity winding
phase. The first order approximation of the system re-
sponse is determined by a combined numerical and an-
alytical technique. The generalized method of multiple
scales is applied to represent uniformly valid perturba-
tion expansion for the response near the resonance. This
leads to a system of first order autonomous ordinary dif-
ferential equations for the slowly varying amplitude and
the phase of the response which is solved numerically.
The response of the system is aperiodic which is demon-
strated in a numerical example.

2 VIBRATIONS OF ONE-DIMENSIONAL
DISTRIBUTED SYSTEMS WITH SLOWLY
VARYING LENGTH

Forced small-amplitude oscillations of an elastic one-
dimensional distributed structure carrying concentrated
inertia elements at intermediate and end points can be
described by the following equation

p(s)"(t,t) + Ll"(t,f)] : F (t,t,0), s € D,0 < f ( oo,
(1)

where u(s,t) is a deflection, with s denoting a spatial
coordinate and t denoting time, dots designate partial
derivatives with respect to time ,, L is a linear spatial
operator, F is a forcing function with a harmonic term

of frequency 0 - Q, and p is a mass distribution function.
If the length of the system is assumed to vary slowly, the
spatial domain ,D is time dependent and can be defined

D(r) = {", /r (r) < s ( f, (r)},
where 11 and 12 are prescribed functions of a slow time
scale r : €t, with 0
are therefore varying slowly and the oscillations of the
structure described bV (1) are non-stationary.

The deflection u is subject to the following homoge-
neous boundary conditions

Bl") - 0, s: lr (t) ,lz(r),

(2)

(3)

(4)

(rr )

(6)

where B is a linear spatial operator. The concentrated
inertia elements have been accommodated in the equa-
tion of motion (1) as applied inertial loads and the mass
distribution function is given as

p

p(s):m+I M;6(s- Lr),
i-l

where m denotes mass per unit length of the base struc-
ture , M; is the magnitude of the ith concentrated inertia
element located at s - L,;,, o,rrd 6 is the Dirac delta func-
tion.

The Rayleigh-Ritz procedure can be used to analyse
the response of non-stationary systems with slowly vary-
ittg parameters.l An approximate solution to the prob-
lem defined by the system (1)-(4) can be represented by
the following expansion

N

u- I Yn(s,r)q^(t),
n=L

where Qn are generalized coordinates, and li are slowly
varying normal free-oscillation modes of the correspond-
ing stationary system with the inertia elements. They
are solutions of

LlY" (t, 1,. ,b)) - ul(lr, lz) p(t)Y" (r, lr ,lz) ,

s e D, n lV" (t, lt ,lz)) - 0, .e = lr,lz,

where c^.,r, are the natural frequencies of the system, and
11 and /2 are treated as constant parameters.

By substituting the expansion (5) into (1), nrultiply-
i.rg the result by Yr, integrating over the domain D, and
using the boundary conditions (3) the following second-
order ordinary differential equation set for the general-
ized coordinates is obtained

'i, + 
'2,

(r) q, - -2e f f=, I'o=r lLrf n (r) qn

-t'Dil=, f' I t'l'
-,-rf .nik;if,]en

*f" (r,t,0) , r - I,2, ..., -n\r,
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f" ( r,t,o) = Irr,)Y,F 
(r,t,o) d,s.

where the prime denotes the derivative with respect to
r,, and

cable is moving with a prescribed winding velocity a(t),
and the ma,ss M is constrained in a lateral direction.
The section I - OOr represents a slowly varyiog length
of this part of the cable that is already coiled onto the
winder drum. The cable is assumed to be perfectly elas-
tic, and has a constant effective cross-sectional area A, e
constant mass per unit length rn, and effective Young's
modulus .8.

Figure 1 Model of a hoisting e system

Assumittg that the modulus ^E of the cable material is
high, the strain of the cable wound around the drum can
be neglected,l and the length I is given by

In order to generate an approximate solution, the
slowly varying oscillatory second-order system of N equa-
tions (7) can be transformed into a Hamiltonian stan-
dard form of 2N first-order differential equations using
action-angle variables.l2 Later perturbation techniques,
namely the method of averagittg or the method of multi-
ple scales, can be applied to determine the solution. Al-
ternatively, these techniques can be applied directly to
the second-order model. Using the method of multiple
scales a first-order system can be obtained to compute
the amplitudes and the phases for the first approxima-
tion of the response. In this procedure the followitrg form
of the solution is assumedla

(6,,r)+O(r**t) ,

M

Qr - t,iq,i
j=o

(e)

( 10)

(11)

where 6, represents a fast scale and is defined as

d, : 
lo' 

u, (rt) d,t,.

