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A nun'rerical lifting line method for the calculation of lift
and induced drag on a straight wing of finite span in the

prorrmity of a free surface, a ground surface, or a combi-
nation thereof is presented. The circulation distribution is

erpressed in terms of a Fourier sine series as for the classi-
cal Prandtl-Lanchester lifting line method. No o,pprorima-
tions are introduced to linearize the lifting line equations,

and the resulting nonlinear set of equations are solued iter-
atiuely. Results from the numerical liffing line method and

approrimate linearized methods aal,ilable in the literature
are con'r,pared for two practical wing planfornl,s. Agreement
between the two methods is shown to be good as long as

the depth of submergence and/or ground clearance is large

enough for the appronimate method to be applicable.

Introduction

When a hydrofoil of finite span, i.e. a wing operati.tg
close to a free surface, is tested in a towing tank to obtain
its hydrodynamic characteristics (lift, drag, and centre of
pressure), the data have to be corrected for boundary ef-

fects, i.e. the influences of the tank bottom and side walls.
Conversely, when a hydrofoil is used in shallow water or in
a narrow canal, it is necessary to know what the effect of
these restrictions is on the characteristics of the hydrofoil.

Approximations such as the lumped-vortex models
used in aerodynamicsl are usually employed to estimate
the boundary effects, see for example Wadlin et al.2 The
applicability of these approximations is at best uncertain,
especially for small depths of submergence or ground sur-
face clearance. It is the purpose in this paper to present
a numerical lifting line method which can be used to es-

timate the towing tank bottom/shallow water effect for
high-speed hydrofoils, and to determine the range of ap-

plicability of the approximate formulations.
The classical Prandtl-Lanchester lifting line method

for the calculation of lift and induced drag on a wing of fi-
nite span, &s described by Bertin and Smith,3 Anderson,4
and Houghton and Carpenter,s amongst others, it only
applicable for unbounded flows, and for wings with linear
sectional lift characteristics. The iterative numerical lift-
ittg line method of Anderson et al.6 extended the classical
method to wings with nonlinear sectional lift characteris-
tics. This numerical method was adapted by ThiartT to
account for free-surface effects, by including a downwash
correction. Here the latter method is modified to also
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model ground effect and the combination of free-surface
and ground effect.

Mathernatical model

General formulation

The lift and induced-drag coefficients for a wing of finite
aspect ratio are computed, according to the lifting line
method, from the circulation distribution f (y). axialwash
distribution w(A) and downwash distribution wi(A) at the
lifting line:

cr= #= # l:;,v+,,(v)l r(v) dv (1)
2

,,1 Dt 2An
UDi t:: , ,, (y) r (y) dy (2)

The local circulation strength is expressed as follows
in terms of the local chord length c(y), effective onflow
velocity V"(y), and sectional lift coefficient Ct(y),

The magnitude of the effective onflow velocity is in
turn expressed in terms of the free stream velocity and
the velocities induced at the lifting line by the trailing
vorticity associated with the lifting line and the proximity
of boundaries:
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The sectional lift coefficient is assumed to be a known
function of the local effective angle of attack ar(y) only,
which is in turn a function of the geometrical angle of
attack "(y), the zero-lift angle of attack oo(y), and the
induced angle of attack ot(y),

(3)

(4)

(5)

(6)

where

Finally, the induced velocities are dependent on the
circulation distribution, &s will be detailed in the follow-
ing subsections for the various cases of ground effect, free-
surface effect, and the combination of ground and free-
surface effect. These equations plus equations (1) to (6)
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are solved iteratively, starting from an initial circulation
distribution which, for the results presented here, is the

circulation distribution obtained by means of the classi-

cal Prandtl-Lanchester lifting line method for a wing in
unbounded flow and with linearized sectional lift charac-

teristics. The circulation distribution, induced velocities,
etc. are also obtained in the process, in terms of numerical
values at the finite number of sections along the lifting line
at which the chord length, the two-dimensional lift coef-

ficient, and the geometrical and zero-lift angles of attack
are defined.

Induced velocities for unbounded flow

For this case, the expressions for the induced velocities are

the sarne as for the classical lifting line theory, i.e.

