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Measured frequency response functions are commonly used

for the ertraction of modal properties of structures. These
properties rnay then be used for the updating of finite el-

em.ent models. The updating requires suitable criteria to
quantify the success of the updating procedure. ,Such crite-
ria eilst in the literature for the comparison of models in
terms of modal pararneters, but there is a need for a con-

t;en'ienl, procedure based on frequency response functions.
In this utork a frequency response function scaling factor,
u;h,'ich dlrect,ly compares frequency response functions, is
proposed. As 0,n intern'Iediate ,step, a frequency response

funct,ton ass'urance criterion,, which is the ratio of the an-

alytical to the measured frequency response functions is

also proposed. These two methods are compared to sim-
plified uersions of the well-known modal assurance and co-

ordinate modal assurance criteria, by applying a frequen,cy
response function updatzng method and a modal property
'updating approach to a freely suspended beaffi, a freely sus-

pended beam with holes, art,d an unsymntetmcal H-shaped
structure. Where the frequen,cy response fun,ctiort method
was implemented, the frequency response function scaling

faclor and frequency response furction oss'r ,ance criterion
were found to be better comparalors than the modal assur-
ance and co-ordinate modal assurance criteria. Where the
modal properties method was implemented, it was found
t,hal th.e ntodal,assur&nce and co-ordin,ate ntodal assurance
crit e r'da perf ornt,ed better than, th e frequ(n c'y re'sponse func-
t ion scaling factor and freq'uency response function, assu,r-

ance criter'ion.
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bandwidth of interest

N Number of lneasured modes
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{0} Null vector

!'\ '' Bffil.:::'::fi':;::*l'
a, 0 Proportional damping coefficients

{0} ,ld) Eigenvector, eigenmatrix
A Cross-sectional area
E Modulus of elasticity
p Density
u Poisson ratio
tS] Matrix used in IRS and contains zeros and

inverse of unmeasured stiffness matrix

ir(,)) fir,'ojil"'Tl1T.'
{f (r)} System force input vector
H (r) Frequency response function

[7] Transformation vector

S,tperscript

* Complex conjugate

Subscripts

R Guyan reduction
RR Improved reduced system
s Unmeasured (slave) co-ordinates
m Measured co-ordinates
a Analytical

Acronyms

IRS Improved Reduced System
MAC Modal Assurance Criterion
[MACo] Null matrix
MACos MACo scalar
COMAC Co-ordinate Modal Assurance Clriterion
COMACs Co-ordinate Modal Assurance Clriterion

sc alar
FRFSF Frequency Response Function

Scaling Factor
FRFAC Frequency Response Function

Assurance Criterion

Introduction

Frequency response functions, obtained by measurement of
the artificial excitation of structures and the correspond-
ing responses, are commonly used for the extraction of
modal properties. These properties may then be used for
updating or improvement of finite element models.
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To quantify the success of an updating procedure, i.e.
the correlation between modal properties derived through
experimental and finite element procedures, several com-
parison methods have been developed. Comparison of fre-
quencies can be done dbectly, but it is not trivial to com-
pare the mode shapes. Two of the most frequently used
methods to compare mode shapes are the modal assurance
criterionl and the co-ordinate modal assurance criterion.2

Recently, several methods have been developed that
directly use measured frequency response functions for
updating.3 This obviates the need for parameter extraction
and represents a more direct use of the available measured
data.

However, the development of these updating rneth-
ods, based on frequency response functions, has not lead
to a convenient correlation procedure. In this paper a fre-
quency response function assurance criterion is proposed
for this purpose, and the procedure is applied to three
test structures. As an intermediate step a scalar. called
the frequency response function scaling factor, is devel-
oped and applied on the test structures. The frequency
response function scaling factor is a measure of the av-
erage slope in the analytical versus measured frequency
response functions graph. The frequency response func-
tion assurance criterion is a measure of the least squares
deviation from the straight line of the analytical versus
measured frequency response functions graph.

