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The stochastic M onle Carlo scheme is an ercellent
method to inuestigate turbulent particle dispersion albeit
u,ith a high computational cost. It is a popular method
used in, conjunction with the k-e turbulence model. The
tradztional slochaslic technique tends to fail fo, simu-
lat,tons of heaay particles probably because the crossing
tralectorzes effect, the inertia effect, and the continu-
tty effect are ignored. Models attempting to incorporate
t'tt,o of these effects haue been included into the present
st o ch aslic technique. The maj ority of the studies using
the stochastic Monte Carlo scherne haue considered adal-
symmetric jets. The present results, howener, inuestigate
a sintulation for dilute particulate turbulent flo, oaer a

backu,ard-facin,g step. Satisfactory agreement is achieued
u,ith erperrrnental data. The integration of the parti-
cle traj ectories u)as achieued using a recently deaeloped
pre dzctor- corcector Lagrangian traclcing scheTne.

Nomenclature

C' coefficient term
E turbulent roughness parameter
F fraction constant
F r Froude number
G rate of production of turbulent

kinetic energy
L non-dirnensionalised length scale
Re Reynolds number
.9 source term
Stk Stokes number
T non-dimensionalised time
Lr time-averaged velocity component
d diameter
g acceleration of gravity
k turbulent kinetic energy
I actual length scale
p pressure
?t' velocity function
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Greek
Lr, LA cell lengths in x and y co-ordinates
At time-step
f diffusivity
a constant term for eddy's length
0 constant term for eddy's time
€ dissipation rate of kinetic energy
K von Karman constant
p viscosity
p density
c non-dimensionalised diffusivity constant
T shear stress

Srtperscript
+ non-dimensionalised turbulent

velocity and length scales
n time level n
p predicted level

Subscript
B
o,

e

f
i, j
t
p
TC

w
'.D, ww,)Iuww

boundary point
aerodynamic relaxation time
eddy
fluid
tensor flexing
turbulent
p arti cle
traverse time
wall
west, west-west, 3 x west

Introduction

Two-phase flows occur in the environment, industry, and
the laboratory. Examples range from particulate pollu-
tion, silting in rivers, to i-portant industrial processes
such as coal and oil-fired furnace combustion. Cyclone
separators, spray-systems, and filtration units are other
applications where the behaviour of twephase flow is
i-portant and the behaviour of the dispersed phase is
crucial for efficient operation. In almost all cases the
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flow field is turbulent and how the particles behave in a
turbulent flow is therefore of great interest.

Fundamentally, there are two approaches to deal with
the particle phase. They are the Eulerian and La-
grangian approaches. The Eulerian approach treats
the particle p.hase as a continuum.l'2 The Lagrangian
approach predicts individual 'representative' particle
traj e ctories .3'4

It is probably a fair comment to say that the La-
grangian approach is favoured by the engineering com-

munity for industrial applications. The advantages and

disadvantage of the two approaches have been discussed

previously.s A brief review of the Lagrangian approach

is given below because it is the approach adopted in the

present study. An early industrial example was investi-
gated by Lockwood et al.a Lockwood's study predicted

the flow for a hypothetical axial-symmetric coal-fired
cylindrical furnace incorporating turbulence modelling
and thermal effects. This work was developed to make

comparisons with an actual furnace unit.6 Subsequent

industrial examples in principle are very similar to these

early examples. Gosman and IoannidesT predicted a sim-

ilar furnace design using the stochastic technique which

is discussed below. A full three-dimensional front wall
coal-fired furnace has been predicted8 with only limited
agreement with the experimental data which had a large

scope of error. Generally, however, numerical predictions

investigating combustion design do not attempt to model
all the physical features of the flow and only consider, for

instance, isothermal particle-laden flow in order to get

a rough guide of the fluid-flow behaviour and particle
transport.e,l0 Other numerical industrial studies using

the Lagrangian approach include applications such as

cyclone separation,ll and cooling tower simulation .3'12

Besides industrial applications the Lagrangian ap-

proach can be an excellent way to investigate parti-
cle dispersion in a turbulent flow using a Monte Carlo

stochastic scheme, albeit with a high computational cost.

