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The Boiling Crisis Phenomenon in Two-phase Flow
B. Sedler*

University of Stellenbosch

An analytic model of the flow boiling crisis in annular flow (at high vapour quality ) and own experimental
results of Freon 21 are presented in the paper. The model is based on the analysis of the film drying process
on the channel wall, thus expressing the mass balance of both the film and the core by means of differential
equations. The solution of these equations contains the parameters determined experimentally since
theoretical predictions are not possible at this stage.

Nomenclature
C parameter in the mass transfer equations
c concentration of droplets in the flow core
D  mass flux of deposition
d non-dimensional mass flux of deposition d = D/G,
channel diameter
E mass flow of entrainment
e non-dimensional mass flux of entrainment e = E/G
G mass flux of the main flow
g non-dimensional mass flux of the main flow
K parameter in the mass transfer equations
k mass transfer coefficient
p pressure
r latent heat of vaporization
S non-dimensional constant S = Yz,
2X,,

b
t non-dimensional parameter t = X, z—+

‘cr
v non-dimensional specific volume V = %

G

v specific volume
X steam quality
Y parameter
z longitudinal co-ordinate
z*  non-dimensional longitudinal co-ordinate
q heat flux
q* non-dimensional heat flux

Greek symbols

specific density
surface tension
dynamic viscosity
kinematic viscosity

=R Q™

Subscripts

droplet in the core; core

entrainment; equilibrium

deposition

film

gas

flow core

boiling crisis, critical state

liquid

beginning of the annular flow, channel diameter
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Introduction

The boiling crisis phenomenon occurs in different technical
devices, e.g. in nuclear reactors, steam generators and refrigera-
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tion evaporators. In the case of the high parameters equipment
with two-phase vapour-liquid flow (boiling nuclear reactors,
steam generators) the boiling crisis may result in serious damage
due to the burn-out of the steam channels. In the low para-
meters steam generators, e.g. working on low-boiling media, the
crisis diminishes the heat transfer intensity and is not desirable
for technical reasons. Such generators are of increasing interest.
Besides in refrigeration technology, they are used in utilizing the
waste heat of chemical processes and will probably be applied in
the new geothermal or solar plants with turbines working on
low-boiling media.

Boiling is generally characterized by a high heat transfer coef-
ficient, so that a large heat flux can be sustained at a fairly low
temperature difference between the heat transfer surface and the
boiling fluid. However, if attempts are made to increase the heat
flux beyond a certain level, the nature of the boiling process
changes radically and the heat transfer coefficient drops dra-
matically. This limiting heat flux is known as the “critical heat
flux — CHF” or as “burn-out” [7, 10]. Numerous investigations
performed in the last decade were concerned with the mecha-
nism of the boiling crisis and the methods of its prediction.

Satisfactory solutions of this very complex problem have not
yet been obtained. Practically no comprehensive analytic
studies of the boiling crisis phenomenon exist, except for some
simple models. As a substantial number of data does now exist,
mostly for water, empirical or semi-emperical solutions [1, 15,
25], as well as a solution based on an annular flow model [6, 9-
13, 26-29] were established, these solutions being applicable to
any fluid. =

Another criterion of dry-out as a limit of mist flow in up-
stream approach [18] can be very useful in establishing the scal-
ing law for the modelling of the CHF in drop-annular flow.

A general review on recent work in this field is provided for
example in [17] and [24]. In this paper an analytic model of the
boiling crisis at high vapour quality and the author’s investiga-
tions of that phenomenon are presented. The model employs the
analysis of the film dry-out process on the wall which allows
formulation of the differential equations of mass balance in the
film and the core. The solution of these equations contains the
parameters which are determined experimentally, since their
theoretical prediction involves serious difficulties.

The theoretical model of the flow boiling crisis

The analytic model of flow boiling crisis in annular flow (at high
vapour quality) is presented below. The model is based on the
Harwell annular CHF model [26]. The Harwell model based on
the film dry-out process involves a complex computer proce-
dure, but gives fairly good results for water and other media,
e.g. Freon 12, Fig. 1,2 [9]. In this paper the basis of an analytical
model of the boiling crisis at high vapour quality and the
author’s investigations of that phenomenon are presented [20-
24]. Let us consider the two-phase annular flow of mass flux G
in a circular channel of internal diameter d,. The liquid film
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Figure 2 - Dryout in Freon-12 flow, after [9]

