Numerical lifting line method for high speed free surface effect and/or ground effect
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A numerical lifting line method for the calculation of lift
and induced drag on a straight wing of finite span in the
proximity of a free surface, a ground surface, or a combi-
nation thereof is presented. The circulation distribution is
expressed in terms of a Fourier sine series as for the classi-
cal Prandtl-Lanchester lifting line method. No approzima-
tions are introduced to linearize the lifting line equations,
and the resulting nonlinear set of equations are solved iter-
atively. Results from the numerical lifting line method and
approzimate linearized methods available in the literature
are compared for two practical wing planforms. Agreement
between the two methods s shown to be good as long as
the depth of submergence and/or ground clearance is large
enough for the approzimate method to be applicable.

Introduction

When a hydrofoil of finite span, i.e. a wing operating
close to a free surface, is tested in a towing tank to obtain
its hydrodynamic characteristics (lift, drag, and centre of
pressure), the data have to be corrected for boundary ef-
fects, i.e. the influences of the tank bottom and side walls.
Conversely, when a hydrofoil is used in shallow water or in
a narrow canal, it is necessary to know what the effect of
these restrictions is on the characteristics of the hydrofoil.

Approximations such as the lumped-vortex models
used in aerodynamics' are usually employed to estimate
the boundary effects, see for example Wadlin et al.? The
applicability of these approximations is at best uncertain,
especially for small depths of submergence or ground sur-
face clearance. It is the purpose in this paper to present
a numerical lifting line method which can be used to es-
timate the towing tank bottom/shallow water effect for
high-speed hydrofoils, and to determine the range of ap-
plicability of the approximate formulations.

The classical Prandtl-Lanchester lifting line method
for the calculation of lift and induced drag on a wing of fi-
nite span, as described by Bertin and Smith,® Anderson,*
and Houghton and Carpenter,® amongst others, is only
applicable for unbounded flows, and for wings with linear
sectional lift characteristics. The iterative numerical lift-
ing line method of Anderson et al.% extended the classical
method to wings with nonlinear sectional lift characteris-
tics. This numerical method was adapted by Thiart” to
account for free-surface effects, by including a downwash
correction. Here the latter method is modified to also
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model ground effect and the combination of free-surface
and ground effect.

Mathematical model

General formulation

The lift and induced-drag coefficients for a wing of finite
aspect ratio are computed, according to the lifting line
method, from the circulation distribution I'(y), axialwash
distribution u;(y) and downwash distribution w;(y) at the
lifting line:
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The local circulation strength is expressed as follows
in terms of the local chord length c¢(y), effective onflow
velocity Ve(y), and sectional lift coefficient C;(y):
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The magnitude of the effective onflow velocity is in
turn expressed in terms of the free stream velocity and
the velocities induced at the lifting line by the trailing
vorticity associated with the lifting line and the proximity
of boundaries:
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The sectional lift coefficient is assumed to be a known

function of the local effective angle of attack a.(y) only,

which is in turn a function of the geometrical angle of

attack a(y), the zero-lift angle of attack ag(y), and the
induced angle of attack «;(y):

ae (y) = a(y) — ao(y) — @i (y) (5)
where )
) _ w; \Y

a; (y) = arctan [—————U s (y)] (6)

Finally, the induced velocities are dependent on the
circulation distribution, as will be detailed in the follow-
ing subsections for the various cases of ground effect, free-
surface effect, and the combination of ground and free-
surface effect. These equations plus equations (1) to (6)
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are solved iteratively, starting from an initial circulation
distribution which, for the results presented here, is the
circulation distribution obtained by means of the classi-
cal Prandtl-Lanchester lifting line method for a wing in
unbounded flow and with linearized sectional lift charac-
teristics. The circulation distribution, induced velocities,
etc. are also obtained in the process, in terms of numerical
values at the finite number of sections along the lifting line
at which the chord length, the two-dimensional lift coef-
ficient, and the geometrical and zero-lift angles of attack
are defined.

