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Nomenclature

Symbols

f vector of physical force [N]

I unit matrix

k matrix of lumped stiffnesses (nodal description) [N/m]

K matrix of modal stiffnesses (modal description) [Nm]

m matrix of lumped masses (nodal description) tkgl

M matrix of modal masses (modal description) [kg m']

q vector of modal coordinates [m]

T matrix of mode shape vectors for substructures

matrix of coupling

matrix of mode shape vectors (in independent modal

x ffilT;lfiiiffi.::iilil,
e)2 eigenfrequencies [rad/s]2

Superscripts

A substructure A
l, ...N substructure I to N

Subsuipts

i interior node
j junction node
M modal coordinates
n natural
R residual matrix, or independent coordinate
S square matrix,, or dependent coordinate
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A method is presented v'hereby the vibration of complex structures, consisting of any combination of
substructures, can be calculated, provided that the dynamic properties of the substructures are known.
Modal data (mass,frequency and shape of modes ) of the substructures are usedfor calculation purposes.
Experimentally acquired dynamic properties of an aircraft and underwing store confguration are com-
pared to properties predicted by the modal coupling technique. A fair agreement between measured and
predicted data is observed for the lower frequency modes.
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Notation

{ } brackets used to describe a vector
t ] brackets used to describe a matrix

notation if q is a vector

notation if q is a matrix

Introduction

The vibration analysis of a complex structure is usually ac-
complished either numerically by finite element methods or ex-
perimentally. These analyses can be expensive and laborious if
the structure is very complex tl]. Modern combat aircraft in
particular must undergo extensive vibration testing due to the
great variety of different underwing stores that must be carried
for different missions. These tests, called ground vibration tests,
can exceed any reasonable cost frame if all the different store
configurations are to be tested tl].

A modal coupling technique can help to ease this problem
U-31. Such a technique consists firstly of acquiring the modal
data of all the substructures by means of ground vibration test-
ing or by means ol finite element analyses. Secondly, the modal
data of any configuration of these substructures can then be
determined by an inexpensive calculation procedure.

The Aeroelastic Section of the National Institute flor Aero-
nautics and System Technology (NIAST) initiated a project to
establish if the accuracy of data predicted by a modal coupling
techique is sufficient for flutter clearance purposes. Although
the idea of modal coupling is not new 11,2,4, 5), detailed deriva-
tions of relevant coupling techniques are seldom given in the
references. Complete sets of ground vibration test data are
further seldom compared in these papers to predicted data. An
extensive literature survey of more than seventy papers [3] pro-
duced no paper with sufficient information for NIAST's
purposes.

The purpose of this paper is to develop the complete theory of
a particular modal coupling technique, as well as to demon-
strate its application by presenting a complete set of measured
and predicted modal data for an aircraft and store configura-
tron.

Theory

Introduction

The vibration of a continuous substructure, that is one with an
infinite number of degrees of freedoffi, can be approximated by
a set of motion equations valid at a finite number of points in the
structure. The structure is therefore in effect discretised to a

finite number of lumped masses (m) and stiffnesses (k). The
equations of motion at these finite number of node points for a
substructure can be written in matrix form as follows (neglect-
ing damping):

T2

T3
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:f
and

The physical displacements X in equation ( I ) are partitioned
into an interior displacement vector X. and an interface (be-
tween substructures) displacement vector X,. Forces acting on etc.

the interface are denoted by vector [j. No forces will be applied
at interior nodes.

to

The physical substructure displacement vector X can be ex-
pressed as the sum of mode shape vectors T,, namely

where qr are the generalised or modal coordinates for the r'h

mode of the substructure. Different types of modes T, can be
used for the modal coupling procedure, e.g. dynamic, rigid or
static modes [3]. For the purpose of this study, only dynamic
and rigid body modes were investigated. Free interface modes
(no forces applied to junction points) were used for the dynamic
modes, because they are convenient to measure t3l. The free
interface modes can be predicted by solving equation (l) with
the force vector I equai to zero. The solution'of equaiion (l)
will then yield the free interface mode matrix, as well as the
frequencies of the different modes of vibration.