The stochastic scheme simulates the interaction between

phases basically by generating estimated values of the

eddy's lifetime, size, and velocity perturbation. The
particle experiences the velocity perturbation until the

eddy 'dies' or the particle crosses the eddy, after which

a new eddy lifetime and velocity perturbation are gener-

ated and the procedure is repeated. An early examplel3
applied the basic principles of the standard stochastic
scheme to time-dependent spray simulations using some

significant simplifications. A popular method, estab-

lished by the work of Gosman and Ioannides,T is to
use the stochastic technique with the two-equation tur-
bulence model of Launder and Spaldingl4 where the

life-time and size of the eddy as well as the veloc-

ity perturbation is determined from the turbulent flow

properties.ls-le Recently, Lu et a1.20 have reviewed var-
ious improvements to the standard stochastle technique
and recommended further alternations.

The flow problem considered in this study is planar
turbulent flow over a backward-facing step. The exper-
imental study used for the simulation has a very dilute
doping of particles. Therefore we can make an additional
simplification that the flow pattern is essentially uncou-
pled. It is one of the simplest forms of turbulent flow sep-

aration because the separation is caused by the change

in geometry and the geometry is simple. In addition,
this type of flow is used in a variety of ways in various

applications, usually to create a recirculation region or a
sudden change in pressure. However, our understanding
of this flow is still incomplete. The flow configuration
has been used considerably to develop and test turbu-
lence models, ir particular the k-e model.21-30 It has

not, however, been used to any great extent in the study
of turbulent dispersion.

The present study develops the model of Gosman aud

IoannidesT for predicting the behaviour of particles in
a turbulent flow. The model is applied to the applica-
tion of dilute particulate turbulent flow over a backward-
facing step.

Formulation of the problern

Governing equations for turbulent flow

The governitrg equations for turbulent flow can be mod-
elled assumittg that the flow properties can be repre-
sented by a mean and fluctuating component and in pla-

nar form. We make a further assumption that, because

there is a dilute presence of the particles, this means

there is only an insignificant amount of momentum ex-

change between phases. This gives the following govern-

it g equations using Reynolds averaging:

Continuity:

(1)

Momentum:

=-#.h|, (#.
The above equations use tensor-indexing, where p and

p are the density and viscosity of the fluid. The time-
averaged velocity components are given by (\t,, fluctua-
tion terms are expressed as 'Lt' . These fluctuation terms
lead to extra stress terms , - pu'tu'j. They are called the

Reynolds stress terms which have to be modelled and

solved. The model is based on the mixing length theory
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of Boussinesq and Prandtl, where the stress terms are
modelled by

where the boundary point B is adjacent to the wall,
therefore up is the velocity at this point, UB is the dis-
tance from the wall to this point, and so on. Therefore
the new terms introduced are the parameter, E, is the
'roughness parameter' and the term, K, is the von Kar-
man constant. The non-dimensionalised distance, UB* ,

is found from:

- p",{,i: tt (** *#) -?1,5ti

The model includes the turbulence energy, k, multiplied
by the delta function,6U. The term,, Ft, is the 'turbulent
viscosity' which is defined as

(3)

(4)

(5)

(8)

(e)

C r\k2
AT

l.r

(10)

(11)

(r2)

where the term, Cp, is an empirical constant, and the
turbulence dissipation rate is e. The governing differen-
tial equations for k and 6 can be expressed as:

The significance of yE = 11.6 is that it is the intersec-
tion of the linear wall-function and the logarithmic law
which is applicable in the main boundary of the turbu-
Ient flow. Therefore if ytr
to be in the viscous sub-layer.

The dissipation at the interior boundary node is mod-
elled by ignoring convection and diffusion terms and is
set to:

en= ctu/n ttT'
KUn

The generation term in the turbulence kinetic energy
equation is assumed to satisfy

ltt =

w
wherek and s are substituted for $ and Ftf op and Htf o,
are substituted for lO, respectively. The terms, ok and
o€) are empirical constants. The source terms for k is as:

,5r -G-pe (6)

where' G is the rate of production of turbulent kinetic
energy it is expressed:

G=t,,(W.#-
While the source term for e is given as:

s, -ctic-crr+
tlre terms Ct and Cz are further empirical con-
stants. The values of the empirical coefficients used
in the present research were taken from Launder and
Spaldingl4 and are given as Cp = 0.09, Ct - I.44,
Cz = I.92, ck = 1.0 and ce

The turbulent wall boundary conditions are more com-
plex than laminar boundary conditions partly because
velocity gradients are very steep. If the Reynolds num-
ber is low the steep gradient can be resolved using a low
Reynolds number turbulence model, in conjunction with
a fine grid close to the wall. The present research uses

the generally preferred method of wall functions.
The shear stress along the wall , Tw, is expressed as

where 0u I 0y is the gradient normal to the wall bound-
ary.

