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The Boiling Phenomenon
B. Sedler*

U niversfty of Stellenbosch

Two-phase FlowGrisis

An analytic model of the flow boiling crisis in annular flow ( at hish vapour quality ) and own expqrimental
results of Freon 2 I are presented in the paper. The model is based on the analysis of the film drying process
on the channel wall, thus expressing the mass balance of both thefilm and the core by means of dffirential
equalions. The solution of these equations conlains the parameters delermined experimentally since
theoretical predictions are not possible at this stage.
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Nomencladure

C parameter in the mass transfer equations
c concentration of droplets in the flow core
D mass flux of deposition
d non-dimensional mass flux of deposition d - D/G,

channel diameter
E mass flow of entrainment
e non-dimensional mass flux of entrainment e - EIG
G mass flux of the main flow
g non-dimensional mass flux of the main flow
K parameter in the mass transfer equations
k mass transfer coefficient
p pressu-re
r latent heat of vaporization

S non-dimensional constant S _ Yz"
2x,,

+

t non-dimensional parameter t - *,,+
2",

V non-dimensional specific volume V - 
vL

VG

specific volume
steam quality
parameter
longitudinal co-ordinate
non-dimensional longitudinal co-ordinate
heat flux
non-dimensional heat flux

Greek symbols

p specific density
o surface tension
It dynamic viscosity
v kinematic viscosity

Subsuipts

c droplet in the core; core
E entrainment; equilibrium
D deposition
F film
G gas
j flow core
cr boiling crisis, critical state
L liquid
o beginning of the annular flow, channel diameter

Introduction

The boiling crisis phenomenon occurs in different technical
devices, e.g. in nuclear reactors, steam generators and refrigera-

*Senior Lecturer
Department of Mechanical Engineering
University of Stellenbosch
7600 Stellenbosch

tion evaporators. In the case of the high parameters equipment
with two-phase vapour-liquid flow (boiling nuclear reactors,
steam generators) the boiling crisis may result in serious damage
due to the burn-out of the steam channels. In the low para-
meters steam generators, e.g. working on low-boiling media, the
crisis diminishes the heat transfer intensity and is not desirable
for technical reasons. Such generators are of increasing interest.
Besides in refrigeration technology, they are used in utilizing the
waste heat of chemical processes and will probably be applied in
the new geothermal or solar plants with turbines working on
low-boiling media.

Boiling is generally characterized by a high heat transfer coef-
ficient, so that a large heat flux can be sustained at a fairly low
temperature difference between the heat transfer surface and the
boiling fluid. However, if attempts are made to increase the heat
flux beyond a certain level, the nature of the boiling process
changes radically and the heat transfer coefficient drops dra-
matically. This limiting heat flux is known as the "critical heat
flux - CHF" or as "burn-out" 17,l0]. Numerous investigations
performed in the last decade were concerned with the mecha-
nism of the boiling crisis and the methods of its prediction.
Satisfactory solutions of this very complex problem have not

yet been obtained. Practically no comprehensive analytic
studies of the boiling crisis phenomenon exist, except for some
simple models. As a substantial number of data does now exist,
mostly for water, empirical or semi-emperical soiutions [, 15,

251, as well as a solution based on an annular flow model 16, 9-
13,26-291 were established, these solutions being applicable to
any fluid . -

Another criterion of dry-out as a limit of mist flow in up-
stream approach [ 8] can be very useful in establishing the scal-
ing law for the modelling of the CHF in drop-annular flow.

A general review on recent work in this field is provided for
example in [ 7] and [241. In this paper an analytic model of the
boiling crisis at high vapour quality and the author's investiga-
tions of that phenomenon are presented. The model employs the
analysis of the film dry-out process on the wall which allows
lormulation of the differential equations of mass balance in the
film and the core. The solution of these equations contains the
parameters which are determined experimentally, since their
theoretical prediction involves serious ditficulties.

