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Measured frequency response functions are commonly used
for the extraction of modal properties of structures. These
properties may then be used for the updating of finite el-
ement models. The updating requires suitable criteria to
quantify the success of the updating procedure. Such crite-
ria erist in the literature for the comparison of models in
terms of modal parameters, but there s a need for a con-
venient procedure based on frequency response functions.
In this work a frequency response function scaling factor,
which directly compares frequency response functions, s
proposed. As an intermediate step, a frequency response
function assurance criterion, which is the ratio of the an-
alytical to the measured frequency response functions is
also proposed. These two methods are compared to sim-
plified versions of the well-known modal assurance and co-
ordinate modal assurance criteria, by applying a frequency
response function updating method and a modal property
updating approach to a freely suspended beam, a freely sus-
pended beam with holes, and an unsymmetrical H-shaped
structure. Where the frequency response function method
was implemented, the frequency response function scaling
factor and frequency response function assuvrance criterion
were found to be better comparators than the modal assur-
ance and co-ordinate modal assurance criteria. Where the
modal properties method was implemented, it was found
that the modal assurance and co-ordinate modal assurance
criteria performed better than the frequency response func-
tion scaling factor and frequency response function assur-
ance criterion.

Nomenclature

[M],[K],[C] Mass, stiffness, viscous damping

matrices

[1] Identity matrix

i V-1

iLJ,r Index numbers

d.u Refers to damaged, undamaged

L Number of measured degrees of
freedom

M Number that defines the frequency
bandwidth of interest

N Number of measured modes

!Former postgraduate student (University of Pretoria), currently
with Cambridge University Engineering Department, Trumpington
Street, Cambridge, CB2 1PZ, United Kingdom

?Professor (Member), Department of Mechanical and Aeronauti-
cal Engineering, University of Pretoria, Pretoria, 0002 South Africa

{0} Null vector

{e},e Error vector, error scalar

e Euclidean norm of error

a, Proportional damping coefficients

,[¢] Eigenvector, eigenmatrix
Cross-sectional area
Modulus of elasticity
Density
Poisson ratio
Matrix used in IRS and contains zeros and
inverse of unmeasured stiffness matrix
Angular frequency

{X (w)} Response vector

SR T o
=

)

{F(w)} System force input vector

H (w) Frequency response function

(1] Transformation vector
Superscript

* Complex conjugate

Subscripts

R Guyan reduction

RR Improved reduced system

s Unmeasured (slave) co-ordinates
m  Measured co-ordinates

a Analytical

Acronyms
IRS Improved Reduced System
MAC Modal Assurance Criterion
[MACy] Null matrix
MACgs MAC, scalar
COMAC  Co-ordinate Modal Assurance Criterion

COMACs Co-ordinate Modal Assurance Criterion
scalar

FRFSF Frequency Response Function
Scaling Factor
FRFAC Frequency Response Function

Assurance Criterion

Introduction

Frequency response functions, obtained by measurement of
the artificial excitation of structures and the correspond-
ing responses, are commonly used for the extraction of
modal properties. These properties may then be used for
updating or improvement of finite element models.
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To quantify the success of an updating procedure, i.e.
the correlation between modal properties derived through
experimental and finite element procedures, several com-
parison methods have been developed. Comparison of fre-
quencies can be done directly, but it is not trivial to com-
pare the mode shapes. Two of the most frequently used
methods to compare mode shapes are the modal assurance
criterion! and the co-ordinate modal assurance criterion.?

Recently, several methods have been developed that
directly use measured frequency response functions for
updating.? This obviates the need for parameter extraction
and represents a more direct use of the available measured
data.

However, the development of these updating meth-
ods, based on frequency response functions, has not lead
to a convenient correlation procedure. In this paper a fre-
quency response function assurance criterion is proposed
for this purpose, and the procedure is applied to three
test structures. As an intermediate step a scalar, called
the frequency response function scaling factor, is devel-
oped and applied on the test structures. The frequency
response function scaling factor is a measure of the av-
erage slope in the analytical versus measured frequency
response functions graph. The frequency response func-
tion assurance criterion is a measure of the least squares
deviation from the straight line of the analytical versus
measured frequency response functions graph.

The test structures considered are a freely suspended
beam, a freely suspended beam with holes drilled at
regular intervals, and a freely suspended unsymmetrical
H-shaped structure. Frequency response functions were
measured for these test structures and the corresponding
modal properties (frequencies and mode shapes) were ex-
tracted. Frequency response functions and modal proper-
ties were then individually used to update a finite element
model.