Equation (2) for free interface modes for a substructure can
be rewritten in modal coordinates by substituting equation (3)
into equatio n (2) and by premultiplying by the tianspose of T,
namely

_0
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junctions, the equilibrium conditions will also be satisfied t3l).
The equations for compatibility for N substructures that are

( I ) coupled to structure A are the following:

xl, - xj\

where jl, j2, . .. jN are the junction nodes between structure A
and substructures 1,2 ... N respectively. The displacements of
the junction nodes of structure A at its junction with substruc-
ture I are given bV Xi. The corresponding vector of displace-

ments for junction points of substructure I is denoted by Xj,.

Equations (7) can be transformed to modal coordinates by
using equation (3) and can then be rewritten in the following
form:

Tig^ J' q':9

etc.

to Tfr qo T,\ q* _ 0 (8)

Equations (8) can be written in matrix lorm as

_o

Tfi,

Equation (9) can be written as

(7)

(3)

(4)

(5)

o

to
JJTJ

Tli,TJI

or ryIq+Kq

(6)K_ azM

--0

where M and K are the matrices of generalised or modal masses

and stiffnesses respectively.

At the natural frequency of a mode, the following equation is

valid:

where r4' is the matrix of eigenfrequencies. During ground vi-
bration tests the matrices for modal masses M, eigenfrequencies
uf and mode shapes ! (eigenvectors) are measured.

Modal coupling of substructures

Substructures are usually coupled rigidly or by elastic elements.
Only rigid coupling was however investigated.

For rigidly coupled substructures, the compatibility con-
dition must be satisfied at the respective interfaces. (It can be
proved that if the compatibility conditions are satisfied at the

_o

which can be rewritten as the following:

o

I

l-

)L
I (e)

where T, is a square matrix and

from matrix AA.

( l0)

(l l)

T* the residual matrix derived

AAq
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If q* is chosen as the independent variable, the value for q,

can be derived from equation ( I I ) as

9s _ -T;' T* 9n
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(WtM) which can be calculated from known ground vibration

data.

The mode shapes or eigenvectors Ts resulting from the solu-

tion of equation (16), however, present a problem, as they are
not expressed in physical coordinates. Equation (16) with inde-

pendent coordinates llR can be rewritten in modal coordinates

9" by using the following transformation equation:

9n_ Ts9v

(r2)

By combining equations (10), (l l) and (12) the modal coordi-

nates !l can be written in terms of the independent coordinates

gn aS the following:

- Tz 9n (13)

The uncoupled dynamic equations (equations (5) and (6)) for all
the substructures are given in matrix lorm as:

Substituting equation (17) into equation (13) and the resulting
equation into equation (3), yields the following equation for the

physical displacement vector X for the coupled system:

(17)

(18)X: T, 9"TT

qo

q'

q"

where the matrices I and tqqtVf ) are the uncoupled modal ma-

trices for mass and stiffness respectively.

The dynamic equations for the coupled system can be derived
by substituting equation (13) into equation (14) and by premul-

tiplying by Trt,, namely

(ar'M)ol O lg ! Ol:-l:r:

| (e'VI)'liq I e-i 1. -r
\oo

_1_

+ (eM)q_ q

MAIO
Ir-

I tryr'
I_L,r_
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T--

e iq
or Mq

qo

qt

q^

o

o

o

o

where the matrices M and (U' M) are the coupled modal matri-

ces for mass and stiffness respectively. Equation ( I 6) for the
coupled system can be solved, as all the matrices in it are known
from ground vibration test on the individual substructures. The

solution yields the eigenvalues ctf and eigenvectors !., for the

coupled system in the independent coordinates q*.

Modal data for coupled structure

The modal masses and stiffnesses (or frequencies) of specific

modes for the coupled structure are given by the matrices $ and

I

o rq lIi q t (q'ryI)"

( l4)

where T T, T, is the mode shape matrix in physical coordinates

for the coupled structure.

Test results and discussion

An aircraft with six external stores were used for the experi-
ments. Standard ground vibration tests [3] were carried out to
establish the free interface modal data of the aircraft without the
stores. Rigid body modes were used in the simulation procedure
for the dynamic properties of the six stores. A ground vibration
test was also done on the aircralt with the coupled stores. Pre-
dicted and measured modal frequencies and masses for the
coupled configuration are presented in Table l. The top and
side views of the measured and predicted mode shapes for the
first mode (f : 8,24H2) of the coupled configuration are shown
in figures I and 2.