By substituting the expansion (10) into (7) and equating
coefficients of the same power of e , one obtains a set of
differentialequationSfortheapproXimationsQrjlj
0, 1, .. . M. These equations are solved in succession using
the solvability conditions that make the expansion (10)
uniform.

When a single term is taken in the expansion (5),
the result is referred to as a single-mode approximation.
This single-mode model can be used to investigate reso-
nances in the system, understood as coincidence of the
slowly-varying natural frequencies u)r, with the forcing
frequency O. This approach is applied to investigate the
non-stationary oscillations of a hoistittg cable.

3 DYNAMIC MODEL OF A HOISTING CABLE
SYSTEM

The following model of a hoisting cable system is con-
sidered (Figure 1). A mass M representing the cable
load is attached to the bottom end of a tensioned ca-
ble translating axially due to the cable being coiled onto
a rotating cylindrical drum. The upper end Ot of the

where signs '+' and c-) correspond to ascendittg and
descending respectively, and f(0) is the initial length.

In order to describe the longitudinal oscillations of the
cable two frames of reference are establishgd: a coor-
dinate system OfiA attached to and moving with the
upper end of the cable, and a stationary system OXY.
The position of a given point P on the cable during its
motion defined in the moving frame is given as

t-t(o)

r(s,f) = s*u(s,t),

+ I"'(od€' ( 12)

( 13)

where s denotes Lagrangian coordinate of the point mea-
sured from Or in the initial strained state ) ?.t, represents
the longitudinal dynamic deflection from the initial ref-
erence state, and observed in the moving frame. An

v(t)

R & D Journal, 1997, I3(l) 33



absolute position of point P is determined by Eulerian
coordinate X in the non-moving frame as

occurs. The magnitude of this displacement is calcu-
lated as the difference between the arc length traversed
through the cross-over and the corresponding diametri-
cal arcS

where the signs '-' and '+' correspond to ascending and
descending, respectively.

Assumittg that dynamic deflections of section OOr of
the cable can be neglected, the kinetic energy of the sys-
tem is expressed as follows

E (it,'it*r) -

where ^L denotes the total cable length in the initial state
u11,4 - u(L,t), and Vru

The elastic strain energy of the cable is

['(.) -

where R is the drum radius, d represents the cable di-
ameter, and a is the angle defining the diametrical arc
corresponding to the cross-over region. As the cross-over
occurs twice per drum revolution, a periodic boundary
excitation results that can be represented by the follow-
ing boundary condition

u(l,t)=uscosf2l, (22)

where O - 2u I R. The boundary condition at s = L is
the equation of motion of the end mass

Mu(L,t) + E Au,, (L,t) = Mi.

X (s,r) - r (r,t) - l,

and the velocity of a cable particle P is

( 14)

( 15)

(17)

( le)

V (r,t) = # - ir(r, t) +, (t),

(21)

(23)

(25)

(26)

(27)

where € = u,, is the strain measure, IIZ is the strain
energy in the initial state , and Ti is the cable tension in
the initial state.

The gravitational potential energy of the cable ex-
pressed in terms of the dynamic deflections is given by

tr, ( u,uM) - - I,t mguds - M gurur. (18)

Using Hamilton's principle

; 1," 
mvzd's *Iruvir, (16)

rI:+ 
1," e*;,o,)e ds,

o 
{1,',' 

(r- II, - rrs) or\ - o,

dt2

the followittg equation for the deflection from the initial
static equilibrium configuration results

mu - E Au,ss r ml, I < s ( L, 0 < t ( oo. (20)

