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The ertension of the uorter lattice method for straight hU-

drofoi,ls to hydrofoi,Is of arb'itrary shape 'is presented. The
linearized free surface boundary condition and the radia-
t'ion condit'ion are sati,sfi,ed by the uorter latt'ice, whi,ch is
made up of "Kelu'in" type bound uorter segments and semi-
i,nfi,ni,te traili,ng uor-t'ices parallel to the undisturbed .free sur-

face. Computat'ional results are presented for the hydrody-
nam'ic characteristi,cs (\ift, waue plus induced drag) of a

hydrofoil with a c'ircular arc camber line, as funct'ion o.f

Froude number, depth of submergence, aspect rat'io, taper
rat'io, sweep angle, and di,hedral angle.

lntroduction

Knowledge of the forces and moments experienced by a hy-
drofoil of finite aspect ratio and arbitrary form in the prox-
imity of a free surface is essential for the design of hydrofoil
supported marine vehicles such as the HYSUCAT (HYdro
foil SUpported CATamaran) developed by Hoppe.l'2 Most
of the methods known to this author for the computation
of these forces and moments are based on lifting line the
ory (Kaptan & Breslin;3 Johnsonl4 Furuya;5 Thiart6). Re
cently ThiartT presented a vortex lattice method (VLM)
for hydrofoils of rectangular planform which are essentially
"flat", by which is meant that the foil has zero dihedral
(but not necessarily zero camber). The extension of this
VLM to hydrofoils of arbitrary form is presented in this
paper, specifi.cally for swept and tapered hydrofoils and
hydrofoils with non- zero dihedral, as illustrated in Figure
1. Such hydrofoils have, for example, been found to pre
vide "softer" riding IIYSUCATs, in that the the foils exit
and enter the water surface gradually rather than abruptly
as is the case for rectangular flat foils.

The theory presented in the paper utilizes the same
linearized freesurface boundary condition as for the flat
rectangular hydrofoil, i.e.

0u
Ar+Ko?D-0 at z-0 (1)

Here the r-coordinate is defined a^s being in the di-
rection of the onset flow (which has magnitude tl), the
z-coordinate is defined as being vertically upwards from
the undisturbed free surface, t.l and u.r denote, respectively,
the perturbation velocity components in the r- and z-
directions, and Ks - g lU2 is the wave number, with g
the acceleration of gravity constant. The purpose of the
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theory is to compute the hydrodynamic characteristics of
a hydrofoil in the form

Cr - fc" (a, Fr, dlv, An, ), A, 6)

Cn : fco (o, Fr, dla, Ap, ), A, 6)

CoP - fcop (a, Fr, dle, Ap, ), A, 6)
where C; and C n denote, respectively, the coefficients of
Iift and of wave plus induced drag, CoP the position of
the centre of pressure, a the geometrical angle of attack,
.Fr the Froude numbet, d the mean depth of submergence,
Z the mean chord length , An the aspect ratio, A the taper
ratio, A the sweep angle, and 6 the dihedral angle of the
hydrofoil. The usual definitions for the geometrical quan-
tities e, v, Ap, ), A and 6 apply (see for example Bertin &
Smith).8 The Froude number is based on the mean chord
length, i.e.

Fr-+- e)
,/ g.

Computational results are presented to illustrate the
influence of the aspect ratio, taper ratio, sweep angle, di-
hedral angle, and effective angle of attack on the hydro-
dynamic characteristics of a hydrofoil with a circular arc
camber surface as function of Froude number and depth
of submergence.

Theoretical model

Details of the conventional VLM, which applies to a hydro-
foil in a fluid domain that extends to infinity in aII direc-
tions, are well known (see for example Bertin & Smitn).8
It is essentially a solution of Laplace's equation for a dis-
turbance velocity potential 91, i.e.

v2o - 0 (3)

This disturbance potential has to fuffl the free sur-
face boundary condition given by equation (1), the depth
condition (06102 0 a-s z -> -m), the flow tangency
condition on the hydrofoil surface, and the radiation condi-
tion (free-surface waves generated by the disturbance may
travel downstream only).

