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The Eigensystem Realization Algorithm (ERA) is a multi
input / multi output lime domain implementation of sys-

tem realization theory. The input to the ERA is impulse
re sponse functions, typically from uibration analysis of a

structure. The output of the ERA is realized state-space

matrices that reconstruct the impulse response functions
and contain the ercited structure's modal characteristics.
This article presents a brief mathematical background of
the ERA and discusses the application to erperimental ai-

bration data. Practical issues of the Hankel matrir block

dintens'io'ns and the number of sxngular ualues to retain are

discussed. It is shown that the modal parameters con'u-erge

only afteT' Tn ass'iue oueT'-specifi,cation of the H ankel matrir
block dimensions and that the nun'Iber of retained singular
ual'ues do not determine the Tnodel order. Rather, the ERA
user determines the model order by selecting successfully
transformed and reliable modes that accurately reconstruct
both the measured impulse and frequency response func-
ti ons .
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discrete-time index
stiffness matrix, dimensions lm x ml
number of applied input forces

mass matrix, dimensions lm x m)
physical degrees of freedom of
vibratir,g structure
number of retained singular values
zero matrix
singular value decomposition matrix
number of output variables measured
singular value decomposition matrix
displacement vector, dimensions l* , 1]

time
force vector, dimensions U * 1]

observable matrix
controllable matrix
discrete-time state vector, dimensions

12* x 1l

r (t) .ontinuous-time state vector,
dimensions l2m x 1]

A (t) u.ctor of measured variable, either
displacement, velocity or acceleration,
dimensions [p x 1]

A discrete-time diagonal eigenvalue
matrix with elements )

O discrete-time eigenvector matrix
with elements th

u Poisson ratio
r dummy variable
p material density
a,; integer, such that ei = ?,

& integer, such that 0t, - i
u circular frequency
A, constant time interval

Subscripts

c continuous-time matrix
d discrete-time matrix
r number of block rows of Hankel matrix
s number of block colulnns of

Hankel matrix

Superscripts

n ERA realised matrix
+ pseudo-inverse of matrix
T matrix tra,nspose
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Introduction

As both the precision required of structural models and
the modal complexity of the structure themselves have

increased, it has become more challenging to obtain ac-

curat,e estimates of modal parameters. A central part of
this challenge is improving the numerical procedure with
rvhich the modal parameters are identified from the vi-
bration data. Current research efforts have focused pri-
marily on time-domain, state-space system realization pro-
cedures. Juangl showed that most of the current time-
domain modal identification algorithms may be reformu-
lated in a unified way using the framework of system re-
ahzation theory. The most notable state-space system re-

altzation procedure is the Eigensystem Realization Algo-
rithm (BRA),2 and its variants ERA/DC3 and OKID.4

To enhance the understanding of the practical ap-

plication of the ERA, a brief overview of the algorithm
is given. The algorithm commences by assembling the
Hankel matrix and shifted Hankel matrix, from measured
discrete-time impulse response functions. By minimising
the error between the shifted and non-shifted Hankel ma-
t rices, the disc rete-tirne state transition matrix may be

defined
At this point the state transition rnatrix is defined in

terms of the shifted Hankel matrix and pseudo-inverses of
both the observable and controllable matrices.

These pseudo-inverse matrices may be solved by the
singular value decomposition of the Hankel matrix. An
appropriate number of the most significant singular val-
ues are retained, which approximate the pseudo-inverse of
both the observable and controllable matrices. Following
substitution, the state transition matrix, output and input
influence matrices may be solved.

Initially. both the continuous-time and discrete-time
structural vibration models are formulated in state-space
format. The purpose is to define the discrete-time impulse
response function in terms of the discrete-time state-space
format, which is used in the formulation of the ERA.

For the purpose of practically applying the ERA, €X-

perinrental vibration rneasurements were obtained from
the impact analysis of a simple beam structure. Brief de-

scriptions of the data ac.quisition and post-processing tech-
niques, used in acquiring the impulse response functions,
are included.

Two practical issues concerning the influence of the
Hankel matrix block dimensions and the number of re-
tained singular values on the realized modal parameters
are discussed. Finally, the ERA reconstructed impulse and
frequency response functions are compared to the mea-
strred responses.

