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A boundary layer analysis was performed to determine
the pressure differential due to frictional effects, and
the heat transfer coefficient during turbulent radial fluid
flow between two approzimately parallel discs or surfaces.
The results of the analysis were applied 1o flow at the in-
let of the collector of a solar chimney power plant and
a numerical ezample 1s presented to show the effect that
various independent variables have on the radial pressure
and heat transfer coefficient.

Nomenclature

b exponent

cp  specific heat, J /kg-K

d. hydraulic diameter, m

f friction

g  gravitational acceleration, m/s?
H  height, m

h  heat transfer coefficient, W/m?2-K

K loss coefficient

k thermal conductivity, W/m-K
m  mass flow rate, kg/s

Nu Nusselt number, h(rg —7) /k
p  pressure, N/m?

Pr  Prandtl number, pc,/k

r radius, m

Ra Rayleigh number, g8ATH3/a-v
Re Reynolds number , pvd./u

T  temperature, K

v velocity, m/s

z co-ordinate

Subscripts
¢ core
¢l centreline
p pipe
r  radius or rough
s smooth
0 at outside radius
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Greek letters

thermal diffusivity, k/p-cp, m?/s

coefficient of volumetric thermal
expansion, K1

differential

boundary layer thickness, m

surface roughness, m

angle, o

dynamic viscosity, kg/m-s

kinematic viscosity, m?/s

density, kg/m3

shear stress, N/m?
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Introduction

When a fluid flows radially between two approximately
parallel surfaces or discs a radial pressure gradient exists.
If there is a temperature difference between the fluid and
the surfaces, heat will be transferred. A practical exam-
ple where such flow would occur is in the solar collector
of a solar chimney power plant as shown schematically in
Figure 1. This plant consists of a central chimney which
is surrounded by a circular collector having a glass roof.
Air is heated in the collector and flows up the chimney
due to buoyancy effects. The air stream drives a turbine
that is located near the base of the tower.

To evaluate the performance of such a plant the pres-
sure drop and the heat transfer in the collector must be
determined.

Analysis

Consider an elementary control volume in the boundary
layer on a (smooth or rough) surface in a radial flow
field between two discs (see Figure 2). The momentum
equation in the radial direction is

6 ) 8p
/ p(r+ Ar)Afdz — / (p + -—Ar>
0 0 or

x (r+ Ar) ABdz + TrAGAr
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R & D Journal, 1999, 15(3) 95



For incompressible flow this reduces to

O ([ ras) v ([ o)t [ iy =
)

In the core region outside the boundary layer the flow
is essentially frictionless with the result that Bernoulli’s
equation is applicable:

2
p+ p;” = constant
or upon differentiation
10 ov
ot A e (2)
pOor or

For fully developed turbulent flow in a pipe at Re,
~ 105 the velocity distribution can be approximated by
a relatively simple empirical equation.! For developing
flow over a flat surface the analogous velocity distribu-
tion (due to the universality of the velocity distribution
in a turbulent boundary layer) may be expressed in terms
of the core velocity v, and the boundary layer thickness

6 s z 177
v = v (5) . (3)

Substitute (2) and (3) into (1) and integrate, and find

T ,db 7 5, 23 Ov.\ Tr
_—rld—6(72°+72 o )= 5 W

For turbulent flow where the velocity distribution is
relatively uniform at any radius (i.e. the boundary layer
is relatively thin or the Reynolds number is high) the
mass flow rate can be expressed approximately as

m = 27r pv. H

or
m

Ve gl )
To avoid excessively high radial velocities in the col-

lector as the radius decreases, the height of the upper
disc or collector roof is assumed to be given by

wem ()

where b is a parameter (0 < b < 1).

Heat transfer coefficient: smooth surfaces

For smooth pipes the Fanning friction factor can be ap-
proximated by the following empirical equation® in the
range 10* < Re, < 106:

Fe 0.046 __
Red2  0.5pv2
or
v2
m = 0. 023R é’

At a pipe Reynolds number of Re, & 10° the ratio of
mean pipe velocity to centreline velocity is

= (0.817
Upel
and hence
ul8
7 = 0.01392—2 2l
rp/V)"

The analogous relation applied to the boundary layer
on a flat plate is

0.2
r = 0.01392pv} 8 (%) . (7)

Substitute (5), (6), and (7) into (4), and find the dif-
ferential equation

0.2
_7,60.2@_{_ 16 — 23b612 = 0.2068 (/lHng) T,IAZ—O.Qb .
dr 7 m
(8)
The solution of this differential equation together with
the boundary condition é(ry) = 0 (see Appendix A)
yields the boundary layer thickness

6(r) = Ho {6 218—115 08b( ) (T)

1.2-0.2b 2.743-3.943b] ) /%
r r
-

if b#0.4122.