+U Lifting line O--r

,/ ,' /'

-r - 
IIr[mage \-/

lifting line and image for
efFect

Z

u;* (U) - 0 (7)

(8)

dq (e)
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utc fu,h) = -!2r

'wtc(a,,h)- -*l::r#r,

lnor+(y- ri'lf

wrc (a)

Induced velocities for ground effect

Ground effect for a lifting line of strength f (y) at height h

above a ground surface is simulatedl by placing an image
lifting line of strength -f (y) at a distance 2h below the
lifting line, &s illustrated in Figure 1 . The additional in-
duced velocities (to be added to those for the unbounded
flow case) are given by

\

4h2 + (y - il' drt

Induced velocities for high-speed free-surface effect

Free surface efiect at large Froude numbers (i... high
speed) for a lifting line of strength f (y) at depth of sub-
rnergen ce d below a free surface is simulatedl by placing
an image lifting line of strength +f (y) at a distance 2d

above the lifting line, &s illustrated in Figure 2. The ad-

ditional induced velocities (to be added to those for the
unbounded flow case) are given by

y-rl
( 10)

(11)

( 12)

+U
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Induced velocities for combined high-speed free-
surface and ground effect

Free surface effect at large Froude numbers combined with
ground effect for a lifting line of strength f (y) at depth of
submergence d below a free surface and height h above

a ground surface is simulated2 by placing a series of im-
age lifting lines of alternating strengths +f (y) above and

below the lifting line, &s illustrated in Figure 3. The ad-

ditional induced velocities (to be added to those for the

unbounded flow case) are given by

(-1)o
Id+mh

The numerical solution procedure is started with the
classical linear solution which is the truncated Fourier se-

ries 
N

f (P) - 2sUDA,sin n0

During the iteration process the circulation distribu-
tion is updated by means of equation (3), using the latest
values of induced velocities at the sections along the lifting
line. It is necessary to do an inverse Fourier transforma-
tion on the result to obtain the circulation distribution
Fourier coefficients, and, due to the effect of aliasing,s it is

only possible to calculate half as many Fourier coefficients
as there are sections. Consequently, the actual represen-

tation of the nonlinear circulation distribution is given by

(16)

(r7 )

(1e)

ln(,a*mh)'+(y-d1t N/2

f (d) - 2sUD Ansin n0

f (d) F" (0 ,0) sin $d$

ld + rnh

ltu t ld + rnh)' + ,2 (cos @ - cos tf)

drt

(13)

4 (td * mh)' + (y - ,i'

where k - int[(j + 4) l4]., rn = int[(7 + 2) l4], and
/ - intl(r + I) 12] - rn.

Note that equations (9) to (10) can be recovered
equations (13) to (14) by taking only the terms for
2, and that equations (11) to (I2) can be recovered
equations (13) to (14) by takittg only the terms for 7

Numerical model

Representation of the circulation distribution

In the numerical lifting line methods of Anderson et al.6

and Thiart,T the circulation distribution is expressed in
terms of piecewise linear or quadratic curve fits. Near the

wing tips the magnitude of the circulation changes rapidly
(to zero at the wing tips), with the result that the linear
or quadratic representations are inaccurate there. Conse-

quently it is necessary to divide the lifting line into a fairly
large number of sections (100+) it order to obtain accu-

rate results, &S a result of which the methods are prone to
divergence, and usually heavy underrelaxation is required
to obtain a solution, if at all. For the method presented

here, the circulation distribution is expressed in terms of
a Fourier sine series, &s for the classical Prandtl-Lancaster
lifting line method:

oo

f (0) - 2sU DA,, sin n0

where 0 is a transformation variable defined by y =
-(s 12) rosd. As will be shown later, much coarser sub-

divisions of the lifting line (=30 sections) are sufficient to
produce accurate solutions.

where

An= # Ir" 
r (g) sinno d,o (18)

The integrals defined by equation (13) are evaluated
numerically, using piecewise quadratic curve fits for f as

function of d.