The test structures considered are a freely suspended
beam, a freely suspended beam with holes drilled at
regular intervals, and a freely suspended unsymmetrical
H-shaped structure. Frequency response functions were
measured for these test structures and the corresponding
rnodal properties (frequencies and mode shapes) were ex-
tra,cted. Frequerlcy response functions and modal proper-
ties were then individually used to update a finite element
model.

A method proposed by D'Ambrogio and Zobel3 uses
Ineasured frequency response functions directly to rnin-
imise the Euclidean norm of an error vector in the equa-
tion of motion. The eigenvalue equation methoda uses
the extracted modal properties to minimise the Euclidean
norm of the error vector. This is done by using, amongst
other parameters, the area y', the density p, and the mod-
ulus of elasticity E as design variables, which are adjusted
to improve the correspondence between the measured and
analytical data.

To simplify the implementation of the optimisation
procedures, a co-ordinate modal assurance criterion scalar,
defined as the product of all the elements in the standard
co-ordinate modal assurance criterion vector, is introduced
in this work. Furthermore, the usual modal assurance cri-
terion is transformed so that a null matrix instead of the
Ilormal unit matrix would correspond to a perfect correla-
tion between two mode shapes. To simplify the application
of the modal assurance criterion matrix, a scalar is intro-
duced as the Euclidean norm of the difference between the
MAC and the identity matrix.

These parameters were then used for the correlation of

experimental, original, and updated finite element models,
based on modal parameters. Similarly, the frequency re-
sponse function scaling factor and the frequency response
function assurance criterion were also applied to the cor-
relation of experimental, original, and updated models,
based on the frequency response function data.

The structures that were studied were subjected to
several damage cases. Damage was introduced by saw
cuts. which on average went half way through the cross
section of the structure. The finite element models of each
of the structures were updated for each of the several dam-
age cases.

Finite element models were obtained by using the
Structural Dynamics Toolboxs which runs in a MATLAB
environmento and uses Euler-Bernoulli beam elements.
The Optimisation Toolbox7 was used to solve the opti-
misation problem.

Updating methods

Updatirg using me:lsured frequency response func-
tions

In this section a method based on the work done by
D'Ambrogio and zobels is briefly developed. The equa-
tion of motion obtained may be written in the frequency
domain as follows:

(-,,'lMl i iu [C] + [/{]) {x (,)} - {F (,)} = {0} (r)
In this study it was found that damping was low, and

therefore the dampitrg matrix is assumed to be propor-
tional to the nass and stiffness matrices. Equation (1)
may therefore be rewritten as follows:

(-c..,, lMl * iu (olMl + t:t [/{]) + [r] ) t X (r,r)]
(2)

- {F (r)} : {0}

wlrere {X (r)} and {F (r) } are measured quantities, which
are in practice written in terms of measured frequency re-
sponse functions.

These frequency response functions are measured at
selected degrees of freedom whic.h are fewer than those of
the finite element model. Therefore the mass and stiff-
ness matrices in equation (2) are reduced. In this study
the reduction technique chosen is the Improved Reduced
System (IRS).8 The IRS is an improvement of the Guyan
static reduction.e

In the Guyan static reduction method, the displace-
ment and force vectors {x (r)} and {F (r)}, and the mass
and stiffness matrices lM) and [/{] in the equation of mo-
tion are partitioned into measured and unmeasured co-
ordinates. If the inertia terms are neglected, the parti-
tioned equation of motion can be used to eliminate the
unmeasured co-ordinates. From this, the transformation
matrix is obtained as follows:

[h] : t-[/{]4,r..-, ]
(3)
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[Itrr] - [Itt unrneasured, u.measu.*d )]

[1i s,n] - [/{t unmeasured, measured )]

This transformation matrix can then be used to ob-
tain the reduced mass and stiffness matrices as follows:

lMnl : [7"]t lMltTRl

where u; and Qt,, respectively, are the natural frequency
and mode shape for mode i. Equation (I4) can be pre-
multiplied by the transpose of the mode shape vector and
the resulting equation ls:

