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A boundary layer analysis was performed to determine
the pressure differential due to frictional effects, and
the heat transfer coefficient during turbulent radial fl,uid
flo, between two approilmately parallel discs or surfaces.
The results of the analysis were applied to flow at the in-
Iet of the collector of a solar chimney power plant and
a nun'rerical erample it presented to show the effect that
uarious independent uariables haue on the radial pressure
and heat transfer coefficienl,.

Nomenclature

b exponent
cp specific heat, J lkS-K
d, hydraulic diameter, m

f friction
g gravitational acceleratio n, m f s2

H height, m
h heat transfer coefficient , W l^z-Y
/i loss coefficient
k thennal conductivity, W/m-K
m mass flow rat,e, kg/t
Nu Nusselt nurnber,, h ("0 - ,) lk
p pressure, N/-'
Pr Prandtl numb er,, prco f k
r radius, m
Ra Rayleigh number , g p LT H3 f a-u
Re Reynolds uumber , pudr f p
T t,ernperature, K

: ::l::;1r#'
Subscripts
c core
cl centreline
p pipe
r radius or rough
s smoot,h
0 at outside radius
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Greek letters
a thermal diffusivity, k I p-cr,m2 f s
p coefficient of volumetric thermal

expansion, K- 1

A differential
6 boundary layer thickness, m
€ surface roughness, m
0 angle, o

tt dynamic viscosity, kg/m-s
u kinematic viscosi ty, m2 f s

p density, kg/-t
T shear stress, N/-'

Introduction

When a fluid flows radially between two approximately
parallel surfaces or discs a radial pressure gra,dient exists.
If there is a temperature difference between the fluid and
the surfaces, heat will be transferred. A practical exam-
ple where such flow would occur is in the solar collector
of a solar chimney power plant as shown schematically in
Figure 1. This plant consists of a central chinurey which
is surrounded by a circular collector having a glass roof.
Air is heated in the collector and flows up the chirnney
due to buoyancy effects. The air stream drives a t,urbine
that is located near the base of the tower.

To evaluate the performance of such a plant, the pres-
sure drop and the heat tlransfer in the collector must be
determined.

Analysis

Consider an elementary control volume in the boundary
layer on a (smooth or rough) surface in a radial florv
field between two discs (see Figure 2). The rnornentum
equation in the radial direction is

x (, * Ar) L'?dz * rrL?Lr

lr' 
p(r+ a r) a,od,, - Ioo (o * #"r)

Uro 
r,',^od,)Ar- ,,,*Uro ,,,^od,)

a

0r
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For incompressible flow this reduces to

p+

or upon differentiation

0 .5 pul

rp_0023#

At a pipe Reynolds number of Reo N 105 the ratio of
mean pipe velocity to centreline velocity is

up 
- 0.817

Ltpcl

and hence

rp- 0.01392 , 
Pur'P;8r= 

="v ^vv - 
?o I ,)o''

The analogous relation applied to the boundary layer
on a flat plate is

Substitute (5), (6), and (i) into
ferential equation

(4), and find the dif-

-160 
rd6 +16 - 2gb 

61 2 - 0.206g ( pilo'|)o' rr 2-o zb 
.-,v dr- T 

t \.r.zJ\.,\rl, 
\ m )

(8)

The solut,ion of this differential equation tog(lther n'itlr
the boundary condition 6(r,t) - 0 (see Appe'ndix A )

yields the boundary layer thickness

Tp

(2)

(3)

For fully developed turbulent flow in a pipe at R.o
N 105 the velocity distribution can be approximated by
a relatively simple empirical equation.l For developing

flow over a flat surface the analogous velocity distribu-
tion (due to the universality of the velocity distribrrtion
in a turbulent boundary layer) may be expressed rn terms
of the core velocity L,c and the boundary layer thickness

6as

r - o ol 3e2pr-: ' (;)" (i)

[t;) 
" -o2b 

-(; )"n'-3s43b] ]"' 

(e)

u=Uc

Substitute (2) and (3) in and integrate, and find

77

-6(*u?+?,,,,y)
For turbulent flow where the velocity distribution is

relatively uniform at any radius (i... the boundary layer

is relatively thin or the Reynolds number is high) the

nrass flow rate can be expressed approximately as 6.2r8 - 15.08b

if b + 0.4122.
Accorditg to the Colburn analogy for a flat platel the

local heat transfer coefficient can be expressed in terms

of the local shear stress:

hPrzl3

To avoid excessively high radial velocities in the col-

lector as the radius decreases, the height of the upper

disc or collector roof is assumed to be given by

(5)

(6) cp puc

From (5), (7), and (10) it

h- TCp

u. Pro '667

i,,
then follows that

(10)
H-

where b is a parameter (0 S b < 1).