The disturbance is caused by the presence of a hydro-
foil, and is superimposed on the uniform flow "seen" by the
hydrofoil. The hydrofoil is usually thin, and is represented
in the VLM by its camber surface (which has zero thick-
ness). The camber surface itself is modelled by means of
a vortex lattice, i.e. the camber surface is subdivided into
a number of quadrilateral panels, for example as shown
in Figure 1, and the influence of each one of these panels
is represented by a so-called bound vortex located at is
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quarter-chord position. For the purposes of this paper it
will be assumed that the hydrofoil is subdivided into M
spanwise strips (extenditrg from tip to tip) and l/ chord-
wise strips (extendittg from the leading edge to the trailing
edge), giving a total of M N panels. Also, following the
findings of Hough,e the lattice is inset one quarter of the
spanwise vortex spacing from the tips of the hydrofoil.

According to the vortex laws of Helmholtz, the bound
vortices cannot end in the fluid domain; they must form
closed loops or extend to infinity. In the conventional VLM
this is accomplished by trailing vortices that extend down-
stream to infinity, usually in a direction parallel to the
chord line or mean camber surface of the hydrofoil. For
the case under discussion, it is natural to have the trail-
ing vortices extend downstream in a direction parallel to
the undisturbed free surface. Fbrthermore, in the conven-
tional VLM the trailing vortices are usually assumed to
"Ieave" the camber surface directly at the endpoints of
the bound vortices, thus forming not one but several "lay-
ers" of trailing vortices. For the case under discussion it is
(intuitively) more correct to have a single layer of trailing
vortices at a specific depth beneath the undisturbed free
surface. Tlo this end, for the purposes of this paper, the
bound vortices are connected in a lattice structure that
follows the curvature of the camber surface to the trailing
edge, from where the trailing vortices extend dornmstream,
a"s illustrated diagrammatically in Figure 2 for one half
of a symmetrical hydrofoil. The relevant strengths of the
bound vortices, "connecting" vortices and trailing vortices
are indicated in Figure 3 for the nth chordwise strip of the
lattice (the vortex strength on the ith spanwise and jth
chordwise panel is indicated by fr, , ).

In the conventional VLN{ the components of the veloc-
ity induced at a general point (*, y , z) in the flow field are
obtained by summing the influences of all the bound vor-
tices, connecting vortices and trailing vortices. In order to
satisfy also the lineari zed free surface boundary condition
that is applicable here, it is necessary to add, for any one
vortex segment, the influences of its image (in the undis-
turbed free surface) "r well as its socalled wavemaking
influences. Expressions for the cornputation of atl these
induced velocities are derived in the Appendix.

The strengths of the bound vortices are obtained, as
for the conventional VLM, by application of the tangential
flow boundaxy condition at the camber surface, in partic-
ular at control points located at the three.quarter chord
position in the centre of each panel. Im this w&y, a set of
M IV linear equations of the form

u6 sin (a -.*) - uk cos (a - e6) sin66
* wn cos (o - e6) cos 6p

- _.Lrsin (o - ,i) (4)

k-1,...,MN

is established, wherein the M IV fs are the unknowns. In
equation (4) ukt u1, and wp represent the total contribu-
tions of all vortex segments to the components of induced
velocity at the control point (*n,uk, zn), and €p and 6n

denote, respectively, the local camber angle and dihedral
angle at the control point.