A method proposed by D’Ambrogio and Zobel® uses
measured frequency response functions directly to min-
imise the Euclidean norm of an error vector in the equa-
tion of motion. The eigenvalue equation method?* uses
the extracted modal properties to minimise the Euclidean
norm of the error vector. This is done by using, amongst
other parameters, the area A, the density p, and the mod-
ulus of elasticity F as design variables, which are adjusted
to improve the correspondence between the measured and
analytical data.

To simplify the implementation of the optimisation
procedures, a co-ordinate modal assurance criterion scalar,
defined as the product of all the elements in the standard
co-ordinate modal assurance criterion vector, is introduced
in this work. Furthermore, the usual modal assurance cri-
terion is transformed so that a null matrix instead of the
normal unit matrix would correspond to a perfect correla-
tion between two mode shapes. To simplify the application
of the modal assurance criterion matrix, a scalar is intro-
duced as the Euclidean norm of the difference between the
MAC and the identity matrix.

These parameters were then used for the correlation of

experimental, original, and updated finite element models,
based on modal parameters. Similarly, the frequency re-
sponse function scaling factor and the frequency response
function assurance criterion were also applied to the cor-
relation of experimental, original, and updated models,
based on the frequency response function data.

The structures that were studied were subjected to
several damage cases. Damage was introduced by saw
cuts, which on average went half way through the cross
section of the structure. The finite element models of each
of the structures were updated for each of the several dam-
age cases.

Finite element models were obtained by using the
Structural Dynamics Toolbox® which runs in a MATLAB
environment® and uses Euler-Bernoulli beam elements.
The Optimisation Toolbox” was used to solve the opti-
misation problem.

Updating methods

Updating using measured frequency response func-
tions

In this section a method based on the work done by
D’Ambrogio and Zobel® is briefly developed. The equa-
tion of motion obtained may be written in the frequency
domain as follows:

(=w? [M] + iw [C] + [K]) {X (0)} = {F (@)} = {0} (1)

In this study it was found that damping was low, and
therefore the damping matrix is assumed to be propor-
tional to the mass and stiffness matrices. Equation (1)
may therefore be rewritten as follows:

(—w? [M] + iw (o [M] + B[K]) + [K]) {X (w)}

—{F(w)} = {0}

where {X (w)} and {F (w)} are measured quantities, which
are in practice written in terms of measured frequency re-
sponse functions.

These frequency response functions are measured at
selected degrees of freedom which are fewer than those of
the finite element model. Therefore the mass and stiff-
ness matrices in equation (2) are reduced. In this study
the reduction technique chosen is the Improved Reduced
System (IRS).® The IRS is an improvement of the Guyan
static reduction.’

In the Guyan static reduction method, the displace-
ment and force vectors { X (w)} and {F (w)}, and the mass
and stiffness matrices [M] and [K] in the equation of mo-
tion are partitioned into measured and unmeasured co-
ordinates. If the inertia terms are neglected, the parti-
tioned equation of motion can be used to eliminate the
unmeasured co-ordinates. From this, the transformation
matrix is obtained as follows:

(2)

= | g2 )
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where

[Avss] . [1\'(unmeasured. unmeasured)] (4)
and

[A’sm] = [I\'(unmeasured,measured)] (5)

This transformation matrix can then be used to ob-
tain the reduced mass and stiffness matrices as follows:

[Mg] = [TR]" [M][TR] (6)
and
[Kr] = [Tr]" [K][TR] (7)

The transformation in equation (3) can be used in
conjunction with the reduced mass and stiffness matrices
in equations (6) and (7), respectively, as well as the [S]
matrix to obtain a new transformation equation as follows:

[Tww] = [Tk] + [S] [M] [TR] [MR] ™" [K&] (8)

(o
[S]‘[[OJ [Kss]‘l] ®)

The transformation in equation (8) can be used to
obtain the reduced mass and stiffness matrices as follows:

where

[Mgg] = [Trr]” [M] [Trg] (10)

and

(Krg] = [Trr]" [K] [Tkr] (11)

The IRS method consists of using transformation in
equation (3) in conjunction with equation (9), equation
(6), and the mass matrix.

If equations (10) and (11) are substituted in equation
(2), then the following is obtained:

(~w? [MgR] + iw (o [MrR] + B [Krr]) + [Krr]) (12)
X A{Xm (W)} = {Fm (w)} = {e}

where {€} is the error vector. Due to the cumbersome
nature of investigating the elements of the error vector,
the Euclidean norm, which is the square root of the sum
of the squares of the error vector elements, is used. The
Euclidean norm of this error vector is defined as follows:

o 3
¢ = (Z e (w]')) (13)

The design variables (A, p, v, and E of each element)
are varied until e is minimised.

