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The extension of the vortex lattice method for straight hy-
drofoils to hydrofoils of arbitrary shape is presented. The
linearized free surface boundary condition and the radia-
tion condition are satisfied by the vortex lattice, which is
made up of “Kelvin” type bound vortex segments and semi-
infinite trailing vortices parallel to the undisturbed free sur-
face. Computational results are presented for the hydrody-
namic characteristics (lift, wave plus induced drag) of a
hydrofoil with a circular arc camber line, as function of
Froude number, depth of submergence, aspect ratio, taper
ratio, sweep angle, and dihedral angle.

Introduction

Knowledge of the forces and moments experienced by a hy-
drofoil of finite aspect ratio and arbitrary form in the prox-
imity of a free surface is essential for the design of hydrofoil
supported marine vehicles such as the HYSUCAT (HYdro-
foil SUpported CATamaran) developed by Hoppe.!2 Most
of the methods known to this author for the computation
of these forces and moments are based on lifting line the-
ory (Kaplan & Breslin;3 Johnson;* Furuya;® Thiartf). Re-
cently Thiart” presented a vortex lattice method (VLM)
for hydrofoils of rectangular planform which are essentially
“flat”, by which is meant that the foil has zero dihedral
(but not necessarily zero camber). The extension of this
VLM to hydrofoils of arbitrary form is presented in this
paper, specifically for swept and tapered hydrofoils and
hydrofoils with non-zero dihedral, as illustrated in Figure
1. Such hydrofoils have, for example, been found to pro-
vide “softer” riding HYSUCATS, in that the the foils exit
and enter the water surface gradually rather than abruptly
as is the case for rectangular flat foils.

The theory presented in the paper utilizes the same
linearized free-surface boundary condition as for the flat
rectangular hydrofoil, i.e.

%+now=0 at 2=0 1)

Here the z-coordinate is defined as being in the di-
rection of the onset flow (which has magnitude U), the
z-coordinate is defined as being vertically upwards from
the undisturbed free surface, u and w denote, respectively,
the perturbation velocity components in the z- and z-
directions, and k9 = g/U? is the wave number, with g
the acceleration of gravity constant. The purpose of the
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theory is to compute the hydrodynamic characteristics of
a hydrofoil in the form

Cr = ZFe¢,(a, Fr,dfe, Ag, \ A, 6)

C'D — -7:CD (Cl, F"', d/E, AR, Aa Aa 6)

CoP = Fcopr (Ck, Fr, d/E, Agr, A\ A, 5)

where C, and Cp denote, respectively, the coefficients of
lift and of wave plus induced drag, CoP the position of
the centre of pressure, a the geometrical angle of attack,
Fr the Froude number, d the mean depth of submergence,
¢ the mean chord length, Ag the aspect ratio, A the taper
ratio, A the sweep angle, and § the dihedral angle of the
hydrofoil. The usual definitions for the geometrical quan-
tities o, ¢, AR, A, A and 6 apply (see for example Bertin &
Smith).8 The Froude number is based on the mean chord
length, i.e.

Fr=— (2)

Computational results are presented to illustrate the
influence of the aspect ratio, taper ratio, sweep angle, di-
hedral angle, and effective angle of attack on the hydro-
dynamic characteristics of a hydrofoil with a circular arc
camber surface as function of Froude number and depth
of submergence.

Theoretical model

Details of the conventional VLM, which applies to a hydro-
foil in a fluid domain that extends to infinity in all direc-
tions, are well known (see for example Bertin & Smith).8
It is essentially a solution of Laplace’s equation for a dis-
turbance velocity potential ¢, i.e.

Vi =0 3)

This disturbance potential has to fulfil the free sur-
face boundary condition given by equation (1), the depth
condition (0¢/0z — 0 as z — —o0), the flow tangency
condition on the hydrofoil surface, and the radiation condi-
tion (free-surface waves generated by the disturbance may
travel downstream only).

The disturbance is caused by the presence of a hydro-
foil, and is superimposed on the uniform flow “seen” by the
hydrofoil. The hydrofoil is usually thin, and is represented
in the VLM by its camber surface (which has zero thick-
ness). The camber surface itself is modelled by means of
a vortex lattice, i.e. the camber surface is subdivided into
a number of quadrilateral panels, for example as shown
in Figure 1, and the influence of each one of these panels
is represented by a so-called bound vortex located at is
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quarter-chord position. For the purposes of this paper it
will be assumed that the hydrofoil is subdivided into M
spanwise strips (extending from tip to tip) and N chord-
wise strips (extending from the leading edge to the trailing
edge), giving a total of M N panels. Also, following the
findings of Hough,? the lattice is inset one quarter of the
spanwise vortex spacing from the tips of the hydrofoil.