Once the system of equations represented by equation
( ) has been solved, the lift and drag forces on the hydrofoil
can be cornputed as in the conventional VLM, by means
of the Kutta-Zhukovsky theorem. Thus, in dimensionless
form,

cr:#triLai.ru+ui) (b)

cn: y#fl tiLyiuti (6)
ar r'/ 

j:l

where LAi denotes the "span width" of the chordwise strip
on which panel 7 is located, and s the span width of the
hydrofoil itself. The subscript j is used here instead of
the subscript k in equation (4), to indicate that the veloc-
ities z7 and wi have to be calculated at the centres of the
relevant bound vortices not at the control points. The
leading edge moment can be computed in a similar way:

() A -Z 
MN

c M," :'#E r i Lai 
| ? 19' ;:,:;)@, - *,") ] e)

Finally, the location of the centre of pressure can be
obtained from

CoP
QTcosa*Cnsina

Computational results

AU the results reported here were computed for a symmet-
rical hydrofoil with a 4.37570 circular arc camber surface,
at zero angle of attack (i.e. a, - 0) and at a depth of sub
mergence equal to half a chord length. The zeruhft angle
of attack for this camber surface is exactly -bo, accord-
ing to thin airfoil theory; the effective angle of attack was
therefore equal to 5o in all cases.

For every situation computations were performed on
three progressively finer grids: 8 x 4, 10 x 8, and J2 x
16 panels on one half of the foil. The results were extrap
olated to zero grid size using Richardson extrapolation.
The order of extrapolation was estimated from the compu-
tational results on the three grids in the manner described
by Fbrzigier and Perii.12

Results for the lift are presented in terms of the ra-
tio CrlCr*,2Dt where Cr is the computed lift coefficient
and C L*,2D is the theoretical lift coefficient of the come-
sponding trvodiurensional foil at infinite submergence (i.".
12 lt8 here). Because dtug is essentiatly proportional to
the square of the lift, results for the drag (i.". the *invis-

cid dtog". u'hich consists of the socalled vortex induced
dtog and the wave aras) a,re presented in terms of the ra-
tio C o lC?, wher e C n is the computed coeffi.cient of drag.
No results are presented for the centre-of-pressure, due to
lack of space.

(8)
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Results are presented for Froude numbers from 0.5 to
20, although the rarrge of practical interest is for Floude
numbers higher than about 5. The discussion of the results
that follow pertains to this range of interest.

fnfluence of aspect ratio:

Computations were carried out for zerudihedral, rectan-
grrlar hydrofoils with aspect ratios of 2, 5, 10 and oo (i.".
a twodimensional hydrofoil). The variation of lift and

drag as function of aspect ratio and Floude number are
presented in Figures 4 and 5. It is clear that the lift is
drastically reduced for small-aspect ratio hydrofoils; even

more so than for hydrofoils at infinite submergence, where

the theoretical reduction of lift for a wing with an aspect

ratio of 5 would "ottly" be about 30%. The drag increases

exponentially with decrease in aspect ratio.

Influence of taper ratio:

Computations were carried out for straight ) zer>dihedral
hydrofoils with taper ratios of 1, *, i, and 0, and an as-

pect ratio of 5. The variation of lift and drag as function
of taper ratio and Froude number are presented in Fig-
ures 6 and 7. It is clear that lift and drag are not much
affected for taper ratios between 1 and |, Uut that for a ta-
per ratio of 0 (i.". a doubly triangular hydrofoil) the lift is

significantly reduced and the dtag significantly increased.

Surprisingly, a taper ratio of 1 (i.". a rectangular hydro
foil) appears to be close to any optimum that may exist.
This is contrary to the result for an infinitely submerged
wing, where a taper ratio of about * is optimum.

Influence of sweep angle:

Computations were carried out for untapered, zet>
dihedral hydrofoils with sv/eep angles of -30o, -15o, 0o,

15o, 30o, and 45", and aII aspect ratio of 5. The varia-
tion of lift and drag as function of sweep angle and Floude
number a.re presented in Figures 8 and 9. It is clear that
the lift is significantly reduced for sweep angles greater in
absolute 'ralue than about 30o, whilst the drag appears to
decrease almost linearly with sweep angle over the range

for which the computations were performed-

Influence of dihedral angle:

Computations were carried out for rectangular hydrofoils
with di-hedral angles of -10", -5o,0o, and 5o, and an as-

pect ratio of 5. The variation of lift and drag as function
of sweep angle and Floude number axe presented in FiS-

ures 10 and 11. Neither the lift nor the dtag seems to be

significantly a,ffected for these small dihedral angles, and
it is apparent that a dihedral angle of 0" is close to any

optimum that may ercist.