Updating using the modal property method

The eigenproblem may be written as follows:

(=wf [M] + [K]) {¢:} = {0} (14)

where w; and ¢;, respectively, are the natural frequency
and mode shape for mode i. Equation (14) can be pre-
multiplied by the transpose of the mode shape vector and
the resulting equation is:

{9} (—w? [M]+ [K]) {¢:} = 0 (15)

As in the previous section, the mass and stiffness ma-
trices may be reduced by using the IRS method. The mass
and stiffness matrices in equation (15) may be substituted
by equations (10) and (11), respectively, to obtain:

ei = wi {¢:}" [Mrr]{¢:} — {6:}" [Krr]{¢:}  (16)

If N mode shapes are extracted, then there will be N
error coefficients. As in the previous section the Euclidean
norm of all the € obtained [see equation (13)] may be used
to determine e. The design variables may be varied until
e is minimised.

Correlation criteria

The Modal Assurance Criterion

The Modal Assurance Criterion (MAC) compares any two
mode shapes and is defined by the following equation:!

(£ bouin)
L

) (f%fi (7 bmr)’

The MAC is a measure of the least squares deviation
of the points from the straight line correlation. A value
close to 1 suggests that the two mode shapes are perfectly
correlated, whilst a value close to 0 indicates that the mode
shapes are not correlated. If the mode shape matrix is
used in equation (17), then the MAC becomes an identity
matrix. To simplify comparison of sets of mode shapes
originating from different sources, a single value parame-
ter representative of the MAC matrix is introduced. For
this purpose the MAC matrix is first transformed so that
perfect correlation would correspond to a null matrix.

MAC;, =

(17)

[MACo] = [I] - [MAC] (18)

where [I] is the identity matrix.

If the modal vectors that are being analysed are per-
fectly correlated, then the matrix [MACy] will have zero
entries. A single-valued entity that is the Euclidean norm
of the [MACg], may be defined as follows:

J 1
MACos =) Y MACE; (19)
gi=dl =il
where I and J are the numbers of rows and columns in
the MAC matrix.
If MACgs is equal to zero, then the two mode shape
matrices are perfectly correlated. The shortcoming of this
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method is that it does not discriminate between random
scatter being responsible for the deviations or systematic
deviations. The main causes of less than perfect MAC
results are: non-linearity in the test structure, noise on the
measured data, and poor modal analysis of the measured
data.lY

The Co-ordinate Modal
(COMAC)

The COMAC method is based on the same principle as the
MAC, and is essentially an indication of the correlation
between the measured and the computed mode shapes for
a given common co-ordinate. The COMAC given for co-
ordinate j. is as follows:

Assurance Criterion

(é |(ra) (7m) |)2

S (6ra)? 5 (d1)°

r=1 r=1

COMAC (j) =

(20)

L is the total number of well-correlated mode shapes
as indicated by the MAC. A value close to 1 suggests good
correlation. If the mode shape matrices are used then
the COMAC becomes a vector. For a perfect co-ordinate
correlation, the elements of the COMAC vector are all
equal to 1.

Unlike the MAC, the COMAC does not have any dif-
ficulty comparing mode shapes that are close in frequency
or that are measured at insufficient transducer degrees of

freedom. The product of the elements of the entries of the
COMAC vector may be defined as follows:

L
COMACs = [[ COMAC (j) (21)

731l

where N is the number of measured degrees of freedom.

The Frequency Response Function Scaling Factor
(FRFSF)

The advantage of using frequency response functions is
that they are measured directly. One of the ways in which
the measured frequency response functions may be com-
pared to the analytical ones, is by plotting the magnitudes
of the measured versus the analytical frequency response
functions graph.

Since for frequency response function measurements,
there are many frequency response function degrees of free-
dom to be compared, it becomes necessary to introduce a
scalar entity that gives the relationship between measured
and theoretical frequency response functions. The FRFSF
1s defined as

M
M=M=

) |Ha (m,7)]

|Hm (n,5)]

FRFSF = i=1

(22)

™zl

1l
-

n=1

j
where L is the number of measured degrees of freedom,
M 1s the number of the measured frequency lines in the
bandwidth under consideration, whilst H,, and H, are
the measured and analytical frequency response functions,
respectively.

An FRFSF of 1 indicates that on average the magni-
tude of the analytical frequency response functions is the
same as that of the measured frequency response fuuctions.
An FRFSF that is less than 1, shows that the measured fre-
quency response functions are on average higher than the
analytical frequency response functions. An FRFSYF which
is higher than 1, shows that the analytical frequency re-
sponse functions are on average higher than the measured
frequency response functions.