According to the vortex laws of Helmholtz, the bound
vortices cannot end in the fluid domain; they must form
closed loops or extend to infinity. In the conventional VLM
this is accomplished by trailing vortices that extend down-
stream to infinity, usually in a direction parallel to the
chord line or mean camber surface of the hydrofoil. For
the case under discussion, it is natural to have the trail-
ing vortices extend downstream in a direction parallel to
the undisturbed free surface. Furthermore, in the conven-
tional VLM the trailing vortices are usually assumed to
“leave” the camber surface directly at the endpoints of
the bound vortices, thus forming not one but several “lay-
ers” of trailing vortices. For the case under discussion it is
(intuitively) more correct to have a single layer of trailing
vortices at a specific depth beneath the undisturbed free
surface. To this end, for the purposes of this paper, the
bound vortices are connected in a lattice structure that
follows the curvature of the camber surface to the trailing
edge, from where the trailing vortices extend downstream,
as illustrated diagrammatically in Figure 2 for one half
of a symmetrical hydrofoil. The relevant strengths of the
bound vortices, “connecting” vortices and trailing vortices
are indicated in Figure 3 for the nt" chordwise strip of the
lattice (the vortex strength on the i*h spanwise and jth
chordwise panel is indicated by T; ;).

In the conventional VLM the components of the veloc-
ity induced at a general point (z,y, z) in the flow field are
obtained by summing the influences of all the bound vor-
tices, connecting vortices and trailing vortices. In order to
satisfy also the linearized free surface boundary condition
that is applicable here, it is necessary to add, for any one
vortex segment, the influences of its image (in the undis-
turbed free surface) as well as its so-called wavemaking
influences. Expressions for the computation of all these
induced velocities are derived in the Appendix.

The strengths of the bound vortices are obtained, as
for the conventional VLM, by application of the tangential
flow boundary condition at the camber surface, in partic-
ular at control points located at the three-quarter chord
position in the centre of each panel. In this way, a set of
MN linear equations of the form

ug sin (@ — €x) — vk cos (@ — €k ) sin &y,

+ wy, cos (a — €x) cos &y, 4
= —Usin (o — €) )
k=1,..,MN

is established, wherein the M N T's are the unknowns. In
equation (4) ug, vx and wy, represent the total contribu-
tions of all vortex segments to the components of induced
velocity at the control point (zk,yk,2x), and €, and &

denote, respectively, the local camber angle and dihedral
angle at the control point.

Once the system of equations represented by equation
(4) has been solved, the lift and drag forces on the hydrofoil
can be computed as in the conventional VLM, by means
of the Kutta-Zhukovsky theorem. Thus, in dimensionless
form,

_ 24
CL= s Zr Ay; (U +u;) ()
24
’_)UR; ZF AyJwJ (6)

where Ay; denotes the “span width” of the chordwise strip
on which panel j is located, and s the span width of the
hydrofoil itself. The subscript j is used here instead of
the subscript & in equation (4), to indicate that the veloc-
ities u; and w; have to be calculated at the centres of the
relevant bound vortices — not at the control points. The
leading edge moment can be computed in a similar way:

2A 2, Sty wW; (25 — Zle
M = 3[};2 ZP Ay; [ _(§7+ujl) zxj — Tze) } @

Finally, the location of the centre of pressure can be
obtained from

CAIIE
Crcosa+ Cpsina

CoP = — (8)

Computational results

All the results reported here were computed for a symmet-
rical hydrofoil with a 4.375% circular arc camber surface,
at zero angle of attack (i.e. @ = 0) and at a depth of sub-
mergence equal to half a chord length. The zero-lift angle
of attack for this camber surface is exactly —5°, accord-
ing to thin airfoil theory; the effective angle of attack was
therefore equal to 5° in all cases.

For every situation computations were performed on
three progressively finer grids: 8 x 4, 16 x 8, and 32 x
16 panels on one half of the foil. The results were extrap-
olated to zero grid size using Richardson extrapolation.
The order of extrapolation was estimated from the compu-
tational results on the three grids in the manner described
by Ferzigier and Perié¢.12

Results for the lift are presented in terms of the ra-
tio C1/ClLoo,2D, Where C[ is the computed lift coefficient
and Creo2p is the theoretical lift coefficient of the corre-
sponding two-dimensional foil at infinite submergence (i.e.