Continuous-Time State-Space Form

The vibration response of a structure is usually modelled
a,s the linear matrix differential equation of the form

( Cai.pr q (t) , or )
andy(t) -{ C.,"rq(t),or I

l. C".".1 ,i Q) )
The appropriate output influence matrix, either

Oairpr , Cu"l or C..gs1, €&ch of dimension fu x m)., is selected.
For example, if the measured output variable, y(t), were
velocity, then the appropriate output influence matrix is

Cu"l.
The continuous state-space representation of equation

(1) is
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Discrete-Tirne State- Space Form

The discrete-time state vector, "(k), may be obtained by
evaluating equation (3) at equally spaced discrete inter-
vals of time, i.e. t
ther, assumittg that u t ?) is constant over the interval
kLt
equation (3) may be rewritten as7

r(k+1)-eA.L,r(k)+ut(uI,o,,o.(,,)d',,B,fork>
(4)

The discrete state-space form is

A.

r(k + 1) -v(k) -
,4dr (k) + Baul ft)
C6r (k)

where
Aa - eA'at j

nAt
Ba = I ,A'('') dr' Br,q 

Jo

Mq (r) + Dq (t) + Kq(t) - Bluy ft)
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Modal Parameters

It is assumed that n has a complete set of linearly in-
dependent eigenvectors O = (,,r/rr,tbz, ... . .,rhy) with corre-
sponding eigenvalues ()t, )2, .... )lr), which are not nec-

essaril"v- distinc t.
Then the realized discrete-time state transition ma-

trix, ,4 ' may be decomposed as q- t 4O = A
diag()r,)2, .... )n).

Then the discrete-time state-space model, as defined
in equation (5), may be transformed via r - Qz. Similarly,

the realized triple state-space matrices 
1.4 , A, e] would

trarrsfornr to ln, o -tfi, Gol
L ' s, - s 

J

In this form the discrete-time modal damping rates
and darnped natural frequencies are, respectively, the real
a,td imaginary parts of the diagonal matrix A. The matrix
C,h O, after transformation from the discrete to continuous
tirne domain defines the mode shapes.

Implementation of the ERA

The Hankel block tnatrix, as defined in equation (9), is

a,ssernbled from t he rlteasured impulse response matrix.
Following the singular value decomposition of the Hankel
nrat,rix, it is necessary that the ERA user select an appro-
priate nunrber of the largest singular values to retain.

Considerable savings in both computational expense

and computer memory storage may be effected by notittg
that the shifted Hankel block matrix may be formed by the
appropriate augmenting and truncating of the assembled

Hankel ma,trix.
The realized state-space matrices are calculated us-

ing ecluation (la) and followittg transformation the ntodal
parameters may be extracted. The algorithm was imple-
mented on a personal computer using the C programming
Ianguage.

Exp erirnental Technique

The experirnental apparatus used to perform the impact
analysis, for application of the ERA, is shown in Figure 1.

The apparatus consisted of a vertically sus-

lrc.udecl uniform rectangular steel beatn of dimensions
4t{.lmmx l9.2mmx500rnm and typical material properties
E - 204GPa,, 'u" = 0.3, and p - 7860kg l^t. Two soft rub-
ber slings supported the beam to simulate free-free bound-
ary conditions.

An irnpact hammer fitted with a force transducer
(PCB Piezotronics Model 208-803) was used to excite the
bearn, perpendicular to the suspension direction. Three

accelerometers (Wilcoxon Research Model 736) captured
the vibration response of the beam, including a co-located
driving point measurement for mass normalisation of the
mode shapes.

The respective output signals were passed through
a low-pass filter with a band limit of 8 kHz and an at-
tenuation of 30 dB per octave. Following sampling at a
frequency of 40 KHz, 4 096 samples were stored for post-
processlng.

Twenty-five captured sets of vibration data were used
to calculate the ensemble average frequency response func-
tions and coherence vectors. The frequency response func-
tions, for each input/output pair, were calculated by corn-
puting the ratio of the cross-spectrum between the input
and output to the power-spectrum of the input, &s de-
scribed by Halvorsen and Brown.lo

The measured discrete-time impulse response matrix
was calculated from the inverse Fourier transform of the
frequency response functions.

Discussion

Experirnental Results

The measured discrete-time impulse response function for
accelerorneter ff3, as labelled in Figure 1, is given in Figure
2.

The amplitude of the irnpulse response function de-
cays in an exponential envelope. After = 1 000 disc rete
samples or p25ms the amplitude reverts to a virtual
steady-state lesporrse. a phenornenon known as 'ringing'.
Of interest, are the lneasured irnpulse response sanrples
containing high frequency content, which occur during the
exponerrtial decay envelope. 'fhe extent of the exponen-
tial decay envelope was estimated to be bhe initial ry25ms
of the impulse response function as shown in F igure 3.

The corresponding frequency response function and phase
vector, for accelerometer #3, are shown in Figure 4. No-
tice the presence of weakly excited and highly attenuated
modes at frequencies greater than the filter cut-off fre-
quency of 8KHz.

Hankel Matrix Block Dirnensions

The influence of the Hankel matrix block dirnensions, ?' and
s, on the realised poles was investigated. Figure 5 shows
the result of plotting, in descending order, the norrnalised
singular values for various Hankel bl<lck dimensions.

From Figure 5, it, could be suggested that the Harrkel
matrix of smallest block dimensions yields an 'efficient'
method of retaining the rnost significant singular values
for the least block dimensions.