In this paper, the ability of the FRFSF to compare
the measured and analytical frequency response functions
is investigated.

The Frequency Response Function Assurance Cri-
terion (FRFAC)

The FRFSF described in the previous section only com-
pares the average slope in the analytical versus measured
frequency response functions graph. It is therefore de-
sirable to introduce a scalar entity which gives a mea-
sure of the least squares deviation of the points from the
straight line correlation in the analytical versus measured
frequency response functions graph. This new entity uses
measured frequency response functions directly and is de-
fined as follows:

M L M L 2
Z: Z |Ha(nv.])| X Z Z |H7n(n7])|)
FRFAC = —Y=1"=1 j=1n=1
M L 12 M L e
S Y Hu (D)) | &5 1Ha(n, i)l
j=1ln=1 j=1ln=1
(23)

where L is the number of measured degrees of freedom,
M is the number of measured frequency lines in the band-
width, while H,, and H, are the measured and analytical
frequency response functions, respectively.

An FRFAC close to 1 indicates that the measured
frequency response functions are closely correlated to the
analytical frequency response functions. An FRFAC that
is less than 0.5 indicates that the analytical frequency re-
sponse functions are not close to the measured frequency
response functions.

The ability of the FRFAC to give the correlation
between experimental and analytical frequency response
functions is investigated in this paper.

It should also be noted that the FRFSF and the FR-
FAC compare the magnitudes of the frequency response
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Figure 3 An irregular H-shaped structure

functions and ignore the phase. For this reason, the
FRFSF and the FRFAC are not completely representative
of the frequency response functions.

Experiment

Example 1: Freely suspended beam

The aluminium beam shown in Figure 1 was excited at
node 6 and the response was measured using an accelerom-
eter placed in succession at nodes 2 to 11. From the mea-
surements a set of 10 frequency response functions was ob-
tained. These measurements were used to identify modal
parameters. The frequency response function and modal
property methods were used to update the finite element
model.

In the first case, damage was introduced at element 3
and measurements were taken. In the second case, damage
was introduced at elements 3 and 5 simultaneously. Lastly,
damage was introduced to elements 3, 5. and 6 simulta-
neously. The nature of damage introduced was a saw cut
that went half way through the cross-section of the beam.
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Figure 2 Freely suspended beam with holes (example 2)
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Figure 4 Frequency response function from example 1

For each of the damage cases, a set of 10 frequency re-
sponse functions was measured. These frequency response
functions and that of the undamaged case and their re-
spective extracted modal properties were used in the fre-
quency response function method and the modal property
method, respectively. The measured frequency response
functions for all cases were compared to those from the
updated finite element model by using the COMACs, the
MACys, the FRFSF, and the FRFAC.

Example 2: Freely suspended beam with holes

This example is closely related to the previous one, except
that the beam had holes and therefore was more difficult to
model. The beam had holes of diameter 5.8 mm located at
nodes 2 to 9 which were separated by 10 cm equal spacing.
The beam was modelled by 12 elements and the structure
was excited at node 6 (see Figure 2). The responses were
measured by placing accelerometers consecutively at nodes
2 to 12. The structure was tested freely suspended and a
set of 11 frequency response functions was obtained and
used for updating.
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In the first case damage was introduced at element 2.
In the second case, damage was introduced at elements 2
and 3 simultaneously and lastly, damage was introduced
at elements 2, 3, and 4 simultaneously. For each of the
undamaged and damaged cases, a full set of 11 frequency
response functions was measured. The measured responses
were compared to those from the updated finite element
model by using the COMACs, the MACys, the FRFSF,
and the FRFAC.

Example 3: Freely suspended H-shaped structure

The third example was an unsymmetrical H-shaped (see
Figure 3) aluminium structure. The structure was divided
into 12 elements. The structure was excited at node 6
and an accelerometer was placed at 15 degrees of freedom.
The structure was tested free and a set of 15 frequency
response functions was obtained and used for updating.

In the first case, damage was introduced at element
3. Secondly, damage was introduced at elements 3 and 4,
and lastly, damage was introduced at elements 3, 4, and 5.
For the undamaged case and each of the damaged cases, a
set of 15 frequency response functions was measured. The
frequency response function method and the modal prop-
erty method were implemented and the responses from the
updated models were compared to the measured ones, by
using the COMACs, the MACyg, the FRFSF, and the FR-
FAC.