For flutter analyses the lower frequency modes are usually
the most important. The predicted modal data for vibration
modes with frequencies smaller than 20Hz were in fair agree-
ment with measured data. The largest deviation of a predicted
frequency from the measured value for modes below 20Hz was
7,7o at l4,,5lHz. Except for mode number l0 at l8,9Hz the
modal masses where predicted to within 30% of the measured
values. The accuracy of these predictions are within the
accuracy of measurements [3]. Mode number l0 was not well
isolated during ground vibration tests, and it is therefore not
possible to make a sensible comparison between measured and
predicted modal data for this mode. Table I shows that two
modes below 20Hz were not predicted. The reason is that these

T,' LI T'Q* + !,'(q2$) T, 9* _ q (15)

( l6)or U d- + (W'V_I) q* - q
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Table I Measured and predicted modal data

29

Measured Modal Data Predicted Modal Data

No. f[Hz] M[kgm2] f[Hz]

oh Deviation
from GVT data M[kgm2]

% Deviation
from GVT data

I
2
3

4
5

6

7

8

9
l0
ll
t2
l3
t4
l5
t6
l7
l8
l9
20
2t
22
23
24
25
26
27

m

m

m

m

8,24
9,18
9,52

10,89
11,,64

12,03
12,53
14,51
17,54
18,90

Not
22,47
23,71
25,02
26,76

Not
38,1 8
39,83
48,06
47,68
48,65
50,08
51,70
52,16

Not
65,53

Not

137,63
183,83

61,29
ll7 ,17

69,82
1.31,72
135,02
87,28

125,23
159,79

sured
l5,l 3

17,05
30,00
78.90

:asured
I s,lg
:asured

8,23

9,31
10,64
I 1,36
12,03
12,54
13,40

18,10
22,02
22,65
23,65
25,43
28,12
31,47
37,32

38,1 0
48,21
48,47
52,20

57,22
59,84

Not
68.72

I 0,120 I

, Not measure

| 20.,70oh

I t ,lDoh
I o37o
I q,23oh

I Not measure

I 9,70oht-
rredicted

147,69
first test

46,51
124,95
62,59

170,69
168,60
84,52

first test
3 I 4,50

21,34
25,03
13,59
20,28
39,1 8
42,59

9,81
first test

8,27
7,38
8,50

10,40
first test

10,34
6,7 5

2.72

lnd

ind

in

ln

7,300h

24,llo
6,640/0

10,360h
29,580/0
24,97 0/o

3,160

96,820/o

65,430h
20,290/o
32,400h
50,340h

28,260h

39,600h
110,260/0
190,,000h
39,600

l,0go

)Fx

la=d(

#tJ

-I
#t3

€E
r-t

f*Iu

#r1F--Ef
ffiE

#I= ){d'
#rd

u )l-

Figure 1 - Top view of measured (-) and predicted ( x ) mode shapes
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Figure 2 - Side view ol measured (-) and predicted ( x ) mode shapes

corresponding free interface modes were not measured for the
aircraft without the stores in the first ground vibration test. The
higher frequency modes were in general less well predicted than
the lower frequency ones. Fortunately these modes are usually
less important for flutter analyses.

NIAST decided that, although the lower frequency modal
data can be predicted to within the order of experimental accu-
racy, modal coupling techniques should not substitute ground
vibration testing. It was however decided that modal coupled
data are valuable lor the following reasons:

l. Modal predictions can help to decide which aircraft-store
configuration should be chosen for operational use and
which one should be used lor ground vibration testing.

2. Predicted mode shapes will make it easy to determine the
positions of exciters during ground vibration testing, saving
valuable test time.

3. By knowing the frequencies of the predicted modes, time con-
suming frequency scans can partly be eliminated.

Conclusions

It was shown that a lairly simple analytic procedure can be de-
rived to couple modal data of different substructures. A com-

plete set of measured and predicted data was presented. It was
found that predicted modal data for the lower frequency modes
were within the same order of accuracy as the measured data. It
was also shown that some modes may be missed during ground
vibration tests.
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