Induced velocities for unbounded flow

For this case, the expressions for the induced velocities are
the same as for the classical lifting line theory, i.e.
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Induced velocities for ground effect

Ground effect for a lifting line of strength I'(y) at height h
above a ground surface is simulated! by placing an image
lifting line of strength —I'(y) at a distance 2k below the
lifting line, as illustrated in Figure 1. The additional in-
duced velocities (to be added to those for the unbounded
flow case) are given by
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Induced velocities for high-speed free-surface effect

Free surface effect at large Froude numbers (i.e. high
speed) for a lifting line of strength I' (y) at depth of sub-
mergence d below a free surface is simulated! by placing
an image lifting line of strength +I'(y) at a distance 2d
above the lifting line, as illustrated in Figure 2. The ad-
ditional induced velocities (to be added to those for the
unbounded flow case) are given by

uir (Y, d) = uig (y,d) (11)
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wir (y,d) = —wic (y,d) (22) combined high-speed free-surface and ground effect
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Induced velocities for combined high-speed free-
surface and ground effect

Free surface effect at large Froude numbers combined with
ground effect for a lifting line of strength I'(y) at depth of
submergence d below a free surface and height h above
a ground surface is simulated? by placing a series of im-
age lifting lines of alternating strengths +I'(y) above and
below the lifting line, as illustrated in Figure 3. The ad-
ditional induced velocities (to be added to those for the
unbounded flow case) are given by
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s/2
L[ Y T L
~s/2  j=i [4(1d+mh)2+(y—n)z]
(13)
wirG (Y. d, h) =
1 /5/2 i & m y—n
LAy &
47 —s/2 dy( )];( ) 4(ld+mh)2+(y_77)2
(14)

where k = int[(j + 4)/4], m = int[(j + 2)/4], and
[ =int[(j +1)/2] — m.

Note that equations (9) to (10) can be recovered from
equations (13) to (14) by taking only the terms for j =
2, and that equations (11) to (12) can be recovered from
equations (13) to (14) by taking only the terms for j = 1.

Numerical model

Representation of the circulation distribution

In the numerical lifting line methods of Anderson et al.®
and Thiart,” the circulation distribution is expressed in
terms of piecewise linear or quadratic curve fits. Near the
wing tips the magnitude of the circulation changes rapidly
(to zero at the wing tips), with the result that the linear
or quadratic representations are inaccurate there. Conse-
quently it is necessary to divide the lifting line into a fairly
large number of sections (1004) in order to obtain accu-
rate results, as a result of which the methods are prone to
divergence, and usually heavy underrelaxation is required
to obtain a solution, if at all. For the method presented
here, the circulation distribution is expressed in terms of
a Fourier sine series, as for the classical Prandtl-Lancaster
lifting line method:

[ (0) =2sU Y  Ansin nf (15)
n=1
where 6 is a transformation variable defined by y =
—(s/2)cosf. As will be shown later, much coarser sub-
divisions of the lifting line (~30 sections) are sufficient to
produce accurate solutions.

The numerical solution procedure is started with the
classical linear solution which is the truncated Fourier se-

ries
N
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n=1

During the iteration process the circulation distribu-
tion is updated by means of equation (3), using the latest
values of induced velocities at the sections along the lifting
line. It is necessary to do an inverse Fourier transforma-
tion on the result to obtain the circulation distribution
Fourier coefficients, and, due to the effect of aliasing,® it is
only possible to calculate half as many Fourier coefficients
as there are sections. Consequently, the actual represen-
tation of the nonlinear circulation distribution is given by

N/2
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The integrals defined by equation (13) are evaluated
numerically, using piecewise quadratic curve fits for I’ as
function of 6.