When the FRFSF and the FRFAC were used, the
frequency range was chosen on the region with minimal
noise. A typical measured frequency response function is
displayed in Figure 4. The bandwidth chosen for this fre-
quency response function is 37.5 to 280 Hz. The frequency
response function shown is relatively noisy above 280 Hz.

Results and discussion
e Ezample 1: Freely suspended beam

The frequency response function and the modal prop-
erty methods were implemented and their respective up-
dated finite element models were obtained. The COMACg,
the MACgs, the FRFSF, and the FRFAC, before and after
updating, were compared and the percentage changes in
these parameters are shown in Table 1.

Table 1 shows that the FRFSF and the FRFAC were
on average updated the most when the frequency response
function method was used. The COMACs and the MACgs
were on average updated the most when the modal prop-
erty method was used.

o Frample 2: Freely suspended beam with holes

The frequency response functions were measured and
the frequency response function method and the modal
property method were implemented to update the finite

element model. The COMACs, the MACgyg, the FRFSF,
and the FRFAC, before and after updating, were compared

Table 1 The COMAC;, the MAC, the FRFSF and
the FRFAC results for example 1

% change % change % change % change
in in in in

Method COMACs MAC, FRFSE FRFAC
FRF method (u) 0.584 0.639 3.998 2.044
Modal property 0.604 0.000 3.704 1.298
method (u)

FRF method (d1) 0.233 0.299 5.678 7.258
Modal property 0.903 2.389 6.904 5.625
method (d1)

FRF method (d2) 0.716 6.687 4.415 3.069
Modal property 1.074 12.209 4.204 1.669
method (d2)

FRF method (d3) 3.449 2.703 2.771 2.120
Modal property 3.574 31.419 2.927 0.887
method (d3)

The symbol "u" stands for undamaged and "d1" for damage case 1

Table 2 The COMAC;, the MAC, the FRFSF and
the FREAC results for example 2

% change % change % change % change

n mn n m

Method COMACs MAC,; FRFSF FRFAC
FRF method (u) 7.122 0.238 3.998 15.988
Modal property 18.412 0.238 3.704 6.409
method (u)

FRF method (d1) 8.323 0.477 5.678 14.598
Modal property ~ 11.219  0.477 6.904 2.518
method (d1)
FRF method (d2) 15.844 2.469 4.415 14.265
Modal property 33.665 1.852 4.204 4.450
method (d2)
FRF method (d3) 15.876 0.000 2.771 7.069
Modal property ~ 23.090  0.000 2.927 0.810
method (d3)

The symbol "u" stands for undamaged and "d1" for damage case 1

Table 3 The COMAC;, the MACy, the FRFSF and
the FRFAC results for example 3

% change % change % change % change
in in in in

Method COMACs MAC,s FRESE FREAC
FRF method (u) 21.364 75.104 5.304 1.813
Modal property 11.561 75.290 5.251 1.782
method (u)

FRF method (d1) 13.122 71.338 0916 0.543
Modal property 22.384 71.457 0.119 0.382
method (d1)
FRF method (d2) 21.329 93.937 18.812 0.010
Modal property 24.153 95.654 10.632 0.190
method (d2)
FRF method (d3) 15.105 88.913 19.469 0.030
Modal property ~ 24.905  89.200  2.853 0.030
method (d3)

The symbol "u" stands for undamaged and "d1" for damage case 1
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and the percentage changes in these parameters are shown
i Table 2.

The results in Table 2 show that on average the
FRFSF and the FRFAC were updated the most when
the frequency response function method was used. The
COMACs and the MACys were updated the most when
the modal property method was used. From Table 2 it
may also be observed that the FRFAC was on average
substantially lower than 1. This is because the beam had
holes and therefore it was difficult to get a good updated
model.

e Ezample 3: Freely suspended H-shaped structure

The frequency response functions were measured and
frequency response function method and the modal prop-
erty method were again implemented to update the finite
element model.

Table 3 shows that the FRFSF and the FRFAC were
on average updated the most when the frequency response
function method was used. The COMACs and the MACjyg
were on average updated the most when the modal prop-
erty method was used.

The results show that sometimes the results do not
show any changes in the comparison criteria. This has
nothing to do with the comparison criteria, but with up-
dating procedures.

Conclusion

The results show that the effectiveness of the frequency
response function method is best evaluated by the FRFSF
and the FRFAC. The results also show that the effective-
ness of the modal property method is best evaluated when
the COMAC(Cg and the MACyg are used.

These parameters seem to provide useful but simple
and convenient single-valued criteria for application in the
implementation of optimisation procedures in model up-
dating.

10.

. Lieven NAJ & Ewins DJ 1988.
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