72/18 here). Because drag is essentially proportional to
the square of the lift, results for the drag (i.e. the “invis-
cid drag”, which consists of the so-called vortex induced
drag and the wave drag) are presented in terms of the ra-
tio Cp/ C'I{, where Cp is the computed coefficient of drag.
No results are presented for the centre-of-pressure, due to
lack of space.
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Results are presented for Froude numbers from 0.5 to
20, although the range of practical interest is for Froude
numbers higher than about 5. The discussion of the results
that follow pertains to this range of interest.

Influence of aspect ratio:

Computations were carried out for zero-dihedral, rectan-
gular hydrofoils with aspect ratios of 2, 5, 10 and oo (i.e.
a two-dimensional hydrofoil). The variation of lift and
drag as function of aspect ratio and Froude number are
presented in Figures 4 and 5. It is clear that the lift is
drastically reduced for small-aspect ratio hydrofoils; even
more so than for hydrofoils at infinite submergence, where
the theoretical reduction of lift for a wing with an aspect
ratio of 5 would “only” be about 30%. The drag increases
exponentially with decrease in aspect ratio.

Influence of taper ratio:

Computations were carried out for straight, zero-dihedral
hydrofoils with taper ratios of 1, 3, %, and 0, and an as-
pect ratio of 5. The variation of lift and drag as function
of taper ratio and Froude number are presented in Fig-
ures 6 and 7. It is clear that lift and drag are not much
affected for taper ratios between 1 and %, but that for a ta-
per ratio of 0 (i.e. a doubly triangular hydrofoil) the lift is
significantly reduced and the drag significantly increased.
Surprisingly, a taper ratio of 1 (i.e. a rectangular hydro-
foil) appears to be close to any optimum that may exist.
This is contiary to the result for an infinitely submerged
wing, where a taper ratio of about % is optimum.

Influence of sweep angle:

Computations were carried out for untapered, zero-
dihedral hydrofoils with sweep angles of —30°, —15°, 0°,
15°, 30°, and 45°, and an aspect ratio of 5. The varia-
tion of lift and drag as function of sweep angle and Froude
number are presented in Figures 8 and 9. It is clear that
the lift is significantly reduced for sweep angles greater in
absolute value than about 30°, whilst the drag appears to
decrease almost linearly with sweep angle over the range
for which the computations were performed.

Influence of dihedral angle:

Computations were carried out for rectangular hydrofoils
with di-hedral angles of —10°, —5°, 0°, and 5°, and an as-
pect ratio of 5. The variation of lift and drag as function
of sweep angle and Froude number are presented in Fig-
ures 10 and 11. Neither the lift nor the drag seems to be
significantly affected for these small dihedral angles, and
it is apparent that a dihedral angle of 0° is close to any
optimum that may exist.

Concluding remarks

From the computations presented in this paper, it can be
concluded that the most efficient hydrofoil for steady mo-
tion is one with as large an aspect ratio as possible, no
dihedral or taper, and swept back at an angle of approxi-
mately 30°.

The computations reported here are extremely CPU-
intensive, even though the method is based on a linearized
free-surface boundary condition. This is due mainly to
the numerical integrations required for the computation
of the induced velocities associated with the wave poten-
tial. Often not only lift, drag and centre-of-pressure results
are required, but also the deformation of the free surface.
The computation of the deformation of the free surface
by means of the proposed method is certainly possible,
but not really feasible as a very large number of points on
the (infinite) free surface have to be computed. Therefore
work is currently in progress to model the fully nonlin-
ear free surface by means of a staggered grid higher or-
der panel method similar to the one developed by Thiart
and Bertram!® for the computation of flow over a two-
dimensional hydrofoil. The results presented in this paper
are proving to be of great value for comparative purposes.
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Appendix

We consider the general vortex segment shown in Figure
12: it has strength T and (vector) length Al = A& +
Anj + AC E. Also shown in Figure 12 is an infinitesimal
element on this vortex segment, located at position §=
£z +nj i+ Ck with vector length dl = dei+ dn] + d(k The
velocity induced by this vortex element at the position
F=xzi4y)+ zk can be obtained from the law of Biot-
Savart, i.e.

Ldl x (7 — )

A |7 — 5

Upon substitution of the relevant quantities in equa-
tion (A1), the X-direction component of the induced ve-
locity is obtained:

_r (z—=¢)dn—

dVr (7) = (A1)

(y —n)d¢ (A2)

The X-direction component of the velocity induced at
the position 7 by the image in the undisturbed free surface
(i.e. the XY-plane) of the vortex segment is obtained in
a similar manner:

2
@9+ -+ 07}

deI—

Specifically at z = 0, therefore the X-direction component
of velocity induced by the vortex segment and its image is
given by

dug = dur(z=0)+dus(2=0)
T dn + (y —m) d¢ (A4)
3/2
fe-ePrw-nP e}

This induced velocity will have a non-zero value only if
the vortex segment is not parallel to the X-axis, i.e. if
An=A(=0.