These terms are incorporated using the approach de-
scribed previously.3l For instance, the dissipation and
prediction terms in the turbulence kinetic energy equa-
tion are found by integrating across the cell, where L,r
and A,y are the length scales for the control volume.

drdy ( 13)

close
term

= ytr if a$

?0,,r) (#) (7)
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if yI

The generation term ,, G a, in the turbulence kinetic en-
ergy equation is simply modelled assuming that the shear
stress term , rw, is found using equation (9) and the gra-
dient term, (7ul0y) is equal to un lya.

if yfr S 11.6

if aI
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Governing equation for particulate motion
In calculating the particle trajectories, the particles are
assumed to be spherical and non-rotating. The motion
of the particles is assumed to be dominated by drag and
gravity. Also, the particles are assumed not to affect the
fluid flow. The various forces and magnitudes have been

reviewed elsewhere.32-34 The present study modifies
Stokes law (valid for low R, o) with the coefficient term
used33 which attempts to describe the behaviour of the
wake behind the particle.

The equation of motion of a small solid spherical par-
ticle is therefore given as, in non-dimensional form:

Particulate dispersion model
The present particulate dispersion model is based on the
Lagrangian Monte Carlo stochastic method of Gosman
and Ioannidesz and Shuen et o1.r5,35 The fundarnental
principle of the model is that a particle passes through an
eddy which is characterised by a velocity perturbation,
a lifetime and a size. Nearly all the models assume that
the velocity perturbation is randomly generated fornring
a Gaussian distribution where the standard deviation of
a velocity fluctuation is given by

(20 )

(2r)

The u o and u ; are the velocity vectors for the parti-
cle and instantaneous fluid velocity. The equation is in
non-dimensionalised fornr and 7 is non-dimensionalised
time. The non-dimensionalised terms g al , Stk and F r
are introduced below. The coefficient term, CdJ, in the
above equation is:

gu = 1. + 0.15 Rr|,ut'

The majority of the rnodels estimate the 'size' of the
eddy, 1", in the following form:

The gal coefficient is used to modify the drag term for
ultra-Stokesian drag. The drag coefficient uses an impor-
tant particle aerodynamic parameter , Rrp, the particle
Reynolds number which describes the velocity-slip be-
tween the particle and fluid.

where a is a constant. Kallio and Stock36 state that
a varies from 0.15 to 2.0 by making compa,risons with
the experimental data. The majority of other st,uclies
are in agreement for this range of o and are summarised
in Table 1. The table includes the results of Adeniji-
Fashola and Chen,37 Mostafa and Mongi&,38 Chen and
Crowe,3e Lu et o1.,40 and Modarress et al.ar

Table 1 Values of a from various studies

Adeniji-Fashola and Chen37 1.

Anagnostopoulos and Bergeleslo
Boyd and Kents
Mostafa and Mongial6,38
Shuen et al .Ls

dro _rt uy-up 1

dr-uil stk -w (15)

( 16)

( 17)

(1e)

Stk _ podTU

ISprL

where U and L represent the fluid's
scales. Note that the Stk number
which is the particle's density. The
given by

(1s)

velocity and length
uses the term ,, pp,

Froude number is

where dp is the particle's diameter. The equation of
motion for a particle has two important dimensionless
parameters, namely the Stokes number, Stk, and the
Froude number, Fr. They are defined, respectively, as: Chen el al.rs

Chen and Crowe3e
Gosman and IoannidesT

Lu et al.ao

Generally, the 'lifetime' of the eddy, tr,
from

r'3lak
te : gt\-" tt

€

where h is a constant. The above term is
Shuen et o1.t5,35 Alternatively, the lifetime
from the expression

1 .65

I .826

28

is calculated

(22)

discussed in
is c alculated

(23 )

where g is the acceleration due to gravity. At present,
the validity of the equation of motion for a solid spher-
ical particle is doubtful partly because some significant
terms have been found empirically through experiment.
Nevertheless, it should describe the motion of the parti-
cle for Rro < 100 fairly accurately.
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where 0z is again a constant. This is detailed in Gos-
man and Ioannides.T In the second formulation of the
eddy lifetime uses the randomly generated velocity per-
turbation lr'l to calculate the eddy lifetime. Assuming
isotropic turbulent conditions it follows that:

If I"l(t"lu,l) < l then the particle is assumed to be
trapped inside the eddy until the eddy dies. This formu-
lation for the traverse time is only appropriate if there
are no significant body forces, such as gravity, present.
If there was a constant body force present the equation
of motion can be integrated but not inverted. However,
the traverse time can be solved using the Regula Falsi
method. Alternatively, the trajectory of the eddy can
be calculated and thus the relative displacement of the
particle from the centre of the eddy is known, This ap-
proach appears to have been adopted.le Unfortunately,
this approach places further constraints on the model
because the time-step has to be small enough to allow
integration of the trajectory within the eddy.

The present research assumes mid-range values of
eddy size and lifetime in comparison with previous stud-
ies using o - 1.5 and P - 1.5. Therefore for the present
research t" - I" lkt/2 . The traverse-time is not estimated
but is found directly by numerical integration which is
appropriate if the body force is relatively simple in form
and a predictor-corrector integration is used so the ef-
fects of ultra-Stokesian drag can be incorporated with-
out introducing a significant error. The time-step value
is estimated from:

(24)

If this is substituted into equation (23) a valu e of B1
can be estimated. Various values of h are summarised
in Table 2. In this study we assume the eddy lifetime is
in the form of equation (22).

Table 2 Values of h from various studies

Boysan et aI.11

Lu et al.ao

Anagnostopoulos and Bergeleslo
Boyd and Kent8
Mostafa and Mongia16,38
Shuen et o1.15,35

Chen et al.rs

Chen and Crowe3e
Gosman and IoannidesT

Chen and Crowe3e

When the size and lifetime of the eddy have been esti-
mated the velocity perturbation is applied until the eddy
'dies' or the particle traverses the eddy. The time taken
to traverse the eddy, trr, can be estimateds8,3e using the
expresslon:

where F is a small fraction set to about F - 0 .2; up and
up are the velocity components for the particle; the func-
tion 'min' selects the minimum value. This method for
incorporating body forces into the model is one of the im-
provements made in the present research to the model of
Shuen et al.L5'35 The failure of the model to incorporate
body-force was recognised by Graham42 and describes
the error as 'the inertia effect'. Also, Graham points out
that the standard stochastic model has two additional
errors which are described as 'the crossing trajectory ef-
fect' and 'the continuity effect'. The continuity effect is
observed in the experiments where dispersion is stronger
in the streamwise direction. Zhang et al.r6 have also ob-
served this effect and assumed non-isotropic turbulence
conditions for the particles and set the streamwise ve-
locity perturbation to:

",, - 2r,, - 2--

0.707

1.

r.225

1 .643

2.236

3.429

(+)''' ffi,H,(n"')
(28)

where lu,l is the slip velocity between the particle and
fluid velocity. More accurately, Stokes' law can be inte-
grated and the solution can be inverted. This approach
is adopted,Tl'15 where the traverse time is given as

(25)

(27)

t,"=-tornlr.-glI t" 1",1 | (26)

where ta is the 'aerodynamic' particle relaxation time
which is given by

(2e)

It follows therefore that the standard deviation of the
velocity perturbation in the streamwise direction is o, =
kt /z and for other directions o, ,. = (I l2k)t 

l' . This
simple model is adopted in the present research where
the streamwise direction is taken to be the local fluid
velocity vector.

R & D lournal, 1999, I5(3) 69



Nurnerical rnethodology

Solution of the flow-fiel
The governittg equations are solved in primitive form
(r, u , p) using the Semi-Implicit Method for Pressure

Linked-Equations (SIMPLE) methodology.a3 The nu-

merical methodology used in the present study is sim-

ilar to previous studies.44'45 Discretization is achieved

using the Second-Order Upwind Difference scheme

instead of the hybrid differencing scheme46 used.aa

The SOUD scheme was found to be more successful

in predicting grid-independent results from previouc;

investigationss '45

Non-uniform grid distributions were used for simu-

lations with clusterittg near-solid boundaries, especially

around the step. Grid independent results are presented

for the flow field. The grid dependency of computations
wa,s tested using similarly clustered grids with 40x40,
80 x 60 and 100 x 80 grid points.