Heat transfer coefficient: smooth surfaces
For smooth pipes the Fanning friction factor can

proximated by the following empirical equationl
range 104 ( Reo

o oo32 ,#"" (#) 
o'(f)"

number is defined as Nu - h(ro
(9) it then follows for b + 0.4122

be

in
ap-
the The local Nusselt

,) lk. From (6) and
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Heated air out

Figure 1 Solar chimney power
plant

Figure 2 Boundary layer control
rrclume

Figure 3 Controt volume between
two discs

Solar collector

Solar radiation

Cold air in
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This empirical relation approximately correlates the
friction data for rough pipes in the range 0.0001 < eldp

problem. The corresponding pipe shear stress is

f p"3
LtP - 2

With up = 0.817upcr as before we find the analogous

shear stress for turbulent flow over a rough flat plate:

r=0008326puz"G) 
0254 

Itnn 
(*) "'*t]

( 12)

Substituting (5), (6), and (12) into (4), the differential
equation for 6 becomes

-160.254!6 * 
16 --23b 5t.254 - 0&rT- 7 L'

x ln.nu, ( pror|)o ut 
,rbl-o bl

L \€Tn/

The solution of this equation with
Appendix A)'

if b + 0.3757 and b + 0.453, where

q-(#)
The local Nusselt number for e

Nu_ ry_ffi-oools2spro333

x('-;) ffi)(;) 
02026(?) 

'-'

4 ebrq(;)' '1(1-" * ,

(14)

Pressure drop: smooth surfaces

To find the radial pressure drop due to friction in the
collector, consider a control volume located between two
discs as shown in Figure 3. Then

pr L,o H - (o * H",) (, * A,)

L0H+p\rLeH=-2rL,rrL0

gh surfaces

the turbulent friction

(*) "'*']

2

I
r

Tg

L20b

6.787b

2.866- 4.

38 37b

(see
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The loss coefficient based on inlet velocity due to fric-
tion on the two smooth surfaces in the collector is

t"7 Pro - P,/\0

( 1s)

-oo8o38 (+) ""'(a) *(;)
\n

Pressure drop: rough surfaces

Assuming the same roughness on both surfaces, and sub-
stituting (6), (12) and (13) into (15), find

and integrating between the outer radius rs
other radius r, we find the pressure drop

and any

'r - {'r;lr'}lu n, u,'r;!r; : f':?
and

g, (s) - ,t / (1-t) f, (s1ltr-rl)

The integrals in (17) both have integrands with finite
limits at both endpoints and can be integrated to a high
degree of accuracy with a 4-point Gaussian integration
rule. Alternatively, the integral can be approximated
with an error of at most 5To in the range 0.6 S r
1, 0 < b < 1 by

F,(r) - (1 - r)5/o h.r1 + $.71 - 2.bb)(1 -')t/u]tlL

Substituting (6), (7), and (9) into (15):

u*-1 o18x1o-3 (h)ffi) ""

1
X-

Tg

6.218 - 15.08b

(;) 
"-L7b 

- (;) 
" 

54-20 74b

fo

1018 , (;)

,lr,

( 16)

al in er limit
I the 0. For
cnal purpo integral
tten as

I
Ix 3

=

!
tx 1 

(17)

P,o_P, _ 4218 x 1o-4 (ffi) (;)o2026F' (;)
where

f, (t) =
4.953q10'51-o'51' + 1

11 
1 .38- L5.32b _ {2.74- 18. e30

2.550 - 6 .787b

t10.87- 14.81b 
- 112.74-18.93b

17.38 - 38 .37b

with g as before, and t - rlro. Integrating, we find

The integral
be written (see

F, (r) -

# _ 4 2r8 x 1o-4 (ffi)(;)0 
2026 

|r,
where

where

'Y - { 'rlj8?- 31,n,, 3;l:i 2'i
and

9, (s) : rt/Q-t) f, (sl/tr-rl)