According to the Colburn analogy for a flat plate! the
local heat transfer coefficient can be expressed in terms
of the local shear stress:

h Pr?/3 _ T

cppve  pud

(10)

From (5), (7), and (10) it then follows that

Vo ;rcg.em =0. 0032}) 0.667 (%)0.8 (%)0.2

The local Nusselt number is defined as Nu= h(rq —
r)/k. From (6) and (9) it then follows for b # 0.4122

h =
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Figure 1 Solar chimney power
plant

Figure 2 Boundary layer control
volume

Figure 3 Control volume between
two discs



that

0.833
_ 0333 (1 _ " m To 0-8(1-8)
Nu = 0.0032 Pr (1 m) (MH()) (r)

6.218 — 15.08b

1.2-0.2b 2.743—3.943b
r r
(m) (m)

The thermophysical properties in this equation are
evaluated at the arithmetic average temperature of the
surface and the core.

Heat transfer coefficient: rough surfaces

For rough pipe surfaces (¢ > 0) the turbulent friction
factor can be approximated by

£ 0.254 0.51
£ =0.02975 (—) 1.75( E ) +1] .
dp PUpE

This empirical relation approximately correlates the
friction data for rough pipes in the range 0.0001 < ¢/d,
< 0.01 and makes possible an analytical solution of the
problem. The corresponding pipe shear stress is

_fey
Tp = D) B

With v, = 0.817vpq as before we find the analogous
shear stress for turbulent flow over a rough flat plate:

£ 0.254 g\
7 = 0.008326pv? (5) 1.94 (pv 6) 1] .

(12)
Substituting (5), (6), and (12) into (4), the differential
equation for § becomes

_r60.254ﬁ + 16 — 23b61'254 =

dr 7

0.51
X [4.953 (EHO_TS) pl51-0516 4 |
em

0.08564¢0-254

The solution of this equation with §(rg) = 0 is (see
Appendix A):

= 0.2026 ro 0.7974
s(m = Ha [ = To
) ’ <H0) (Ho)
/r 1.51—0.51b r 2.866—4.1206
)

2.550—-6.787b

x 44
(13)

T0

2.866—4.120 y 0-7974
r r
(rﬂ)

17.38 — 38.37b

+

if b # 0.3757 and b # 0.453, where

= puHorg
em

The local Nusselt number for ¢ > 0 is

_h(ro—r) _Tcp(ro—r) _ 0333
= 2 = o, PrOFE 0.001325Pr

(-0 E) e

r 0.51(1-b)
0

Nu

1.51-0.51b 2.866-4.120p  0-2026
- _(
(7"0) <7‘o)
d 2.550 — 6.787b
2.866—4.120b
e,
0 70
tT 173838376
(14)

Pressure drop: smooth surfaces

To find the radial pressure drop due to friction in the
collector, consider a control volume located between two
discs as shown in Figure 3. Then

prA6H — (p-}- %Ar) (r+Ar)

A6 H 4+ pAr A6 H = -21 Arr Af

or
Op 2t

or  H'
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Substituting (6), (7), and (9) into (15):

dp a m ) 1838
= 1.018 x 10 (pHoTo) (——-MHO)

1/6

1 6.218 — 15.08b

—17b 13.54-20.7
ro - 12-1 r 4-20.74b
To To

and integrating between the outer radius 7y and any
other radius r, we find the pressure drop

o= totsx10-2 (<) () T e (1
Pl =k = S proHo ) \ pHo ro

where ¢ = r/rg,and

/:fs(t)dt,

6.218 — 15.08b He
fs(t) = {12—178b _ 113.54-20.74% :

The integral in (16) is improper at both the upper limit
t = 1 and the lower limit ¢ = ¢ when ¢ — 0. For
computational purposes (see Appendix B) the integral

can be written as
(xl_,_l)o‘aaa
1.2 0.2
-0 /0 v

x (14+v'?)dv, 0<b<0.353

Fs ()
(16)

Fs(z) =
(1_1_‘_,)0.533
1.2 0.2
(1—7)/0 v
x (1—v'2?)dv, 0353 <b< 1
(17)
where
_ ] 2—-2.833b, 0<b<0.4122
T 2.257—3.457h, 04122<b<1

and
gs (8) = 87/, (sl/(l—v)) .

The integrals in (17) both have integrands with finite
limits at both endpoints and can be integrated to a high
degree of accuracy with a 4-point Gaussian integration
rule. Alterna‘tively, the integral can be approximated
with an error of at most 5% in the range 0.6 < z <
1, 0<b6<1by

Fy(z) = (1—2)%/® [1.51 +(1.71 — 2.56) (1 — :c)s/s] .