The outlet condition was found by extrapolation.
First-order and quadratic extrapolations recommended

by Peric3l were found to give fairly poor solutions in the

outlet region. The outflow boundary condition devel-

oped and discussedsl was applied. In short, the extrap-
olated velocities at the outlet are calculated using the

following fit.

Integration of the particulate trajectorres

The principle of calculating a particle's trajectory in
a laminar flow field is well-established and straight-
forward. There are examples where the equation of mo-

tion for a particle in an oscillating laminar flow field is

integrated .47,48 More recently, Ruetsch and Meiburg4e

integrated the equation of motion for a particle in ideal-

istic analytical flow-fields and analysed the various forces

acting on the particle. A similar study by Bartonso in-
tegrated the equation of motion for particles in laminar
flows over a backward-facittg step. The integration of
the motion of the particle has a complexity related to
Stokes' law. In order to illustrate this point, assume

that the motion of the particle is only governed by drag:

( 32)

where ar t a2, and as are the coefficients for the fit. In
the extrapolation the four velocity positions upstream
of the outflow boundary are used. The velocity position

the furthest away from the outflow boundary is used as

the datum position for r, and the velocity values at the

other three positions are used fcr extrapolation calcu-

Iation. The L,r term is the cell length adj acent to the

outflow boundary. Therefore, if uniform cells are used

near the exit region, the extrapolated velocity value is

estimated by (using compass notation),

27u* - 12u.-*?twww
uexit =

where uexir is the extrapolated outlet velocity. The exit
velocity is then corrected to ensure that overall flux is

conserved. This formulation appears to reduce numerical
errors near the outflow bound&IY, as detailed.s

The convergence criterion was assumed to have been

met when the average absolute changes in the velocity
and pressure fields had reduced five orders of magni-

tudes.

where uy is the velocity of the instantaneous fluid veloc-

ity. The equation of motion is therefore a simple first-
order differential equation which is difficult to solve be-

cause the fluid velocity is a function of position and/or
time for all but simple cases.

For most cases equation (32) can be accurately solved
using a fourth-order Runge-Kutta technique.s l The
Runge-Kutta scheme has the draw-back that it is lim-
ited by the stability requirement that the time-step,
At, meets the condition At
other explicit Eulerian schemes.s2 Alternatively, a less

accurate exponential Lagrangian tracking scheme can be

used. The exponential scheme was developed partly to
overcome the stability requirement associated with the

Runge-Kutta scheme.53 Initially, the study below consid-
ers integrating equation (32) using the well-established

exponential scheme and develops the scheme to give im-
proved accuracy, as detailed.s4 The original exponential
scheme simply assumes that the fluid velocity remains

constant until the next time-step. This allows equation
(32) to be integrated to form the solution:

u;*1 = uf, exp (-At lt") + "7 [1. - exp (-At lt,)] (33)

where A, is the time-step interval, n + 1 is the final
time-level and n is the initial time-level. Equation (33)

can then be integrated again to find the position of the
particle, fip.

*;*t - *t - ta ("? - ui) tt - exp (-At lto)l + u| Lt
(34 )

However, the dis-
following simpler

}uo uy - up

0t to

This approach has been adopted.ss
placement is usually found using the
expression:56

u-ar*ffi.ffi (30)

(31)
16
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Equation (33) predicts that particles with a large ta
value tend to give the limit urn*t - u; and for smallto
values the equation tends to the limit uon*, - u f . The
first limit is physically acceptable. The second iimit is
not acceptable because the particle's velocity lags behind
the fluid's velocity by the numerical time-step. A phys-
ically acceptable limit would be urn*t = u i* 

1 but the
u i* 

1 term is unknown until the particl. ,i.p, forward
in both time and displacement. This is the fundamen-
tal problem of the exponential scheme which the present
study addresses by developing a new predictor-corrector
exponential scheme. The scheme is outlined below, with
further details.s'54 The scheme has been successfully ap-
plied for the study of particulate coupled laminar flow
over a backward-facing step.57

The predictor-corrector scheme assumes the fluid ve-
locity varies with time over the precedittg and succeeding
time-steps with the relationship:

ur(t)-rT+At+B*
where the coefficients in equation (36) are:

Law. Extending the scheme to incorporate additional
forces such as gravity is discussed elswhere.54 It is felt by
the author that a predictor-corrector integration method
has to be used when predicting trajectories for the
present methodology, because when the particle exits
an eddy and enters another eddy, it is possible that a
Iarge velocity slip will occur. If this velocity slip is used
for the particle Reynolds number then artificially high
values will be produced. The alternative option would
be to set the particle Reynolds number to the previous
time-step producing an artificially low value.