Calculation of the induced velocities

The expressions for the induced velocities can be written
in the followirrg general form, coveritg all four cases under
consideration:

rn)i(-1)-
j=l

v-n drl

(14)

from
J

from

(15)

w(0)

ff Nl2

*r(0)= ht nAnsin ng * lr" frt6) F*(Q,e),tE

(20)

The first term in equation (20) represents 'trioo, and
is obtained analytically from equation (8). The remainittg
two terms in equations (19) and (20) represent the effect of
the images, and the integrals contained in them are evalu-
ated numerically using piecewise quadratic curve fits for f ,

Fu, dl ld0 and F, as functions of the dummy variable d.
The functions Fu and F* are defined implicitly by equa-

tions (9) and (10), equations (11) and (12), or equations
(13) and (14), as appropriate. For the most general case,

i.e. when U,i, = Ut* * Utrc and lUr = Wt* * Wtpc,, they
are as follows:

(21 )
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ci

cosd - cosP

In the case of combined free-surface and ground ef-

fect, these functions need only be evaluated for a finite
numbel of images. It has been found by numerical experi-
ntentation that the number of images required for accurate

conrputations can be taken as the nearest integer value to
100/ minldlt,hltl.

Calculation of the lift and induced drag

'fhe coefficients of lift and induced drag are obtained by

irrtegration of equations (1) and (2),analytically in part by

using the expression for the circulation distribution given

by equation (I7) and the first term in the expression for
the downwash given by .quation (20). The results for the
most general case are as follows:

(25)

(26 )

(.27 
)

in lift

F.
s

ẑ7t

1+Ci (1 +r)lrAn
(22)

16 (ld I mh)' + 12 (cos / - cos0)2
rt2

//1 l.-'' 7vDi: ^ (1+6)
7t AR

N12

L: nr - r.ARt (A,,)' + # [" .,rc (0) r (P) stnl d,0

(24)
rhe,.,J:,:g integi': :;"ations (28) and (24) are

evaluated numerically using piecewise quadratic curve fits
for f . 'ui and wtrc as functions of 0.

Results

The numerical model described in the previous section
was programmed in double precision FoRTRANTT. The
program was then used to compute the lift and induced-
drag coefficients for a wing with circular arc cross-sections
rvitlr rnaximum camber equal to 4.375% of chord length.
For such c ross-sec tions the zero-lift angle (oo ) and two-
dimensional lift curve slope (Ci) pt.dicted by thin airfoil
theory are equal to -5o and 2n, respectively. These two
values lvere used for all the results presented in the two
subsections that follow.

In order to ensure convergence, it was necessary to
underrelax the downwash; an underrelaxation factor equal
to 0.50 2N rvas used throughout. The lifting line was subdi-
vided by nreans of the semi-circle method, giving an equi-
Ad spacing. Convergence was assumed to be reached when
the product of the absolute changes in lift and induced-
drag coefficients was less than 10-16 for ten consecutive
rteratrorls.

Convergence

The lift curve slope and induced drag for a wing of finite
aspect ratio cal] be expressed as follows:4

Here r is a lift efficiency factor and 6 an induced-drag
factor which, &ccording to linear lifting line theory, are

both equal to zero for a wing with an elliptical planform.
Computations were carried out to determine values

for r and 5 as function of L0 for four different Ap
wings: the first with an elliptical planform, the secotrd

with a rectangular planform, the third with a triangular
planform, and the fourth with a tapered planform with a

tip-to-root chord ratio of 0.3. These computations were

carried out for two angles of attack: 0o and 5o, and solne

of the results are presented in Figures 4 to 6.

Figure 4 shows that the values of r for all four
planforms and for both angles of attack becomes grid-
independent at L0 ry 3o, i... for l/ ry 60. The sarle applies
for the values of 6, Figure 5 (the results for a - 5o are not,

shown, &S they are almost identical with the a
sults). The number of iterations required to reach conver-
gence for the rectangular wing is less than 200 for e - 0u

and less than 300 for a
F igure 6. The number of iterations required to reach con-
vergence for the other three planforms are almost ideutical
to those for the rectangular wing, and are therefore not
shown.