The value of the Z-component of the induced velocity
at the free surface, dwyg, is zero everywhere due to sym-
metry. The linearized free surface boundary condition can
therefore be expressed as follows in terms of dup and the
wavemaking potential d¢,, associated with the vortex seg-
ment:

2
[662(dow)+no—(d¢w)] =-a%(du0) (A5)

z=0

We consider first the left hand side of equation (A5).
A useful solution of Laplace’s equation, which also satisfies
the depth condition, is”

dur doy, = / / C (k, v) exp {k (ikw)} dk dv (A6)
4 2 2 2)3/2 —wJo
{e-+@-n*+(@=-07}
Z
T s
= g
\\
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PR - Figure 12 Vortex segment
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where w = (z — §) cosv+(y — 1) sinv, and C (k, v) a func-
tion that has to be determined, and where it is understood
that only the real part is taken. We use this solution to
obtain, for the left hand side of equation (A5),

0? )
[@ (dbw) + Ko (d¢w)] B
— /7’ /°° K (ko — kcos? v) C (k, v) exp (ikw) dk dv
—_ 0

(A7)
Next we consider the right hand side of equation (A5).
From equation (A4) we have

R (O R

0
== % (duo) =

Consider now the following identity:”

2m
{e-+@-n*+(-07}

1/2
(A9)

:/in/:oexp{—n(z—g)+inw}dndu

Taking derivatives with respect to  and z on both
sides of equation (A9), yields the following result at 2 =0 :

6m (z —&)¢
{(w—£)2+(y—n)2+c2} .

(A10)
=1 z/:r /:o k% cosvexp {k (¢ + ikw)} dk dv

Similarly, taking derivatives with respect to z and y
on both sides of equation (A9), yields the following result
at z=0:

6r(z—&)(y—n)
2 2 5/2
{e-9*+w-—n*+¢}

= —/ / k2 sinv cosvexp {k (¢ + ikw)} dk dv
—-nJ 0

(A11)
We now use equations (A8), (A10), and (A1l) to ob-
tain, for the right hand side of equation (A5),

a F m {o o)
‘%“‘“"):m/-,/o

x k2 cosv (sinvd¢ — i dn) exp {k (¢ + ikw)} dk dv
(A12)

The function C(k, v) is obtained by substituting
equations (A7) and (A12) into equation (A5):

C(k, v)

r K .
= 4—71'5 m (ta.nud( — 18€ec l/d’f]) exp (K,C)
(A13)

We denote by k, the term kgsec”v, and substitute
equation (A13) into equation (A6) to obtain the velocity
potential for the infinitesimal vortex element:

r [« = 1 I
by = —
¢ 4#2/_,/0 Ky — K

x (tanv d¢ —isecvdn)exp {k (z + ) + ikw} dk dv
(A14)
It can be shown, by using the periodic nature of the
integrand with respect to v, that equation (A14) reduces
to

2

/2 0o i
r / / - _K(tanydg“—isecudn)
dpy = mRe -m/2J 0 P

xexp{k(z+ () +ikw}drdv
(A15)
The integration with respect to x in equation (A15)
can be performed utilizing the methodology of Giesing and
Smith,'® whence it can be shown that it is necessary, in
order to satisfy the radiation condition, to add the term

/2
T i7r/ Ky (tanv d¢ — isecv dn)
—7/2

x exp {ky (z + ¢) + ik w} dv

to the velocity potential. This term cancels out waves
travelling upstream of the disturbance caused by the vor-
tex segment. The velocity potential for the infinitesimal
vortex segment is therefore

r
doy = o Re

r /2 b
/ (tanv d¢ — isecv dn)
—m/2

X | (—iky exp{ky, (2 + ¢) + ik w}

™

1 [ & )
+—/ exp {k (z + {) + ikw} dk) dv
L 0 Ky — K

(A16)

The wavemaking velocity potential of the whole vor-

tex segment is obtained by integrating the expression
for d¢,, over the straight line connecting its “left hand”
and “right hand” endpoints (&, m,¢) and (&-,7r, (). To
this end we replace £ by & + (A¢/An)n, where & =
(& — mEr) / (1 — m), and C by Co + (AC/An)n, where
¢o = (& —m&) / (nr — m)- The result of the subsequent
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integration with respect to n between 7, and 7, can be
written in the following convenient format:

/2
¢w = L Re
2m —7/2
(A17)
f (v, A&, An, A¢)
X [ {I(V,'sf"nﬂgr) - I(”;{l)"lvél)} ] &
where
_ Ansecv+iA(tanv
f v, AL, An, A¢) = A€ cosv + Ansinv +iA¢ (A1E)
and
I(v,€,n,¢) = —iexp{k, (2 + () + ik w}
(A19)

1 (oo}
+;/0 Kul_ﬁexp{n(z+C)+inw}d/c

The components of the wavemaking velocity induced
by the vortex segment are obtained in the usual manner by
differentiation of ¢,, with to z, y, and z, respectively; the
results can be written in the following convenient format:

1'1 7I’/2
Uy = —— Im
2m —n/2

(A20)

{J(V,grq'f]r,gr) — J(V’ﬁl’nlaCl)} ] cosvdy

r /2
Uy = —— Im
2 —m/2

(A21)

{J(Va é’l‘an’l‘aC’r) - J(V7€l)nlaCl)}
& /2

52 [ (v, A¢, An, AQ) ] sinv dy

Re

Sy = _% —n/2

(A22)
[ (v, Ag, An, AQ) ] W
{J (V’ §Tﬂ77T,CT) - J(V7 51,771,(1)}

where
J(V7§a n, C) = —iK, eXP{Ku (Z + C) + in,,w}

+;/0 ﬁun_nexp{/c(z+()+inw}dn

Equation (A23) can be written as follows, by means
of the methodology of Giesing and Smith:1?

J(v,€,1,¢) = —2iH (w) k, exp {k, (2 + ¢) + ik, w}

+l 1 B o0 e~tdt
T [ (z+¢) +iw KV/O t+ Kk, {(z+¢) +iw}
(A24

Here H (w) denotes the Heaviside step function, which
is equal to 1 if w > 0 and equal to 0 otherwise. The re-
maining integral in equation (A24) can be evaluated nu-
merically as described by Hess and Smith.!! The integra-
tion with respect to v in equations (A17) and (A20) to
(A22) has to be done numerically; Gaussian quadrature is
especially convenient in this respect, as it avoids the sin-
gularities at ¥ = +7/2 that are introduced by the function
(v, AE, An, A¢) and the factor k,,. Extensive numerical ex-
perimentation has shown that a reliable estimate for the
required order Ng of the Gaussian quadrature required for
accurate results is the minimum of 1024 and the nearest
integer to

(19.52 + 4.22A ) d 8743003294

X F!,,.O.5156-0,0179AR+(0.0126+0.0105A1z)dm1n

where d;, 1S the minimum depth of submergence of any
point on the hydrofoil.

The “wavemaking” contribution V= (U Vo, Wey) tO
the total velocity induced by the vortex segment is added
to the contributions of the vortex segment itself and of its
image in the undisturbed free surface, Ve = (ur, vr,wr)
and V} = (up, vy, wp), respectively.

The components of are obtained by integrating equa-
tion (Al) over the vortex segment; the result can be ex-
pressed as follows:

T
U 4rAl
Sr{(z—¢)An—(y—nr) A
X
_Si{(z—G)An — (y —m) A}
R, (S} — R?)
T
T~ 4xAl
Sr —Sr A¢— b A
{(= I?(S,g—gg) ¢r) AL} (A26)
X
_Si{(z-&)AC— (2 - Q) A¢}
Rl(Slz—R?)
oo T
T~ 4rAl
Sr — Tlr AL — 51 A
{(y 7}71,)(5;—5’:%) §) An} (A27)
X
_Si{ly —m) AL — (z — &) An}
R, (S? - R?)
where
S=SEn0=(-9F +@-nF+(-0%
(A28)
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and

R=R(n,0)=@->+@-n’+(-0> (A29)

For the specific case of as trailing vortex extending to
infinity in the X-direction, ur = 0, and equations (A27)
and (A28) reduce to

___F_ z—( T =&

T 4”(y—77)2+(z—<)2( Rt) e
il y—n rT—&

B T P <” 3 ) (A31)

Expressions similar to equations (A25) — (A31) can
be obtained for the components of 171:, by replacing in these
equations I by —TI', ¢ by —(;, ¢ by —(-, and A{ by —A(.
Hence it can be shown that

up (2,¥,2) = ur (z,y, —2) (A32)
Vg (x’ Y, Z) =1r (:l?, Y, _2) (A33)
wg (wa Y, Z) = —uwr (11!, Y, _z) (A34)
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