{a)' (-,7 lMl+ [/{] ) {0,} - o

where

and

and

(4)

(5)

(6)

(8)

(e)

( 10)

(11)

(13)

(r4)

( 15)

where

t.9l

The transformation in equation (8) can be used to
obtain the reduced mass and stiffness matrices as follows:

and

[1{n]

The transformation in equation (3) can be used in
conjunction with the reduced mass and stiffness matrices
in equations (6) and (7), respectively, as well as the tS]
matrix to obtain a new transformation equation as follows:

[rnn]

As in the previous section, the mass and stiffness ma-
trices may be reduced by using the IRS method. The mass
and stiffness matrices in equation (lb) may be substituted
by equations (10) and (11), respectively, to obtain:

€; - ,f {d}' lrwonl { d} - {Q}t [Koo]{Qo} (16)

If N mode shapes are extracted, then there will be ,4/
error coefficients. As in the previous section the Euclidean
norm of all the e obtained [see equation (13)] may be used
to determine e. The design variables may be varied until
e is minimised.

Correlation criteria

The Modal Assurance Criterion

The Modal Assurance Criterion (MAC) compares any two
mode shapes and is defined by the following equation:1

MACi, LL
D (j d,,)' D (j 6^,)'
r- | r=l

The MAC is a measure of the least squares deviation
of the points from the straight line correlation. A value
close to 1 suggests that the two mode shapes are perfectly
correlated, whilst a value close to 0 indicates that the mode
shapes are not correlated. If the mode shape matrix is
used in equation (LT), then the MAC becomes an identity
matrix. To simplify comparison of sets of mode shapes
originating from different sources, a single value parame-
ter representative of the MAC matrix is introduced. For
this purpose the MAC matrix is first transformed so that
perfect correlation would correspond to a null matrix.

IM ACol _ [1] - lM AC)

[Mnn] = ["**]t lM)[rnn]

[/{RR] - ["*o]t [/{] [rnn]

JI

DI MACBij
j -r i-r

(17)
The IRS method consists of using transformation in

equation (3) in conjunction with equation (g), equation
(6), and the mass rnatrix.

If equations (10) and (11) are substituted in equation
(2),then the followirg is obtained:

(-u' [Mo^) + t, (" lMn*] + 0 [/inn]) + [/rnn]) oz), {X- (r)} - {F- (r)} ' {r}
where {u } is the error vector. Due to the cumbersome
nature of investigatitg the elements of the error vector,
the Euclidean norm, which is the square root of the sum
of the squares of the error vector elements, is used. The
Euclidean norm of this error vector is defined as follows:

The design variables (A, p, u, and E ofeach element)
are varied until e is minimised.

updating using the rnodal property rnethod

The eigenproblem may be written as follows:

where t/] is the identity matrix.
If the modal vectors that are beirg analysed are per-

fectly correlated, then the matrix [MACoJ will have zero
entries. A single-valued entity that is the Euclidean norm
of the IMACg], -.y be defined as follows:

M ACos -

( 18)

( 1e)

where I and J are the numbers of rows and columns in
the MAC matrix.

If MACos is equal to zero, then the two mode shape
matrices are perfectly correlated. The shortcoming of this

(-,? lMl + [/{] ) {Oo} _- {o}
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method is that it does not discriminate between random
scatter being responsible for the deviations or systematic
deviations. The main causes of less than perfect MAC
results are: non-linearity in the test structure, noise on the
nleasured dat,a, and poor modal analysis of the measured
dat a. 1(J

ML
D D lH,"(",j)l

j =L n=l

rvhere L is the number of measured degrees of freedom,
M is the nuurber of the rneasured frequency lines in the
bandwidth under consideration, whilst H ^ and lf o are
the measured and analytical frequency response funct,ions,
respectively.