F, (r) - l,' f, (t) d,t .

is again improper at both limits, and may
Appe_ndix B)

t ffi 
)o7s74

1 " ut 
uo '254 gr

l. x (r+ rr-z'a)d,u, o< b<0.4

( L'254 fF-rr-t)o'7s74

1 (r-r) J, uo254sr

l x (r- u.-25a)du,o.4<D<1
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For 0.6 ( r

F, (r) : (1 - ")o 
7sr x

r

[r.oz + (2. 1 - J.zrb + 4.7eq- e.18bq) (1 -')o zszl

approximates the integral with an error of at most 10% in
the range 0 < b < 1, and less than 2To for 0.4 < b < 0.8.

The loss coefficient for rough surfaces is

l:' P'o - P'J\0 w

Rarr
that affect the pressure drop and tend to augment the
heat transfer may be present. When Rarr
Nusselt number due to these meandering counterflowing

thermals (*ur o n"|/t) becomes independent of the
\trr7'/

height of the collector roof above the ground.2 Under
certain operating conditions in certain areas of the col-
Iector the heat transfer due to the secondary flow may
be of the same order or greater than that predicted by
the present analysis.
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App"ndix A

The solution of the differential equation

-16o-'j*+klo -prB *qr

may be found as follows. The substitution Lt

duces the equation to the linear equation

-r+*aku-o(nrL+qr)dr

The solution of the corresponding homogeneous equa-
tion is ,n (r) - Ar'k; assumittg a particular solution of
the form , (r) - u (r) ,"u and incorporating the bound-
ary condition 6 (to) = 0, the solution is found as

( 1e)

- 0 0333 (a) (;)o'o'u',(;)
Results

The development of the boundary layer during steady
radial flow between two surfaces has been analysed. The
results of the analysis are employed to predict the change

in radial pressure due to frictional effects and the local
heat transfer coefficient at the inlet of the collector of a
solar chimney power plant.

For smooth surfaces the boufldary layer thickness as

given by equation (9) is shown graphically in Figure 4

for given values of b , ro I H o and Fro I m. Generally the
flow between the surfaces becomes fully developed (6 N
Ho12) fairly rapidly, whereafter the present analysis is

no longer applicable. The boundary layer growth rate for
rough surfaces as given by (13) is even more rapid than
that for smooth surfaces. For the conditions specified,
5 I H o is almost independent of the air mass flow rate, &s

shown in Figure 5.

The corresponding Nusselt numbers as given by (11)

and (14) are shown in Figures 6 and 7, respectively. In
both cases the Nusselt number decreases with increasing

radius but improves with increasing air flow rate. A
rough surface results in a higher heat transfer coefficient.

The corresponding loss coefficients are given by (18)

and (19), respectively and are presented graphically in
Figures 8 and 9.

Conclusions

Analytical solutions for predicting the pressure differen-
tial due to frictional effects and the heat transfer coef-

ficient during developing radial flow between two essen-

tially parallel discs are obtained. These results can be

applied in the performance evaluation of a solar chimney
power plant collector.

It should be noted that this analysis does not neces-

sarily entirely model the true nature of the developing

flow in the solar collector. Since the Rayleigh number

if ak + B and ak + 1; if ak - B the solution is

6(r) = {*or"klnry+#rol;
and if ok - 1 then

6(r) -
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App"ndix B

Consider the integral

F(u)- [' /(r) dt (o< xSl)\ / J,
and suppose that 7 and f are constants such that

,lro"*t'tf 
(t) - A (A+0,7 > 0)

and

,lL(1 -r)r/ $) - B (B +o, o < | < 1).

Then the integral is improper and integrable at t - 1,

and F(r) -+oowhen I 0if t
substitutions

t-sll(r-r), s= { 1-uLl(t-l] , 'Y11
t 1+UL/(l-r), 1) 1

reduce the integral to the form

F(x)-

where

These
at both
interval.

sr-t)t-"' ,r /G-")g

l]l:, " 
711

' 
'r 

l1-")g

r)) du, t)1

(s1lt 
r -rl)

last egrands with finite limits
upp points of the integration
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