In order to formulate the boundary conditions it is rel-
evant to consider a mechanism employed to implement
the coiling process. Typically a repetitive coiling pat-
tern during a windittg cycle in hoist systems is achieved
via a symmetrical 1800 Lebus liner.a [n this mechanism
the winder drum surface is covered by parallel circular
grooves with two diametrically opposed cross-over zones
per drum circumference, as shown in Figurc2. Each zone
offsets the grooves by half a cable diameter and when
the cable passes through a cross-over an additional axial
displacement relative to the nominal transport motion

Figure 2 Cross-over zones of a Lebus Liner

Treating the concentrated end mass M as an
load, and using the substitution

u (s,t) : U (t, r) + us cos Or,

the following equation of motion results

p (s) ti - E Au,ts i p (s) (i * uo{t2 cos Ot) ,

l<s< L,0<f (oo,

with homogeneous boundary conditions

U(l,f)=0

E Au,, (L,t) = 0

I Rcr

inertial

(24)
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where p(s) : rn, + M 6(s - L). The parameter I is time-
dependent, and is assumed to vary slowly. This condition
agrees well with nominal parameters of a winding cycle
in most industrial hoist systems. Therefore, a separate
slow time scale r can be chosen to observe the parameter
variation so that I - I (") as indicated earlier.

4 DISCRETE MODEL AND THB MULTIPLE
SCALES PROCEDURE

The discrete model is determined from equations (25)-
(27) through application of the expansion defined bV (5).
A single-mode approximation is assumed as

4.L Non-resonant case
The non-resonant oscillations of the system take place
when 0 is away from u)r. In this case the amplitude of
the excitation is assumed to be hard, and is ordered as

K, - O (l) it the analysis to follow. By substituting
(35) into (32) and equating the coefficients of e0 and e

on both sides, one obtains

;,? W+c"o) - K,cos frr, (37)

u? (%tr+c"r) =

-26,#-6',w*f, (,,o,w) (38)

(3e)

'tL/2

.l ' (48)

U-Y,(s, l)qr(t),

Yr=sinlr(r-l),

( 28)

( 2e)

The general solution of (37) in a complex form rs

ero = A, (r) eio" *4, (r) r-iQ"

+iffi(rfi,r a"-fir),is a free-oscillation mode of the system with I being fixed,

where 7, = +, with c = ,E,and ,, (t) is the

natural frequency. The slowly varying parameter lr is
determined from the transcendental equation

where

where L, - L - l.
By applying the Rayleigh-Ritz procedure, and intro-

ducing a fast non-dimensional time scale

T - uot,

7, tan l, Lo
M,

ooh +6?(r)q, - ef, (",#) #r,
x {lrc,, (r) + l'2d,, (r)] 8, * l"e, (")}
+ I{, (r) cos dT,

wherr 6, = -,, CI - fr, and

Ii, = 
er 

uod2 ,mr

where A, is the complex conjugate of A, which is given

A, (r) - Lro, (r) eio'('), (40)

where a7 and p, are real. By substituting q"s into (38)
one obtains

O")_
6'rA + #l'err6rArl ei|,

+ iq Fl+ *,t'",,o,)l
,rtdr * cc, 

(41)
where cc denotes the complex conjugate of the precediog
terms. The condition for the elimination of the secular
terms in (a1) is

26rA!, +6'14. + 2, ,l'crr6rA, - 0. ( 42)r , *r(r)

Writing A, in the polar form (40), separating the result
into its real and imaginary parts, and noting that m!, =
2l'crr, leads to the following result

(30)

(31)

together with the slow scale r - €T, 0

uro = wr(t(0)), the followitrg equation is obtained

(32)

( 33)

(34)

(35)

(36)

ar-ag | ,o*'(0)
L, )ilG)
3, = 0o,

The slowly varying coefficients c*, dr, , er, and rn, are
defined in the Appendix.

Followittg the expansion (10), the solution is sought in
terms of the fast and slow scales in the form

Q, : Qro (6r, 
") + €Qrt (6, , t) + O (r') ,

where ao = o"(0), and /ls - 9, (0) are constants. There-
fore, for the first approximation the solution of (32) is
glven a^s

Ll2
cos(Qr*ilo)

o(.) 
'

d,6,

dT

where

6, (r)
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where /, - ff 6, (€T) dT.