C ornputational results

T\rrbulent flow over a backward-facing step vali-
dation
The turbulence model was validated by considering
a standard turbulent flow problem established at the
1980 - 1981 Stanford Conference.s8 The geometry has
an inlet channel five step-heights long and an expan-
sion number, E
long overall. The inlet mean velocity, turbulence in-
tensity and turbulence dissipation profiles are specified
five step-heights upstream of the sudden expansion and
are matched to available experimental data. The in-
let Reynolds number is Re
ity scale is based on the inlet centre-line velocity and
the outlet channel height. Various predictions of the
problem using the standard k - e model can be found
elsewhere,2r-30 and the problem was investigated exper-
imentally by Kim et al.6e

using the standard k - e model,la the flow was pre-
dicted to reattach at r / h N 6.2 in the present research
which is in agreement with the standard k - e model
results.2e Further details can be found.s However, this
value is an under-prediction relative to the mean experi-
mental reattachment point at r I h x T. 1.60 The underes-
timate of the recirculation length in comparison with the
experimental data is a well-known property of the stan-
dard k - e turbulence model. Thangam and Speziale2s
have assessed some improvements for the model using
the present problem as their main test case.

Turbulent particulate dispersion results
The models discussed in the previous sections are now
applied to the problem described previously.60-61 The
problem is illustrated in Figure 1. The flow configuration
is a turbulent flow over a backward-facing step with an
expansion number of two. Results are presented for the
flow Reynolds numbers of Re - lb 000 and Re - 64 000.
(The Reynolds number is based on the step-height , h,
and the mean inlet centre-line velocity, (Jo. The predic-
tions model the experiments by assuming similar inlet

A u?o-uY-t , h u?P-2"?*uri-,
-1 - lld B- r

2A't 2Lt2

(35)

(36)

(37)

The u Jno value is set to the most recently predicted
value of the fluid velocity. When the above ur U) equa-
tion is substituted into equation (32) then the general
solution for the particle's velocity and position can be
expressed as:

u;+1 -
+A{At
+B {rr

and

(3e)
By setting,4 - 0, B = 0 the general solution reduces

to original scheme. The limits for the new scheme for
small lo values are urn*' = u i* 

I for the velocity and

L*rn*L
So far the predictor-corrector exponential scheme has

only been presented for the problem of integrating Stokes

uf, exp (-4, lt") + 
"T [1 . - exp (-Ar lt")]

- ta [1. - exp (-Ltlr,)]]
2 - 2to\t + 2t?lt - exp (-Ar lt")l\

(38)

,;+1 - ,F - to ("f - ";) [1. - exp (-Ar lt")] * u,i Lt
+A tit 2 - to\t + t?lt - .*p (-/rt lr")l )
+B { lArt - to\tz + 24Ar - 2tZJ. - exp(-Ar lt")l}
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conditions which are set 30h upstream of the sudden

expansion. The main channel is 25h long. The com-

putational grid uses 100x80 grid points with clusterittg

near the solid boundaries. There is a greater grid den-

sity of lines in the main channel compared with the irilet
channel.

The predictions integrate 1 000 particle traj ectories

per inlet cell, therefore a simulation tracks a total of
40 000 particle trajectories. Similar to an experimental
study, the numerical study has to 'sample' or 'detect' a
particle enterittg a volume in the flow, The 'sample' vol-

ume's diameter was set to 0.01h. This approach makes a

numerical simulation costly because such a high number

of particle trajectories have to be integrated to obtain
reasonable results.

In the studies,60,ut experimental data is given for 1

mm oil particles and starch particles which are approx-

imately spherical with an average diameter of 70 p"m.

Despite the fairly significant differences in sizes and den-

sities the mean U-velocity profile results were found to be

fairly similar to the experimental results. In the numer-
ical sirnulations the profiles were found to be virtually
identical; see Figures 2 and 3. Figure 2 shows the pre-

dictions and experimental data of the U-velocity profiles

for Re
3 shows the [i-velocity profiles for Re

the 70 pm starch particles. (Note: the length scale of
2 step-heights on the figures represents a velocity value

of LI).In Figure 4 the [/-velocity profiles are shown for

Re - 15 000 using the 70 ptm starch particles.