An FRFSF of 1 indicates that on average the magni-
tude of the ana,lytical frequency response functior:s is the
same as that of the measured frequency response functions.
An FRFSF that is less than 1, shows that the measuired fre-
quency response functions are on average higher than the
analytical frequency response functions. An FRFSIj' which
is higher than 1, shows that the analytical freque.nc,y re-
sponse functions are on average higher than the measured
frequency response functions

In this paper, the ability of the FRFSF to compare
the measured and analytical frequency response functions
is investigated.

The Frequency Response Function Assurance Cri-
terion (FRFAC )

The FRFSF described in the previous section only com-
pares the average slope in the analytical versus measured
frequency response functions graph. It is therefore de-
sirable to introduce a scalar entity which gives a mea-
sure of the least squares deviation of the points frorn the
straight line correlat,ion in the analytical versus measured
frequency response functions graph. This new entitS,' uses
lneasured frequency respolrse functions directly ancl is de-
finecl as follows:

FRFAC

An FRFAC close to I indicates that the measured
frequency response functions are closely correlated to the
analytical frequency response functions. An FRFAC that
is less than 0.5 indicates that the analytical frequency re-
sponse futtctions are trot close to the nreasured frequerlcv
response fun c tions .

The ability of the FRFAC to give the correlation
betweeu experimental and analytical frequency response
functions is investigated in this paper.

It should also be noted that the FRFSF and the FR-
FAC compare the magnitudes of the frequency resporlse

ML
DDj =1 n=I

lH " 
(", i)l

FRFSF - (22)

The Co-ordinate Modal
(cOMAC)

The C-'OMAC method is based on the same principle as the
N{AC. and is essentially a,n indication of the correlation
between the rreasured and the computed mode shapes for
a given colnnlon co-ordinate. The COMAC given for co-
ordinate 7,1 is as follows:

co Nr AC (j)

/ L \"
(,i, (i 0,,.) (r o;,.) )'

Assurance Criterion

(20)

(2r)

LL
D (j 6,n)' D Q Oi,)'
r-I r=I

L is the total number of well-correlated mode shapes
as indicated by the MAC. A value close to l suggests good
correlation. If the mo de shape matrices are used then
the COMAC becomes a vector. For a pertect co-ordinate
correlation, the elements of the COMAC vector are all
equal to 1.

Unlike the MAC, the COMAC does not have any dif-
ficulty comparing lnode shapes that are close in frequency
or that are measured at insufficient transducer degrees of
freedom. The product of the elernents of the entries of the
C:OMACI vector rnay be defined as follows:

L

C:OM ACs = ffC:OM,4C (i)
j=l

where A is the number of measured degrees of freedom.

The Frequency Response Function Scaling Factor
(FRFSF)

The advantage of using frequency response functions is

that they are measured directly. One of the ways in rvhich
the measured frequency response functions may be corn-
pared to the analytical ones, is by plotting the magnitudes
of the measured versus the analytical frequency response
functions graph.

Since for frequency response function measurements,
there are lllan-v frequency response function degrees of free-
clom t,o be compared, it becomes Irecessary to introduce a

scalar eutity that gives the relationship betweerl lneasured
and theoretical frequency response functions. The FRFSF
is defined as

/m L M L \'
tf D H"(n,j) xDD H,n(rj) 

I

\f=In-l i-In=l /
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O cruss-section indicated bv linc AB

Figure 2 Freely suspended beam with holes (example 2)
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Figure 1 Freely suspended beam (example 1 )
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Figure 3 An irregular H-shaped structure

fuuct ions and ignore the ph ase. For t his reasou, the
FRFSF and the PRFACI are uot, completel-v representative
of the frequerlcy response functions.

Experiment

Exarnple 1: Freely suspended bearr-

The alutniuiutn bea,m shown in Figure 1 rvas excit,ecl at
ttocle 6 and t he rr-'sponse lvas nreasured rrsing al) a,cceleronr-
eter lllacecl irl successiorr at nocles 2 t,o 11. F roru the lltea,-

suretrtent,s a set of l0 freqLler)cy response f'uuctions was oll-
t,ainecl. T'hese nreasurenlerrt,s were used to identify rtrocla,l
pa,rarrlet,ers. The frequeucy response function and modal
propert.t' methods were usecl t,o upda,te the finite element
nrodel.