However, Petersonll states that most modal param-
eters, specifically poles, converge only after massive over-
specification of the Hankel matrix block dirnensions, while
some poles converge at faster rates than others.

Further, poles that have convergecl can occasionally'
split into two or more closely repeated poles as the Hankel

A I lb*p)
Ca N L OTox (p- 1)rl

x Piv D *'l'
] 

t 
dimension llt x,^/]
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Figure 1 Schematic of the experimental apparatus. Two
vertical rubber slings, not shown, supported the beam.
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Figure 2 Measured discrete-time impulse response
f unction
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Figure 4 Measured and ERA reconstructed discrete-time
frequency response function and phase characteristics,

for accelerometer #3.
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Figure 3 The initial =25ms of the measured and ERA' reconstructed discrete-time impulse functions, for
accelerometer #3.
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Table I Reliable poles for Hankel matrix block dimension
s - 1200 and r - 300
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matrix block dimensions are increased to ensure conver-
gence of other poles.

Convergence of the high frequency poles was espe-
cially noticeable when comparing the realized poles for the
r - 100, s : 100 and the r - 300, s : 1 200 cases.

This may be expected as only the initial 200 dis-
crete samples are used in the realisation for the r = 100,

b- - 100 case, while 1500 samples are used for the r - 300,
s

pulse response fimction, Figure 3, it would be expected
that there is valuable high frequency content after 5ms or
200 samples, which would not be present in the r
s - 100 realization.

The comments of Peterson and the observed conver-
gence of the poles irnply that the largest practical Hankel
rnatrix block dimensions should be chosen. However, due
to comput,a,t iou restrictions this Inay not be practically
possible. It is therefore suggested that the Hankel block
dirnensions be selected to ensure that the sum of r and s
is at, Ieast sufficient to capture those discrete impulse re-
sponse samples contained in the initial exponential decay
envelope.

Number of Retained Singular Values

Llsing the Hankel matrix block dimensions s

r - 300 the effect of varying the number of retained sin-
gular values, ly' in equation (14), was considered. Each
retained singular value represents a prospective mode.

Typically, x75% of the retained singular values are
elirninated as they fail to successfully transform from the
discrete to the continuous-time domain or the mode shape
l]la)' not be scaled to achieve a ma,ss-normalised mode
shape.

For the retnaiuing x25% of singular values, a rnodal
ac curacy indicator is required to access the reliability of
the prospective tnodes. In this study the 'modal-amplitude
coherence'1 indica,tor was used, although the poles were
easily identified. The realized poles are listed in Table 1,

for varying number of retained singular values.
The tabulated poles detnonstrate the phenomenon of

split-modes, &,s described by Peterson,ll for both the fifth
ancl sixth modes. The results also suggest that the reliable
modal parameters do converge as the number of retained
singular values is increased. For this reason the retained
rnodes were taken from the rV - 400 case.

A minimum order realization was obtained by retain-
it g only the appropriate rows and columns of the triple
state-space matrices [n, q-t Ba, CaO] , corresponding to
the four poles and four split poles.

Reconstruction of the Measured Vibration Data

The nritrinrunl order state-space rnatrices were used to re-
construct both the inrpulse and frequency response func-
tions for accelerometer #3, as labelled in Figure 1.

The initial = 1 000 discrete samples of the measured
and reconstructed irnpulse response functions are shown in

Figure 3. The difference between corresponding discrete
samples is also plotted in Figure 3, &s an indication of the
error in the reconstructed response.

There is a difference for the initial x200 discrete sarn-
ples. It is assumed that this indicates high frequency con-
tent in the measured response, which is not present in the
ERA reconstruction.

The difference followitrg the initial nv200 discrete sam-
ples is small and considered negligible. Figure 4 shows
good correlation between the measured and ERA recon-
structed phase and frequency response function. In the
filter bandwidth, the location and magnitude of the both
the poles and zeros are in close agreement. The presence
of weakly excited high-frequency modes, above the filter
band limit may be observed, which the ERA reconstruc-
tion does not simulate. These high frequency modes are
thought to be responsible for the difference in the initial
=200 discrete samples of the impulse response.

Conclusions

The modal parameters, especially the higher frequency
modes, coltverge only after massive over-specification of
the Hankel matrix block dimensions. The Hankel block
dimensions should be selected to ensure that the sum of
r and s is at least sufficient to capture those discrete int-
pulse respolrse samples contained in the initial exponential
decay envelope.

The ERA user should select the greatest possible
number of singular values to retain, &s the modal param-
eters collverge as the number of retained singula.r values
is increased. A minimum order realization is possible if
the ERA user selects successfully transforrned and reliable
tnodes that accurately reconstruct both t,he impulse aud
frequeltcy respollse functions. Split modes should be in-
cluded in the minirnum order realization.

flsing the minimum order realization, the theoretical
reconstruction is capable of simultaneously satisfying botlr
the measured frequency and impulse response functions to
a high degree of accuracy.
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