Calculation of the induced velocities

The expressions for the induced velocities can be written
in the following general form, covering all four cases under
consideration:

4 (8) = / I (6) Fu (6, 6) sin ¢dé (19)
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The first term in equation (20) represents w;s, and
is obtained analytically from equation (8). The remaining
two terms in equations (19) and (20) represent the effect of
the images, and the integrals contained in them are evalu-
ated numerically using piecewise quadratic curve fits for T,
Fy, dT'/df and F,, as functions of the dummy variable ¢.
The functions F,, and F, are defined implicitly by equa-
tions (9) and (10), equations (11) and (12), or equations
(13) and (14), as appropriate. For the most general case,
i.e. when U; = Ujo + Uipg and W; = Wi + Wirg, they
are as follows:

Fy ((‘ivg) =
27r_52(—1)k ld+mh .
j=1 [16 (ld+ mh)2 + 52 (cos ¢ — cos 9)2] :

(21)
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In the case of combined free-surface and ground ef-
fect, these functions need only be evaluated for a finite
number of images. It has been found by numerical experi-
mentation that the number of images required for accurate
computations can be taken as the nearest integer value to

100/ min[d/s, h/s].

Calculation of the lift and induced drag

The coefficients of lift and induced drag are obtained by
integration of equations (1) and (2), analytically in part by
using the expression for the circulation distribution given
by equation (17) and the first term in the expression for
the downwash given by equation (20). The results for the
most general case are as follows:

(L = tArAL + [’;1—2’2/ uirg (0)T(6)sin6df  (23)
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The remaining integrals in equations (23) and (24) are

evaluated numerically using piecewise quadratic curve fits
for I', u; and w;p¢ as functions of 6.

Results

The numerical model described in the previous section
was programmed in double precision FORTRANT7. The
program was then used to compute the lift and induced-
drag coeflicients for a wing with circular arc cross-sections
with maximum camber equal to 4.3756% of chord length.
For such cross-sections the zero-lift angle (ap) and two-
dimensional lift curve slope (C}) predicted by thin airfoil
theory are equal to —5° and 27, respectively. These two
values were used for all the results presented in the two
subsections that follow.

In order to ensure convergence, it was necessary to
underrelax the downwash; an underrelaxation factor equal
to 0.5° 2V was used throughout. The lifting line was subdi-
vided by means of the semi-circle method, giving an equi-
A0 spacing. Convergence was assumed to be reached when
the product of the absolute changes in lift and induced-
drag coefficients was less than 107!¢ for ten consecutive
iterations.

Convergence

The lift curve slope and induced drag for a wing of finite
aspect ratio can be expressed as follows:*

Ci

1 f;
CrL = 1+ Cj(L+7)/7AR 160
2
Cpi = <L (14 6) (26)
TAR

Here 7 is a lift efficiency factor and 6 an induced-drag
factor which, according to linear lifting line theory, are
both equal to zero for a wing with an elliptical planform.

Computations were carried out to determine values
for 7 and & as function of Af for four different Ag = 5
wings: the first with an elliptical planform, the second
with a rectangular planform, the third with a triangular
planform, and the fourth with a tapered planform with a
tip-to-root chord ratio of 0.3. These computations were
carried out for two angles of attack: 0° and 5°, and some
of the results are presented in Figures 4 to 6.

Figure 4 shows that the values of 7 for all four
planforms and for both angles of attack becomes grid-
independent at Af =~ 3°,1i.e. for N = 60. The same applies
for the values of é, Figure 5 (the results for & = 5° are not
shown, as they are almost identical with the o = (0° re-
sults). The number of iterations required to reach conver-
gence for the rectangular wing is less than 200 for o = 0°
and less than 300 for « = 5° at Af = 3°, as shown in
Figure 6. The number of iterations required to reach con-
vergence for the other three planforms are almost identical
to those for the rectangular wing, and are therefore not
shown.

Boundary effects

The proposed numerical method was further validated by
comparing computed results with those of the analytical
approximations presented by Von Karman and Burgers.!
These approximations were derived by means of lumped-
vortex systems, i.e. the wing and each one of its images
are represented by a single horseshoe vortex, the trailing
‘legs’ of which are separated by a distance fs.

The factor 8 can be determined® by the two require-
ments that (1) the single horseshoe vortex must have the
same strength as the sum of the trailing vortices in the
lifting line representation of the wing, and (i1) that the Lft
must be the same for both methods. The result can be
expressed in terms of the Fourier coefficients of the circu-
lation distribution computed by means of the conventional
linear line method:

7TA1
(A —As+ As — A7+ ..)