4.2 Resonance case
If a resonance occurs at any time in the system (32) the
solution (aa) becomes singular and is no longer valid. As
in this case one is concerned with values of u, (r) near
Q, this nearness can be quantified by a slowly varying
detuning parameter o, (r) introduced as follows

0 - 6, (r) : eo, (r)

one obtains the following set

a',

(45)

(46)

( 4e)

(50)

(52)

,1,',-cr(t)+ rycosrb,.arur

ue
j-

uoL'

--+(*.'#) ". (53)

(54 )

The first approximation to the resonant solution is given
by

Therefore, when the relationship (36) is taken into ac-
count, one gets from (45)

dr:6,*v,(r),

Q, - ar.or (O r - ,b,) + o(.) ,

wlrere ar and rf;, are given by (53) and (54).

(55)

5 NTIMERICAL EXAMPLE AND RESULTS
The system evolution through resonance can be analysed
through solving the set of equations (53)- (54). These are
autonomous ordinary differential equations with variable
coefficients to be determined numerically. The set does

not easily lend itself to an analytical solution. and a nu-
merical solution for the amplitude a" and the phase th,
is sought. The following system pararneters have been
assumed in calculations: M
8.4 kS/- , A
d = 0.048 m, R = 2.I4 m, a = 0.2 rad. A transition
through fundamental resonance is investigated when t,he

frequency O of the excitation is near the first longitu-
dinal natural frequency u1 of the cable. The natural
frequency is computed from the transcendental equation
(30), and is plotted against the vertical length Lu in Fig-
ure 3. During the ascendiog constant velocity phase the
length parameter I is obtained from (I2) as

l-l(0)+u"t,

where V, (r) = , t{ o, (eT) d,f . When or = 0, un-
bounded oscillations would be predicted for a corre-
sponding system with constant parameters. In the actual
system the oscillations are affected by the non-stationary
terms on the right hand side of equation (32). Therefore,
the excitation needs to be ordered so that it will appear
when the non-stationary terms appear. Thus, in order
to determine the first approximation one sets

Ii, - 2ek, , (47)

so that K, : O(r). By substituting (35) into (32) and
by equating the coefficients of e0 and € on both sides, the
followittg results

- o (48)

u?(%tr+a",) -2d,#
-u',W * f, (r,o,W) +2k,.orCIT.

In this case the first approximation, given as the general
solution of (48), is

Qro : A, (r) riQ" +A, (r) e-'6Q' t

where uc denotes the nominal winding velocity. Assum-
ittg /(0) -- 0, and introducing the slow time scale. the
length parameter is given as

l-Lr

where r - €T, with

(57 )

(56 )

(58 )where A, (r) has the form of (40), and will be determined
by eliminating the secular terms from the particular so-
lution of (a9). Using (50) and (46) in (a9), the followittg
solvability condition results:

- ilro,o!, + 6',A, + 2, - r'crrororl * kreiv, - o' m, (r)
(51)

By expressing A, in the polar form, separating the result
into its real and imaginary parts, and also denoting

The system (53)-(54) is then integrated numerically
using MATLAB implementation of the Runge-Kutta
method. The response amplitude against slow time
curves for three winding velocities u"1 - 8 m/s t ucy - 12

mls, and ur3 :16 m/s are presented in Figure 4, where
the initial conditions are a^ssumed as dt(O) - 0.001, and

/t(0) - 0. The corresponding non-stationary frequency-
response curves are shown in Figure 5. As can be seen,
during the ascendir,g motion the detuning parameter o
decreases when making a single slow passage through

'h, - V, - 0r,
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zero. The amplitudes exhibit oscillatory behaviour be-
fore the resonance, and near the resonance (o(r)x 0) the
amplitudes increase rapidly and develop beat phenom-
ena afterwards, growing later at a slow rate.

The single-mode approximation (28) assumes the form

U (r,t): o1 cos(Ot - rhr)sin Ifs - l) + O(r), (59)

:lO 
the corresponding dynamic deflection u is expressed

u (s.l)
o1 cos(CIt - th1 )sin T(s - l) + uscosQt + O(r).