covers the channel wall, and the vapour with suspended droplets
of liquid, flows in the core, Fig. 3. The beginning of the annular
flow pattern is assumed to be known and from that point the
mass balance starts. As a criterion of the CHF the film dry-out
on the wall is assumed; however, recent investigations [19]
suggest film breakdown into rivulets rather than its entire
evaporation. For the sake of simplicity it is assumed that the
crisis occurs at a film flow-rate equal to zero. This simplification
was justified in [21, 22]. The mass flux of evaporation from the
liquid film due to the wall heat flux q, is equal to g/r. This pro-
cess is accompanied by the droplet entrainment from the film
surface E and the droplet deposition onto the film surface D.
The “flashing” terms [28] are not considered as secondary
effects.

In accordance with the assumed model, the elementary mass
changes of the film and the core are:

dgr

T =4d—-e+q")

(1a)
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Figure 3 — A model of the annular flow with boiling

dg
dzf =4(—d + e) (1b)
where
D E q + z
d==;e = —; o= -1 = =
c°~ g9 Tu? Tq

In order to solve the set of equations (1a, b) the fluxes d and e
must be known. It was assumed

€
d

K.C.g (¢))
C.g (32)

where K and C are the parameters not exactly defined at the
moment. This assumption differs from the Harwell model, but
according to [2, 3, S, 8, 14, 29], experiments show that the
dimensionless deposition coefficient is a function of the concen-
tration of entrained droplets and the rate of entrainment is pro-
portional to the liquid film flowrate and to the gas velocity, Fig.
(4, 5). These relations are also expressed by egs. (2, 3a).

According to [26] the deposition mass flux rate d may be
expressed by

_ kg

d
G

(3b)

where k is the mass transfer coefficient and c;signifies the con-

centration of liquid within the core and may be determined after
[13], as

G = L- @)
T =x) v+ XV,
Steam quality within the flow core is defined as follows:
Gg 1 — g — 8
. = 5
=G -G - g ©)

The general formula describing the mass transfer coefficient k is
given in [21] as
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Figure 5 — Correlation of the rate of entrainment as a function of the
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k=ck%(1 — g — g ©)

where C, is a function of the fluid properties and the two-phase
characteristics (vg, fg, T, pe Vo> d, ...) and m, n are not exactly
known exponents*.

Combining equations (2), (3a, b), (4) and (6) one finds

d=C, ge(l — gr — go)"
ge v+ (1 + g — g) Ve

(M

gr(l — g — g)r
kgEVL+(] + g — 8) Vg

@®)

G -1

where C, = C, R

©

Then from equation (1a, b), (7) and (8) a set of nonlinear differ-
ential equations describing the dimensionless mass fluxes within
the film and the core is obtained

*For small droplets d, < 0,1 ugm, n = 0,8, m = 0,2, [21].

3
degr _ ge(l —gr —g)
dz* kgEVL+(l + 8 — 8) Vo
. gl — gr — )" +
K C -q7) (10a)
kge"l."' (I — g — g) Vg
dg; _ ge (1 — ge — g’
+ 4(-C,
dz gevi + (1 + g — 80 Vg

kgEvL+(l — 8 — 8) V6

Rearranging equations (10a, b) one obtains the first-order non-
linear differential equation for the film mass flux

der (- g — 88 — Kog) | (11)
dt gV + (1 —g —g)
zt
where t = x, — S
ZL’I’
s — 4Zcr Ck = Y Zer (13)
X Vg 2 Xer
v oh (14)
Vg
and qt = Jae "X L X 12
and ¢ 4z, 4z 0

According to Hewitt [13], and Whalley et al [26], it was recog-
nised that the annular flow pattern exists at a steam quality
equal to 0,01 and if the share of the film flow is about 0,01 of the
total mass flow-rate of the liquid phase. However the most re-
cent results [9], show that for high-pressure water-steam flow
the annular flow conditions occur at x, = 0,05. For the higher
steam qualities at the onset of annular flow, equation (11) takes
the following form:

dg _ el -8 — 89— Kg) (11%)
dt* &V + (0 —g —g)
where
N
t* = (x, — x) = (12%)
S* — 4z, C, B Yz, (13%)
(e — X) VG 2Xe — X,)
q+ — Xcr4;> X, (15*)

and other quantities remain unchanged.