According to the approximations, the changes in lift
and induced drag can be written as follows:

A= (27)

a0p _ L —oCy +
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and
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Figure 4 Convergence of lift efficiency factor for four wing planforms and two angles of attack

0.20

0.15 .
| =

[riangular wing

0.101 \

0.05 T Rectangutar—wing

Tapered wing

L=

0.00 . :
1 Elliptical wing

-0.05 ﬁ | T \ & S J

I I I 1

2 4 8 16 32 64
2O [degrees]

Figure 5 Convergence of induced-drag factor for four wing planforms at o« = 0°

R & D Journal, 1999, 15(1) 20



300

250

200
' \\

Z 150

100
! o(=0°\\\
50 -

T

16 32 64

A8 [degrees]

Figure 6 Number of iterations required for convergence (rectangular wing)
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The factors o and € are the values of the average down-
wash and axialwash, respectively, nondimensionalised with
respect to U, induced at the lifting line by the image or
images of the horseshoe vortex or vortices representing
the wing. Expressions for these factors are as follows for

ground effect,
1+ (g—;) } (30)

2
EG:—# 1+(§—Z> -1 (31)

and as follows for high-speed free-surface effect:

1
oG =———1In

832

2
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1 2
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For combined free-surface and ground effect, the fac-
tors can be obtained by summing the influences of all the
images, the summations being similar to those of equations
(13) and (14):

B i ] o BS 2
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Numerical results computed by means of the proposed
nonlinear lifting line method for ground effect and for
high-speed free-surface effect are compared with the cor-
responding analytical approximations in Figures 7—10 for
two practical Ap = 5 wings: one with a rectangular plan-
form and the other one with a tapered planform with a
tip-to-root chord ratio of 0.3. For these same two wings
numerical results computed by means of the proposed non-
linear lifting line method for combined ground effect and
high-speed free-surface effect are compared with the cor-
responding analytical approximations in Figures 11—12.
These latter results were computed for combinations of
h/s and d/s such that h/s+d/s = 1. All the results were
computed for angle of attack o = 0°.

The ground-effect approximation for variation in lift
of the rectangular wing corresponds to within one per-
centage point with the numerical result down to a ground
clearance of h/s &~ 0.1 (= 0.5 chord lengths), and for the
tapered wing down to a ground clearanceof h/s ~ 0.2 (~ 1
mean chord length), Figure 7. The differences for variation
in induced drag are everywhere less than one percentage
point, Figure 8.

The high-speed free-surface effect approximation for
variation in lift of the rectangular wing corresponds to
within one percentage point with the numerical result
down to a submergence of d/s &~ 0.2 (&1 chord length),
and for the tapered wing down to a submergence of d/s ~
0.3 (~ 1.5 mean chord lengths), Figure 9. The differences
for variation in induced drag is less than one percentage
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point down to a submergence of d/s = 0.06 (=~ 0.3 chord
lengths) for the rectangular wing, and down to a submer-
gence of d/s ~ 0.1 (=~ 0.5 mean chord lengths) for the
tapered wing, Figure 10.

The combined ground effect and high-speed free-
surface effect approximation for variation in lift of the
rectangular wing corresponds to within one percentage
point with the numerical result between d/s ~ 0.15 and
h/s ~ 0.15 (both =~ 0.75 chord lengths), and for the ta-
pered wing between d/s ~ 0.25 and h/s =~ 0.2 (~1.25
and 1 mean chord length, respectively), Figure 11. The
differences for variation in induced drag is less than one
percentage point for d/s ==~ 0.05 (= 0.25 chord lengths)
for the rectangular wing, and for d/s >~ 0.08 (~ 0.4 mean
chord lengths) for the tapered wing, Figure 12.

Conclusion

A numerical lifting line method for the computation of lift
and induced drag of a wing in the proximity of a ground
and/or a free surface has been presented. It has been
shown that the method is both robust and accurate. Com-
putations have been presented to show that the method
can be used to estimate the range of accuracy of classi-
cal analytical approximations for computation of lift and
induced drag.

The method can be used to compute towing tank cor-
rections to measured data, if the clearance between the
wing tips and towing tank side walls are large. Work is
currently in progress to extend the method to also take
into account the effect of side walls.
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