(60)
The time response plots of mass u114 = u(L,t), calcu-
lated from (60) for the winding velocities u.1, uc2t and
uc1, are shown in Figure 6. The passage through reso-
nance can be observed on the plots. As one can see, the
response grows and remains large after the resonance.
This phenomenon can be observed more clearly in FiS-
ure 5. For instance, for the winding velocity of 8 m/s
the amplitude jumps to the value of approximately 0.033
m shortly after resonance, and later oscillates about the
level of 0.03 m. The phenomenon where the amplitude of
the oscillations remains large after the transition through
resonance is typical for systems with slowly varying fre-
quencies, and has also been recorded by others,13,15 for
example.

The accuracy of the first approxirnation (55), where ar
and qi", are given by (53)-(54), can be verified by numer-
ically integrating the original differential equation (32)
derived via the Rayleigh-Ritz procedure. The solutions
for h with the winding velocity uc

for the sa,rne initial conditions through a numerical in-
tegration of (32) and from the approximation (55), r€-
spectively, are superimposed in Figure 7. It can be seen

that t,he difference between the solutions is negligible.
The primary reason for solving the problem through a

perturbation method are difficulties in direct numerical
integration of the original differential equations. The in-
tegration procedure is time consuming for small values
of e . For example, to solve the problem in the inter-
val r € [0.0, 0.S5] for a value of '..)c

corresponding value of the small parameter €

requires an integration to a time of 326.97 on the non-
dimensional fast time scale T. Using the MATLAB c
language MEX-file version of function ODE45 with a
relative error tolerance of 1.0 x 10-12 it takes over 62
mitrutes to cornplete the calculations on an a Pentiurn
100 Personal Computer. Also, it is difficult to integrate
the generalized coordinate q, directly over long times as

it is a rapidly oscillating function, and the procedure
may yield inaccurate results. On the other hand, the

slowly varying amplitude e,r and phase rh, can be ob-
tained from (53)-(54) without difficulty. It has been
found that it takes less than five minutes to integrate
functions 01 and r!1 fromthe perturbation-generated sys-
tem (53)-(54) with a satisfactory accuracy over the same
time interval.

002

s o ot

0

-0 01

-0.0 2

-0 03

-0 0.
50 150

Figu re 7 Comparison of the Perturbation solution to the
N umerical solution

6 CONCLUSION
A hoisting cable system represents an oscillatory sys-
tem with slowly varying natural frequencies and mode
shapes. If a periodic excitation is present, due to a coil-
itrg mechanism applied at the winding drum for exam-
ple, a passage through resonance may take place dur-
ing a winding cycle. A thorough dynamic analysis is

required in order to predict the stability and dynamic
loads in the cable. The system is however non-stationary
and classical analytical methods for the response anal-
ysis cannot be applied. Direct numerical integration
of the discrete model of the system, obtained via the
Rayleigh-Ritz method for example, is time consumittg
and may yield inaccurate results. Therefore, a combined
numerical and perturbation technique is proposed to de-
termine the first order approximation of the system re
sponse. The procedure is illustrated by application of
this technique to a single-mode model of the hoisting ca-
ble. The multiple scale method is used to obtain a sys-
tem of first order ordinary differential equations for the
amplitude and phase of the response. These are slowly
varying functions and the system can be solved numer-
ically without difficulty. A model example is solved to
investigate transient resonance in the system when the
frequency of the excitation coincides with the first natu-
ral frequency at some critical time instant. The non-
stationary frequency-response curves demonstrate the
passage through resonance. The amplitude oscillates
slowly before resonance and increases rapidly near the
resonance, remaining large afterwards.
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APPENDIX
The slowly varying coefficients appearing in the sys-

tem (32) result from the application of the Rayleigh-
Ritz method. Using D(r) - {t'l(") ( s < L}, setting
n - r, and deleting index lc in equation (8), the param-
eters c* and d* are defined by

where the mode functionY" is defined by (29), and the
partial derivatives of Y with respect td, I are determined
as follows:
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The derivatives of the eigenvalue 7,
obtained through differentiation of
tion (30) which yields

with respect to I are
the frequency equa-
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one-dimensional oscillator with slowly varying fre-
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pp.364373.
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cillatory systems with slowly varying coefficients.
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The remainittg coefficients in Eq. (32) are as follows
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rr, = l,t p (s) Y,'ds.