The loss coefficient based on inlet velocity due to fric-
tion on the two smooth surfaces in the collector is

- DPro — Pr
Ky ==—"—
0.5002

H 0.1667 r r
= 0.08038 ("——") (—") F, (—) .
m Hy To

Pressure drop: rough surfaces

(18)

Assuming the same roughness on both surfaces, and sub-
stituting (6), (12) and (13) into (15), find

8p m? e\ 02026 ¢ ,
O g (7Y (£) Ay ()
r proH§ ) o ro

0
where

4.953qt0'51_0'51b +1
$11.38-15.32b __ t12.74-18.93b

2.550 — 6.787b

fr(t) =

0.2026

q

t10,87—14.81b _ t12.74—18.93b

* 17.38 — 38.37b

with ¢ as before, and t = r/rq. Integrating, we find

2 0.2026
. — -4 _M £ r
Pro —Pr =4.218 x 10 (prng) <r0> Fr (7‘0)

where

1
F,(x)zj £ @) dt.

The integral is again improper at both limits, and may
be written (see Appendix B)

(xl_,,_l)q.-rsu
1.254 0-254

O-1 /,

gr

x (1+012%) dy, 0< b< 04

F.(z)=
(1—1'"")0'79“

1.254 ,UO.254
(1-7) [; gr
x (1-v'%%)dy, 04<b< 1

where
_{ 2.202 - 3b, 0< b<0.454
7= 2.581-3.834b, 0.454<b<1

and
gr (s) = s1(=Df, (31/(1—7)) .
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For 0.6 < z <1 and 0.001 < ¢ < 0.1, the expression

Fo(z)=(1-2)"™"x

1.97 + (2.1 — 3.21b + 4.79¢ — 9.18bg) (1 — ) ™"

approximates the integral with an error of at most 10% in
the range 0 < b < 1, and less than 2% for 0.4 < b < 0.8.
The loss coefficient for rough surfaces is

, _ Pro — Pr
Ko = 0.5p0%
o € 0.2026 r (19)
= 00559 (F) (“) i <—>

Results

The development of the boundary layer during steady
radial flow between two surfaces has been analysed. The
results of the analysis are employed to predict the change
in radial pressure due to frictional effects and the local
heat transfer coefficient at the inlet of the collector of a
solar chimney power plant.

For smooth surfaces the boufidary layer thickness as
given by equation (9) is shown graphically in Figure 4
for given values of b, ro/Ho and pro/m. Generally the
flow between the surfaces becomes fully developed (6 ~
Hy/2) fairly rapidly, whereafter the present analysis is
no longer applicable. The boundary layer growth rate for
rough surfaces as given by (13) is even more rapid than
that for smooth surfaces. For the conditions specified,
8/Hp is almost independent of the air mass flow rate, as
shown in Figure 5.

The corresponding Nusselt numbers as given by (11)
and (14) are shown in Figures 6 and 7, respectively. In
both cases the Nusselt number decreases with increasing
radius but improves with increasing air flow rate. A
rough surface results in a higher heat transfer coefficient.

The corresponding loss coefficients are given by (18)
and (19), respectively and are presented graphically in
Figures 8 and 9.

Conclusions

Analytical solutions for predicting the pressure differen-
tial due to frictional effects and the heat transfer coef-
ficient during developing radial flow between two essen-
tially parallel discs are obtained. These results can be
applied in the performance evaluation of a solar chimney
power plant collector.

1t should be noted that this analysis does not neces-
sarily entirely model the true nature of the developing
flow in the solar collector. Since the Rayleigh number

Rag > 1708 in this region, secondary flow patterns
that affect the pressure drop and tend to augment the
heat transfer may be present. When Rag > 102 the
Nusselt number due to these meandering counterflowing

thermals (NuH o Ra}j{a) becomes independent of the

height of the collector roof above the ground.? Under
certain operating conditions in certain areas of the col-
lector the heat transfer due to the secondary flow may
be of the same order or greater than that predicted by
the present analysis.
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Appendix A

The solution of the differential equation

d
—réa_ld—i + k6% = prf +qr

may be found as follows. The substitution v = 8% re-
duces the equation to the linear equation

d
—r% + kv =a (pr"j +qr) .

The solution of the corresponding homogeneous equa-
tion is vy, (r) = Ar®*; assuming a particular solution of
the form v (r) = u(r) r®* and incorporating the bound-
ary condition 6 (rg) = 0, the solution is found as '

so-{ (=) - ()]
+akaf " [:—0 - <%) ak] }l/a

if ak # B and ak # 1; if ak = (B the solution is

ak 1/«
§(r) = ak 1, O aq r (r
(") {apr Y * ak—1" o ro

and if ok = 1 then

2|2 -(2)]

k
+agr®® In e

é(r)=
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Appendix B reduce the integral to the form

(1_21_7)1-1‘
! / FI1-T),
0 g

(1-v)(1-T)

Consider the integral

F(z):/lf(t)dt O<z<1)
¢ x (1 —0t/(=1)) dy, y<1

and suppose that 7 and I are constants such that F(z)=
l—vy -r

lm OF()=A (A£0,7>0) =0 -

Jim. e /0 /=T
and

1/(1-T
Jim Q-1 f(t)=B (B#0,0<I'<1). ) dnp
where

Then the integral is improper and integrable at ¢ = 1,

— g¥/(1=7) 1/(1-7)
and F(z) — oo when £ — 0 if ¥ > 1. The successive 9(s)=s f (s ) '

substitutions These last integrals have integrands with finite limits
Y N 1—-0/0-D) 4y <1 ?,t both upper and lower end-points of the integration
= 1+0/0-D) 451 interval.
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