Concluding remarks

From the computations presented in this paper, it can be

concluded that the most efficient hydrofoil for steady mo-
tion is one with as large an aspect ratio as possible, no
dihedral or taper, and swept back at an angle of approxi-
mately 30o.

The computations reported here are extremely CPU-
intensive, even though the method is based on a linearized
free-surface boundary condition. This is due mainly to
the numerical integrations required for the computation
of the induced velocities associated with the wave poten-
tial. Often not only lift, dtag and centre-of-pressure results
are required, but also the deformation of the free surface.

The computation of the deformation of the free surface

by mearrs of the proposed method is certainly possible,

but not really feasible a,s a very large number of points on

the (infinite) free surface have to be computed. Therefore
work is currently in progless to model the fully nonlin-
ear free surface by means of a staggered grid higher or-
der panel method similar to the one developed by Thiart
and Bertraml3 for the computation of flow over a two-
dirnensional hydrofoil. The results presented in this paper
are proving to be of great value for cornparative purposes.
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An= Io

Figure 4 Variation of lift as function of aspect ratio (o =0, dlZ = 0.5, ) = 1, A:0o, 6:0")

Figure 5 Variation of drag as function of aspect ratio (o : O, d,lT- 0.5,,\ : 1, A : 0o, d : 0')
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Figure 7 Variation of drag as function of taper ratio (o :O, dlV:0'5, '4n: 5' A:0"' 6:0o)
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Figure 8 Variation of lift as function of sweep angle (a :0, dlE:O.5, An: 5, ,\: 1, 6:0o)
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Figure 10 Variation of lift as function of dihedral angle (o :O, dlV:0.5, AR: 5, ): 1, A:0")
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Figure 11 Variation of drag as function of dihedral angle (o :O, d,lE:0.5, Aa :5, I: 1, A:0o)
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The X-direction component of the velocity induced at
the position r- by the image in the undisturbed free surface

(i.u. the XY-plane) of the vortex segment is obtained in
a similar manner:

duf -
f (t*0dq+(a-rild'e

(A3)

Specifically at z - 0, therefore the X-direction component
of velocity induced by the vortex segment and its image is

given by

duo : dur(t-o) +dui(z-o)

f edrt + @ - ri de (A4)

10.

12.

11.
n" 

{@ -()' + @ - d2 + Q * e)',}''

'" {@ -€)' + @ - rt)2 + e'\''

l#(do*) 
+ ",*@,0-,] 

":o

13. Thiart GD k Bertram V. Staggered grid panel

method for hydrofoils with fully nonlinear free
surface effect. International Shipbuilding Progress,

45,313-329, 1998.

Appendix

We consider the general vortex segment shown in Figure
12: it has strength f and (vector) length Al - A€l +
Lqi + LeE Aho shown in Figure 12 is an infinitesimal
element on this vortex segment, located at position s+ -
€i + rti +(f, with vector lensth iI - a€i + drti + det. The
velocity induced by this vortex element at the position
i - ,i + yV + zE can be obtained from the law of Biot-
Savart, i.e.

This induced velocity will have a non-zero value only
the vortex segment is not parallel to the X-axis, i.e.

L,q-AC-0.
The value of the Z-component of the induced velocity

at the free surface, duto, it zero ever)rwhere due to sym-

metry. The linearized free surface boundary condition can

therefore be expressed as follorvs in terms of duo and the
n'avemaking potential dS- associated with the vortex seg-

ment:

if
if

dt, (n - 
rdl x (r--iJ
anl"-- rf3

fifa"ol (A5)
(A1)

Upon substitution of the relevant quantities in equa-

tion (A1), the X-direction component of the induced t'e
locity is obtained:

du1' -
f (z-0dq-(y-dde

(A2)