Boundary effects

The proposed rlurnerical method was further validated by
comparing computed results with those of the analytical
approximations presented by Von K6rmin and Burgers.L
These approximations were derived by means of lumped-
vortex systems, i.e. the wing and each one of its images
are represented by a single horseshoe vortex, the trailing
'legs' of which are separated by r distance 0s.

The factor B can be determined5 by the two require-
ments that (i) the single horseshoe vortex must have the
same strength as the sum of the trailing vortices in the
lifting line representation of the wing, and (ii) that the lift
must be the same for both methods. The result can be

expressed in terms of the Fourier coefficients of the circu-
Iation distribution computed by means of the conventional
linear line method:

0- rAr

('7- trApAy . h lr" 
u;pc(P) f (d) sin 0 clr (23)

4 (At

According to the
and induced drag can

-As*As-Az* )

approximations, the changes
be written as follows:

and
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\ 2 I-t = trAn L- \ trAn 

'L 

) + 
-ao rr 6i'crl

(2e )

The factors o and 6 are the values of the average down-
wash and axialwash, respectively, nondimensionalised with
respect to (J , induced at the lifting line by the image or
images of the horseshoe vortex or vortices representing
the wing. Expressions for these factors are as follows for
ground effect,

Numerical results computed by means of the proposed
nonlinear lifting line method for ground effect and for
high-speed free-surface effect are compared with the cor-
responding analytical approximations in Figures 7-10 for
two practical An - 5 wings: one with a rectangular plan-
form and the other one with a tapered planform with a

tip-to-root chord ratio of 0.3. For these same two wings
numerical results computed by means of the proposed non-
linear lifting line method for combined ground effect and
high-speed free-surface effect are compared with the cor-
responding analytical approximations in Figures II-I2.
These latter results were computed for combinations of
hlt and dlt such that hlt f dls - 1. All the results were
computed for angle of attack o = 0o.

The ground-effect approximation for variation in lift
of the rectangular wing corresponds to within one per-
centage point with the numerical result down to a ground
clearance of hlt N 0.1 (= 0.5 chord lengths), and for the
tapered wing down to a ground clearance of hls ! 0.2 (= 1

mean chord length), Figure 7. The differences for variation
in induced drag are everywhere less than one percentage
point, Figure 8.

The high-speed free-surface effect approximation for
variation in lift of the rectangular wing corresponds to
within one percentage point with the numerical result
down to a submergence of dls ! 0.2 (=1 chord length),
and for the tapered wing down to a submergence of d ls !
0.3 (n: 1.5 mean chord lengths), Figure 9. The differences
for variation in induced drag is less than one percentage

(35 )

€6

and as follows for high-speed free-surface

(30)

(32)op

ep

For combined free-surface and ground effect, the fac-
tors can be obtained by summing the influences of all the
images, the summations being similar to those of equations
(13) and (la):

,bE(-r)-r"l'. (ffi) '] (84)
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point down to a submergence of df s x 0.06 (= 0.3 chord

lengths) for the rectangular wing, and down to a submer-

gence of dls N 0.1 (= 0.5 mean chord lengths) for the

tapered wing, Figure 10.

The combined ground effect and high-speed free-

surface effect approximation for variation in lift of the
rectangular wing corresponds to within one percentage

point with the numerical result between dls N 0.15 and

hlt N 0.15 (both N 0.75 chord lengths), and for the ta-
pered rving between dlt N 0.25 and hlt N 0.2 (xI.25
and 1 Inean chord length, respectively), Figure 11. The
differences for variation in induced drag is less than one

percentage point for dlt >^, 0.05 (= 0.25 chord lengths)
for the rectangular wing, and for dls F= 0.08 (= 0.4 mean
chord lengths) for the tapered wing, Figure 12.

Conclusion

A numerical lifting line method for the computation of lift
and induced drag of a wing in the proximity of a ground
and/or a free surface has been presented. It has been

shown that the method is both robust and accurate. Com-
putations have been presented to show that the method
can be used to estimate the range of accuracy of classi-

cal analytical approximations for computation of lift and
induced drag.

The method can be used to compute towittg tank cor-

rections to measured data, if the clearance between the
wing tips and towing tank side walls are large. Work is
currently in progress to extend the method to also take
into account the effect of side walls.
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