Equation (11) or (11*) cannot be solved analytically and,
hence, a numerical method was used. As a result the function of
the critical steam quality x,, vs the non-dimensional co-ordinate
Yz, for selected values of K, n and V was obtained. The results
are shown in Fig. 6. For the sake of comparison the results of the
analytic solution of the simplified form of equation (11) with the
assumption of n = 1 and V = 0 are presented in Fig. 6. The
above simplifications allow direct determination of the steam
quality in the cross section of crisis (where the film disappears)
as a function of non-dimensional co-ordinate of boiling Yz,, (or
Yz ).
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Figure 9 - Critical vapour quality X_, vs non-dimensional critical boiling length YZ, after eqns (16) and (20) in comparison with the experimental
data for Freon-21 (d, = 0,008 m, p = 5,5, 10,6, 15,0 bar)

were determined from the experiments with Freon 21 so that the
following formula for Y d, was obtained.

—1.40
(Y d)e_y = 1,27 x 10° <—G d°> (1 - 19 L)
/‘tG pcr

(19)

In the experiments with Freon 21 the mass flux G and the pres-
sure were variable and the tube diameter d, was constant.
The critical vapour quality x, as predicted by equation (16)
and (19) is compared to experimental results in figure 9. It fol-
lows that 74% of the experimental points lie within the error of
plus minus 10% and all of them within plus minus 25% error.
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Figure 10 — Experimental results of the boiling crisis investigations of

Freon-12, [4], p = 10,6 bar, d, = 0,0053 m: O — G = 710 kg/m?3s,

A — G = 815 kg/m?s, 0 — G = 1380 kg/m3s, ® — G = 1610
kg/m?s, (...) after [4], (—) eqn (16)
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Figure 11 — Experimental results of the boiling crisis investigations of

Freon-12, [4], p = 10,6 bar, d, = 0,0085 m: O — G = 510 kg/m?s,

0 — G = 670 kg/m?s, A — G = 1020 kg/ms, ® — G = 2030
kg/m?s; (...) after [4], (—) eqn (16)

The comparison of the experimental results for Freon 21 and
Freon 12

For the sake of comparison the predictions after the model
described here were carried out for the experiments with Freon
12 performed by Stevens, (after [4]). The results, shown in Figs.
10-12 are in very good agreement with the experiments, particu-
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larly at lower mass fluxes. In the experiments mentioned above
the mass flux G and the tube diameter d, varied and the pressure
was kept constant. The relevant formula for Y for Freon 12
takes the form.

117 —1.60
(Yd,)e_,, = 1,805 x 10-? (‘“—‘f‘i") (G—d>
He Hg
where K assumes similar values as before and is also
assumed to be equal to 20.

The comparison of the experimental results of Freon
12 with the predictions made after equation (16) with
regard to equation (20) shows most of the points lying
within error limits of plus minus 15%.

(20)

Entrainment and deposition rates

Another important fact appears from analysing equa-
tion (2) and (3a) with experimental results for K.

From (2) and (3a) it follows

e = k.d.BF Q1)
g

where K can be assumed as about 20 and g /ge, =~ 0,01

(according to Hewitt [13]).

then

e, ~ 0,20 d, (21a)
which is a local value 4t the beginning of annular flow and cor-
responds fairly well with the last results of the calculation of e
and d rates, Fig. 13, [29]. It can also be seen that the local
entrainment to the deposition rate becomes less in the axial
direction toward CHF point which is in agreement with the
assumed model and was previously indicated by Hewitt, [13].
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Figure 13 — Calculations of local parameters in evaporating flow with
dryout and subsequent post-dryout region (UKAEA Harwell/Univer-
sity of Oxford), after [29]

Conclusions

Present annular flow models are based primarily on the Harwell
model [26-29]. The calculations are made by combining two fun-
damental relationships for annular flow: the “triangular” rela-
tionship and the “‘interfacial roughness” correlation, [10]. How-
ever, although the models have been very successful, they
depend on correlations for entrainment rate, deposition and
interfacial friction. The current research is focused on this field.

The author’s model of CHF in annular flow based on a simple
assumption concerning entrainment and deposition rates
(e ~ grandd ~ g;) givesa simple analytical solution similar to
recent empirical correlations (Silvestri, after [4]). These assump-
tions are in agreement with most recent results [3, 5, 12, 29].

The correlations established for K and Y [equations (19),
(20)] are, presently specific for each medium.

It is hoped that further theoretical and experimental research
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will result in a more precise identification and determination of
these parameters and, possibly, a general relationship valid for
different media will be produced.
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