Overall, the predictions of [/-velocity profiles are

in satisfactory agreement with the experimental data.
However) considering that the U-velocity profiles essen-

tially demonstrate the accuracy of the k - e modei, al-
tering the stochastic model should have only a minor
effect on the [/-velocity profiles. A significant problem
with these comparisons is that, the numerical predictions
are demonstrating the behaviour of the k € t,urbu-
lence model as well as the stochastic model and it is not
straight-forward to isolate one model from the other.

Unlike the [/-velocity profile predictions shown in Fig-
ure 2 and 3, where different particles are used for the
same Reynolds number, there are fairly significant dif-
ferences in the predictions of the streamwlse turbulence
results, U'2. (Note that: there is no experimental dat,a

for y-component velocities or stress terms). The profiles

are shown in Figures 5 and 6 for the predictions aud ex-

perimental data of the (J'2 lU"2 profiles. Figure 5 shows

profiles for the Re - 64 000 flow using I mm oil particles
and Figure 6 shows the profiles for the same Reynolds
number using the 70 pm starch particles. (Note that:
a length scale of Ii step-heights represents a LIr z 

l(,t "'
value of 0.1 on the figures). The agreement with the ex-

perimental data is satisfactory, especially for the profiles

near rlh
ter agreement for the 70 pm particle results between the

simulations and the experimental data than for the I pm
particle results. The simulation using the 70 p,m parti-
cles have smaller turbulence intensity values in compar-
ison with the simulation using the 1 ptm particles. Both

TURBULENT FLOW OVER A BACKWARD-FACING STEP

OUTLETINLET

Figure 1 lllustration of the geometry for the backward-facing step configuration
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Figure 2 Mean u-velocity profiles, Re = 04000 , tor
Simulation represented by dots, experimental results
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1 pm oil particles.
by continuous lines.
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Figure 3 Mean u-velocity prof iles, Re : 64000, for 7O pm starch particles.
Simulation represented by dots, experimental results by continuous lines.
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v
2.0

U, Re=l5000, T0microns

- expt, (dot) simulation

X

Figure 4 Mean u-velocity prof iles, Re: 1 5000, for 70 pm starch particles.
Simulation represented by dots, experimental results by continuous lines.

uu/UU, Re=64000, 1 microns

- expt, (dot) simulation

x
Figure 5 Mean u'u'll)o2, Re:64000, for 1 pm oil particles.

Simulation represented by dots, experimental results by continuous lines.
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uu/UU, Re=64000, TOmicrons

- expt, (dot) simulationv
2.0

X

Figure 6 Mean u'u ' ll)o2, Re = 04000, f or
Simulation represented by dots, experimental

70 pm starch particles.
results by continuous lines.

uu/uu, Re=15000, 70 microns

- expt, (dot) simulation

x
Figure 7 Mean u'u'lUo2, Re: 1 5000, for 7O pm starch particles.

Simulation represented by dots, experimental results by continuous lines.
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sets of predictions of streamwise turbulence tend to over-
estimate the experimental data. The streamwlse turbu-
lence results for Re = 15 000 using the 70 p(,m starch
particles are shown in Figure 7. Again, the predictions
and the experimental data are in fairly acceptable agree-
ment with the predictions: the greatest differences occur
for the profiles near * lh - 5 where the predictions tend
to over-estimate the experimental data.

Concluding rernarks

It is i-portant to use a predictor-corrector integration
scheme if particle trajectories are predicted moving from
one eddy to another.

The stochastic model used in the present study incor-
porates two developments in comparison with the stan-
dard model. The first is incorporating external forces
acting on the particle by integrating the movement of
the eddy as well as the movement of the particle. The
second is modelling the 'continuity effect' by assuming
anisotropy, i.e. a stronger velocity perturbation in the
local stream-wise direction than in the cross-stream di-
rection.

The stochastic method for turbulent particle disper-
sion is applied to a simple application of flow over a

backward-facing step. In comparison with experimental
data, the predictions are similar; differences are probably
due to inadequacies in the turbulence model. Neverthe-
less, the two improvements made to the standard model
work, without causing a significant increase in compu-
tational cost or problems. It is not possible to argue
from the present results whether the improved stochas-
tic rnethod gives better results than the standard model
because of the limitations of the turbulenc,e model. How-
ever, it is clear that the present model avoids some ob-
vious modelling flaws.
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