The theoretical model of the flow boiling crisis

The analytic model of flow boiling crisis in annular flow (at high
vapour quality) is presented below. The model is based on the
Harwell annular CHF model 1261. The Harwell model based on
the film dry-out process involves a complex computer proce-
dure, but gives fairly good results for water and other media,
e.g. Freon l2,Fig. 1,2[9].In this paper the basis of an analytical
model of the boiling crisis at high vapour quality and the
author's investigations of that phenomenon are presented [20-
24l.Let us consider the two-phase annular flow of mass flux G
in a circular channel of internal diameter ds. The liquid film
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In order to solve the set of equations (la, b) the fluxes d and e
must be known. It was assumed
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Figure 2 - Dryout in Freon-l2llow, atter [9]

covers the channel wall, and the vapour with suspended droplets
of liquid, flows in the core, Fig. 3. The beginning of the annular
flow pattern is assumed to be known and from that point the
mass balance starts. As a criterion of the CHF the film dry-out
on the wall is assumed; however, recent investigations [ 9]
suggest film breakdown into rivulets rather than its entire
evaporation. For the sake of simplicity it is assumed that the
crisis occurs at a film flow-rate equal to zero. This simplification
was justified in l2l, 2zl.The mass flux of evaporation from the
liquid film due to the wall heat flux e, is equal to q/r. This pro-
cess is accompanied by the droplet entrainment from the film
surface E and the droplet deposition onto the film surface D.
The "flashing" terms [28] are not considered as secondary
effects.

In accordance with the assumed model, the elementary mass
changes of the film and the core are:

where K and C are the parameters not exactly defined at the
moment. This assumption differs from the Harwell model, but
according to 12, 3,5, 8, 14,291, experiments show that the
dimensionless deposition coefficient is a function of the concen-
tration of entrained droplets and the rate of entrainment is pro-
portional to the liquid film flowrate and to the gas velocity, Fig.
(4, 5). These relations are also expressed by eqs. (2,3a).

According to 126l the deposition mass flux rate d may be
expressed by

where k is the mass transfer coefficient and c, signifies the con-
centration of liquid within the core and may be determined after
[ 3], as

d_Il
G

c,_ l-*.,
' (l - x,) v.- + Xj V,

Steam quality within the flow core

(3b)

(4)

is defined as follows:

GGxj:
GGF

(la) Ih. general formula describing the mass transfer coefficient k is
given in l2l I as

l-ge Be

I -Br
(5)

+_4(d e+q*)
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Figure 4 - Correlation ol deposition coefficient by dimensionless re-
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Rearranging equations (10a, b) one obtains the first-order non-
linear differential equation for the film mass flux
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According to Hewitt [ 3], and Whalley et al [26], it was recog-
nised that the annular flow pattern exists at a steam quality
equal to 0,01 and if the share of the film flow is about 0,01 of the
total mass flow-rate of the liquid phase. However the most re-
cent results [9], show that for high-pressure water-steam flow
the annular flow conditions occur of xo : 0,05. For the higher
steam qualities at the onset of annular flow, equation (l l) takes
the following form:

g.V+(l ge g.)

k_c-$fr Br BJ"
where

(6)

1*c _ (X., x.) z*
-2,,

(12*)

(13*)

(15*)

where Cn is a function of the fluid properties and the two-phase
characteristics (uo, Fc, T, p' v, d. ...) and ffi, D are not exactly
known exponents*.

Combining equations (2), (3a, b), (4) and (6) one finds

8r)"d-c;

YZ,,

gr( I 8e

grv.+(l +gn gJvo

where C; _ C-ftJ^ dl' (9)

Then from equation ( I a, b), (7) and (8) a set of nonlinear differ-
ential equations describing the dimensionless mass fluxes within
the film and the core is obtained

*For small dropletS do

and other quantities remain unchanged.
Equation (l l) or (l l*) cannot be solved analytically and,

hence, a numerical method was used. As a result the function of
the critical steam quality x., vs the non-dimensional co-ordinate
Yr* for selected values of K, n and V was obtained. The results
are shown in Fig. 6. For the sake of comparison the results of the
analytic solution of the simplified form of equation (l l) with the
assumption of n _ I and V = 0 are presented in Fig. 6. The
above simplifications allow direct determination of the steam
quality in the cross section of crisis (where the film disappears)
as a function of non-dimensional co-ordinate of boiling Yz., (or
Yz ,r)-

8e
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data lor Freon-2l (dn : 0'008 rl, p : 5,5, 10,6' 15,0 bar)

were determined from the experiments with Freon 2l so that the
following formula for Y d. was obtained.