\\b consider first the left hand side of equation (Ab).
A useful solution of Laplace's equation, which also satisfies
the depth condition, is7

dQ- : l:_ Ir* 
C (*, u)exp {n (inw)} d,n d,u (A6)

Figure 12 Vortex segment

(*,v,")

n" 
{@ 

_€)' + @ -,i' * Q - 0'}'''
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where u - (r - {) cos u*(A - 4) sin u, andC (*, u) a func-
tion that has to be determined, and where it is understood
that only the real part is taken. We use this solution to
obtain, for the left hand side of equation (A5),

l#@'o-)+.r*@,0-,] ,:o

- f _" I: * (*o - Kcos2 u) C (rc, z) exp (inw) d,n d,u

Next ure consider the right hand side of equation (gl
From equation (A4) *" have

(r-€) tedn+(v -ilde\ (A8)

Consider now h

2n

{t" - €)' +
(Ae)

'n_n I: 
exp {-rc(z -C) + ircw} d,rcd,u-l

T.kitrg derivatives with respect to r and z on both
sides of equation (A9), yields the followittg result at z : 0 :

6n(r-OC

The function C (*, u) is obtained by substituting
equations (A7) and (A12) into equation (A5):

C (*, u)

fK
- 

- 
_ (troude -isecudq)exp("()4tr2Kgs€c2u-K\ J

(A13)
We denote by Ku the term ns sec2 u, and substitute

equation (A13) into equation (4.6) to obtain the velocity
potential for the infinitesimal vortex element:

dd_:hl"_^l:h
x (tan u de - i sec u dri exp {o (, + C) * 'inwl' drc du

(A14)
It can be shown, by using the periodic nature of the

integrand with respect to t/, that equation (A14) reduces
to

nn /2 
^oc

II,, I: #.(tan u.e-isec udn)

x exp {" (z * C) + ircw} drcdu

-*(duo) -

tl

{f"-€) '+@-,i'+r'}u'
e followitrg identity:7

@-rt)z+Q-e)'jt' dQ- - #o.
(A15)

The integration with respect to K in equation (A15)
can be performed utilizing the methodology of Giesing and
Smith,l0 whence it can be shown that it is necess&ry, in
order to satisfy the radiation condition, to add the term

{f" - € )' + @ - r)2 + e2}'''

- i 
I"_^ l: rc2 cos u exp{" (( * inu)} d,rc d,u

(A1o)

Similarly, taking derivatives with respect to r and g
on both sides of equation (A9), yields the following result
at z: 0:

6r(r-€)@-rt)

rc2 sin u cos u exp {" (( f i,xt't)} drc du

(A11)
We nolil/ use equations (A8), (A10), and (A11) to ob-

tain, for the right hand side of equation (A5),

-#@uo):h I"__l:
x n2 cos z (sin u de - i dri exp {r (( * i,nu)} dn du

(A12)

to the velocity potential. This term cancels out waves
travelling upstream of the disturbance caused by the vor-
tex segment. The velocity potential for the infinitesimal
vortex segment is therefore

I-
d'0- - ; R"

- n)' + er\'' f '' (tan u d,e- i sec , dri
J -n/2

(-i*, exp {*, (, * C) + in,w}

.+ I: #exp {*(,+C) *i,rcw}d,rc)d,u

(A16)
The wavemaking velocity potential of the whole vor-

tex segment is obtained by integrating the expression
for dd- over the straight line corulecting its "left hand"
and "right hand" endpoints (&,rtt,Cr) a^nd (€", Tr,Cr). To
this end we replace € by €o + (A€/Aril q, where €o :
(rt,& - \t€,) I (rt, - ,tt), and e by (o * @e lLri q, where
(o - (rt"Q - Tte") I (rt, - ,tt). The result of the subsequent
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integration with respect to n between U and T, can be
written in the following convenient format:

0-:

Here H (r) denotes the Heaviside step function, whidr
is equal to I if w
maining integral in equation (A24) c€ur be erraluated nu-
merically as described by Hess and Smith.ll The integra-
tion with respect to u in equations (A17) and (A20) to
(A22) has to be done numerically; Gaussian quadratr:re is
especially convenient in this respect, as it avoids the sin-
gularities at u - fur 12 that axe introduced by the function
(r, L€, Lq,AC) and the factor Kr. Extensive numerical ex-
perimentation has shown that a reliable estimate for the
required order .l/6 of the Gaussian quadrature required for
accurate results is the rninimum of 1024 and the nearest
integer to

( 19. 52 + 4.22AR) d;l"tr 43-o'o32s A R

X F r0.51 
56 - 0. 0 rT I A n *( 0. 0 1 26+0. 0 1 05 AE ) d',, i',

where dr'i' is the minimum depth of submergence of any
point on the hydrofoil.

The 'hravemaking" contribution V- - (u-,uu,,ura) to
the total velocity induced by the vortex segment is added
to the contributions of the vortex segment itself and of its
image in the undisturbed free surface, Vr
and ti: (rr,uf,ui), respectively.

The components of are obtained by integrating equa-
tion (A1) over the vortex segment; the result can be ex-
pressed as follows:

?.Jl:
f

4nA,l

S," { (z - e,) Lry - (a - r,) A(}
R. (s7 - R7)

sr { (z - Ct) Lq - (y - rt) A(}

(A25)

Rt@? - Rf)

f
&rLI

S, { (r - €,") A( - (z - e,) A€}
(A26)ru67 - R7)

s, { (r - {1)a( - (z - et) A€}

l0r :

Rt6? _ R?)

f
4nLI

S," t (a - q,) L€ - (r - €,) Ary)

h(s? - R7)

S, t @ - qt) L€ - (r - €t) Arl)

(A27)

Rt(s? - R7)

where

^s - s(e ,rt,e) - (r- €) tr + (y - rt)X * Q- C) tr
(A28)

* l"::,o"
(A17)

x 
| {}Aff:X'}?,(,,€t,rtt,a)} ]0"

where

f (r,A(, Lrl,l() : Lq sec / + i\e tanu
(A18)

A(cos u * Lqsinz + iAC

and

I (r,€,r1,() : -z exp {*, (, + C) + irc,w}

1 f* 1 (A19)
a: 

J , ." - "exn 
{"(' + () * i'nwlr dn

The components of the wavemaking velocity induced
by the vortex segment are obtained in the usual manner by
differentiation of S- with to r, A, and z, respectively; the
results carr be written in the following convenient format:

(A2o)

fuu: - 2"

xf Y;?,f r(,,&,rtt,c)) ] "", 
u d,u

x 
| \'; ti,'r),?;.?f.l -, (,, t,, Tt,,a ) ) ] sin u d,u

?nus :

x 
I l";?i,'r)T;,i:] -r(,,€,,rt,,a)] ] 

du

where

J (r,€,rl,C) : -inrexp {*, (t * C) + inrw}

f fn/2I)ut: -* J _^,rt^

-I r,, RC2" J -n/2

(A21)

(A22)

Ut:

-. o -exp {o(,+() *inu}d*Ku-K

Equation (A23) can be written as follo\Ms,
of the methodolory of Giesing and Smith:l0

J (r,€,T,() : -ziH (r) *"exp {*, (, * () + irc,w}

e-t dt
t + n, {(, * C) + ir}

(A24)
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and

R - A (g ,rt, e) : (A29)

For the specific case of as trailing vortex extending to
infinity in the X-direction, uy,

and (A28) reduce to

Expressions similar to equations (A25) (A31) can
be obtained for the components of t1, by replacing in these
equations f by -f, I bV -et, e, bV -G, and AC bV -A(.
Hence it can be shown that

Ut:

wr.:

f z-(
4n(r-d2*e-0'
f a-rt
4n(y-ril'+e-0'

(A3o)

(A31)

uf (r, U, z) - uy (*, y, - z)

,i(*,U,2) - uy(*,y,-z)

.f (r, U , z) - -tuy (*, y, - z)

(A32)

(A33)

(A34)
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