In the first case, damage was introduced at elernent 3

and lneasurelnents were taken. In the second c.ase, clanrage
was introciuced at, elernents 3 and 5 sirnultaneously. Lastly',
clantage'' was introcluced to elernents 3, 5. and 6 sirnult,a-
neously. The nature of clanrage introduced was a sa,w cut,

t,ha.t weut half \r'a)' through the cross-sect,ion of the beanr.

Frequencry (]lz)

Figure 4 Frequency responSe function f rom example 1

For each of the damage cases. a set of 10 frequency re-
sponse futrctions wa.s nreasurecl . These frequerlcy response
functiotts a,ncl that of t,he undanraged case and their re-
spective ext,ractecl nroda.l properties were used in the fre-
quelrcy response function nrethod and the lnodal property
rnethod, respectively. The measured frequency response
funct,ions for all cases were compared to those frorn the
updated finite elenrent model by using the CON,IACs, the
MAClos, t,he FRFSF, and the FRFA(-r.

Exarnple 2: Freely suspended beam with holes

This exa,nlple is closely relat,ed t,o the previous one, except
that the beam had holes and therefore was more difficult to
model. The bean had holes of diameter 5.8 mm located at
nodes 2 to 9 which were separated by 10 cm equal spacing.
The beatn was modelled by 12 elements and the structure
was excited at trode 6 (see Figure 2). The responses rvel'e

ltle a.sltre cl b"r,' p I ac i ng a,c c e I e ronre t,e rs c orlse c u t i ve ly at, rlo d es

2 to 12. The st,ructure wa,s test,ed freel-v suspencled and a

set of 11 frequency response functions was obtained and
used for updating.
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In the first case damage was introduced at element 2.

In the second case, damage was introduced at elements 2

and 3 simultaneously and lastly, damage was introduced
at elements 2, 3, and 4 simultaneously. For each of the
undamaged and damaged cases, a full set of 11 frequency
response functions was measured. The measured responses
were compared to those from the updated finite element
rnodel by using the COMACs, the MACos, the FRFSF,
and the FRFAC.

Example 3: Freely suspended H-shaped structure

The thircl example was an unsymrnetrical H-shaped (see

Figure 3) alurninium structure. The structure was divided
irrt o 12 elenrent,s. The struc ture was excited at node 6

and arl accelerometer was placed at 15 degrees of freedom.
The struct,ure was tested free and a set of 15 frequency
response functions was obtained and used for updating.

In the first case, damage was introduced at element
3. Secondly, damage wa^s introduced at elements 3 and 4,

and lastly, damage wa^s introduced at elements 3, 4, and 5.

For the undamaged case and each of the damaged cases. a

set of 15 frequency resporlse functions was measured. The
frequency response function method and the modal prop-
erty method were implemented and the responses from the
updated models were compared to the measured ones, by
using the COMACs, the MACos, the FRFSF, and the FR-
FAC.

When the FRFSF and the FRFAC were used, the
frequency range wa"s chosen on the region with minimal
noise. A typical measured frequency response function is
displayed in Figure 4. The bandwidth chosen for this fre-
quency response function is 37.5 to 280 Hz. The frequency
response function shown is relatively noisy above 280 Hz.

Results and discussion

o Erample 1: Freely suspended beam

The frequency response function and the modal prop-
erty methods were implemented and their respective up-
dated finite element models were obtained. The COMACs,
the MACos, the FRFSF, and the FRFAC, before and after
updating, were compared and the percentage changes in
these parameters are shown in Table 1.

Table I shows that the FRFSF and the FRFAC were
on average updated the most when the frequency response

function method was used. The COMACs and the MACos
were on average updated the most when the modal prop-
ertv rnethod was used.