652
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The critical vapour quality xcr as predicted by equation ( l6)

and (19) is compared to experimental results in figure 9. It fol-
lows that 74% of the experimental points lie within the error of
plus minus l0% and all of them within plus minus 25% error.
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Figure 10 - Experimental results of the boiling crisis investigations ot
Freon-l2, l4l, p - 10,6 bar, do : 0,0053 m: C G _ 710kghl.s,
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kg/m2s, (...) after l4l, (-) eqn (16)
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Figure 11 - Experimental results ol the boiling crisis investigations of
Freon-12,J41, p - 10,6 bar, do : 0,0085 m: O G - 510 kg/m2s,
tr G _ 670 kg/ln's, A G _ 1020 kg/m2s, O - G _ 2030

kg/m2s; (...) afier [4], (-) eqn (16)

The comparison of the experimental results for Freon 2l and
Freon 12

For the sake of comparison the predictions after the model
described here were carried out for the experiments with Freon
l2 performed by Stevens, (after t4]).The results, shown in Figs.
l0- l 2 are in very good agreement with the experiments, particu-
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STEAM -ITATER AT 20 BAR . MASS FLUX
= 1000 kg/nzs . TUBE DIAMETER =0, 0lm
HEAT FLUX : 580 kW/nz
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where K assumes similar values as before and is also
assumed to be equal to 20.

The comparison of the experimental results of Freon
l2 with the predictions made after equation ( l6) with
regard to equation (20) shows most ol the points lying
within error limits of plus minus l5%.

Entrainment and deposition rates

Another important fact appears from analysing equa-
tion (2) and (3a) with experimental results for K.

From (2) and (3a) it follows

e - k.d.ft
8r

5,0

I 000

500

0
750

550

300

200

r00

;
N
E

trfj
IL

i
trJ

.E
CD.E

8
ct)F Te

2,,. lml

Figure 12- Experimental results ol the boiling crisis investigations of
Freon-l2, l4l, P - 10,6 bar, do : 0,0161 m: O G _ 510 kg/m2s,
n - G :770 kg/m.s, A - G _ 1020 kg/m2s; (...) after [4], (-)

eqn (16)

larly at lower mass fluxes. In the experiments mentioned above
the mass flux G and the tube diameter do varied and the pressure
was kept constant. The relevant formula for Y for Freon 12
takes the florm.
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where K can be assumed as about 20 and g.o/guo ^/ 0,01
(according to Hewitt tl3l).

then
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THERMODYNAMIC OUALITY
Figure 13 - Galculations of local parameters in evaporating llow with
dryout and subsequent post-dryout region (UKAEA Harwell/Univer-

sity ol Oxford), after [29]

Conclusions

Present annular flow models are based primarily on the Harwell
model 126-29). The calculations are made by combining two fun-
damental relationships for annular flow: the "triangular" rela-
tionship and the "interfacial roughness" correlation, [0]. How-
ever, although the models have been very successful, they
depend on correlations for entrainment rate, deposition and
interfacial friction. The current research is focused on this field.

The author's model of CHF in annular flow based on a simple
assumption concerning entrainment and deposition rates
(e - g. and d N g.) gives a simple analytical solution similar to
recent empirical correlations (Silvestri, after t4l). These assump-
tions are in agreement with most recent results [3, 5, 12, 29].

The correlations established for K and Y [equations ( l9),
(20)l are, presently specific for each medium.

It is hoped that further theoretical and experimental research

which is a local value at the beginning of annular flow and cor-
responds fairly well with the last results of the calculation of e
and d rates, Fig. 13, [291. It can also be seen that the local
entrainment to the deposition rate becomes less in the axial
direction toward CHF point which is in agreement with the
assumed model and was previously indicated by Hewitt, [13].
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will result in a more precise identification and determination of
these parameters and, possibly, d general relationship valid for
different media will be produced.
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