: Erample 9: Freely suspencled, beam with holes

The frequency response functions were measured and
the frequency response function method and the modal
property method were implemented to update the finite
element model. The COMACs, the MACos, the FRFSF,
and the FRFAC, before and after updating, were compared

IvlACos, the FRFSF and
for example I

o/o change o/o change o/o change o/o change

in in in in
Method COMAC' IvlAC,js FPJSF FRFAC

Table I The COIvlACs, the
the FRFAC results

FRF method (u)
Modal property
method (u)
FRF method (dl)
Modal property
method (dt)
FRF method (d2)
Modal properq/
method (d2)
FRF method (d3)
Modal propeny
method (d3)

0.584
0.604

o.233
0.903

o.7 16
L.O7 4

3.44q
3.57 4

o.639
0.000

o.299
2.389

6.687
12.209

2.703
3 r .4t9

3.998
3.704

5.678
6.9Q4

4.415
+.20+

2.77 r
2.927

2.O44
1.298

7.258
5.625

3.069
1.669

2.r20
O.BB 7

The rymbol "u" stands for undamaged and "dl" for damage case I

Table 2 The COIvlACs, the lvlAc.r, the FRFSF and
the FRFAC results for example 2

Vo change o/o change o/o change o/o change

in in in in
COI\4ACS IVIACOS FRFSF FRFACMethod

FRF method (u)
Modal propeny
method (u)
FRF method (dl)
Modal property
method (dl)
FRF method (d2)
Modal property
method (d2)
FRF method (d3)
Modal property
method (d3)

7.t22
18.412

8.323
rL.2t9

I 5.844
33.665

I 5.8 76
23.O90

0.238
0.238

o.477
o.477

2.469
1.852

0.000
0.000

3.998 15.988
3.704 6.409

5.678 14.598
6.904 2.5 lB

4.+15 14.265
+.204 4.450

2.77 |
2.927

7.069
0.810

The rymbol "u" stands for undamaged and "dl'r for damage case I

Table 3 The COlvlACs, the IvIAC()r, the FRFSF and
the FRFAC results for example 3

o/o change oh change o/o change 06 change
in in in in

CON4ACS N4ACOS FRFSF FRFACMethod

FRF method (u)
Modal property
method (u)
FRF method (dl)
Modal propefty
method (dI )

FRF method (d2)
Modal property
method (d2)
FRF method (d3)
Modal property
method (d3)

21.364
I 1.561

13.122
22.384

21.329
24.t53

l5.r05
24.905

7 5.1O4
7 5.290

7 r .338
7 t.457

93.937
95.654

88.9 t 3
89.200

5.304
5.251

o.9t6
0.119

1.8t3
t.782

0.543
0.382

I8.8 r2 0.0 t0
to.632 0. 190

19.469 0.030
2.853 0.030

The rymbol "u" stands for undamaged and rrdl, for damage case I
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and the percentage changes in these paralrteters are shown
in Table 2.

The results in Table 2 show that on average the
FRFSF and the FRFAC were updated the most when
the frequency response function method was used. The
COMACs and the MACos were updated the most when
the modal property method was used. Frotn Table 2 it
may also be observed that the FRFAC: was on average

substantially lower than l. This is because the beam had
holes and therefore it was difficult to get a good updated
model.

o Erample 3: Freely suspended H-shaped struclure

The frequency response functions were Ineasured and
frequency resporlse function method and the modal prop-
erty' method were again implemented to update the finite
elernent model.

Table 3 shows that the FRFSF and the FRFACI were
or] average trpdated the rnost when the frequency response
ftrnction method was used. The COMAC5 and t,he MACos
were on average updated the most when the modal prop-
erty rnethod was used.

The results show that sornetimes the results do not
show an)' changes in the comparison criteria. This has

nothing to do with the comparison criteria, but with up-
dating procedures.

Conclusion

The results show that the effectiveness of the frequency
response function rnethod is best evaluated by the FRFSF
and the FRFAC. The results also show that the effective-
Iress of the nrodal property method is best evaluated when
the (:OMAC:s and the MACos are used.

These parameters seenr to provide useful but simple
aud convenient single-va,lued criteria for application in the
irnplementation of optimisation procedures in model up-
dating.
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