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Nomenclature

The symbols used in this paper are similar to those used
by O'Callahan []:
E,, Expanded experimental mode shape matrix (n de-

grees of freedom)

pose intended, it is necessary to improve the FE model. If
experimental data (natural frequencies and mode shapes)
is available, it would be advantageous to incorporate this
information into the improvement technique.

Berman and Flannely 12) presented a method which
utilises orthogonality conditions, the equations of motion
and the theory of the Moore-Penrose generalised inverse
to improve the mass and stiffness matrices of an analyti-
cal model using an incomplete experimental modal mo-
del. In recent years O'Callahan et. al. [,3] have re-
searched this method and included a modal expansion
process for expanding the experimental mode shapes to
the number of degrees of freedom used in the FE model.
In this paper this method is described and applied within
the SDRC I-DEAS software package and used to obtain
an improved FE model which was used to investigate
structural dynamic modifications.

Theory

Mode Shape Expansion

In order to apply the experimental mode shapes directly
to improve the FE model's mass and stiffness matrices it
is necessary that they should contain the same number of
degrees of freedom as the FE model. Typically the exper-
imental mode shape will contain fewer degrees of freedom
than the FE model as it is not always possible to test all
the points included in the FE model and because rota-
tional accelerations are not usually measured experimen-
tally. In the past methods such as Guyan reduction t4]
have been used to reduce the FE model to the test degrees
of freedom. This however is a static reduction and there-
lore produces errors in dynamic analysis, especially when
applied to a structure with fairly evenly distributed mass.
An exact reduction was used by Kammer [5], the basis of
which is the same as in the expansion used by O'Callahan
l l ,31.

The expansion technique used by O'Callahan applies
the Moore-Penrose generalised inverse which is described
briefly in Appendix A. He employed the generalised in-
verse to calculate a unique transformation which maps the
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Abstract

A methodfor improving dynamic finile element models using incomplete experimental modal
models has been applied to a simple structure. This method uses the equations of motion and
applies the Moore-Penrose generalised inverse to manipulate the rank deficient matrices in-
volved. A simple prismatic beam structure was tested to assess the method. The experimental
mode shapes were expanded to the full set offnite element model degrees of freedom. Transla-
tional degrees offreedom in the expanded model, which were not measured, were judged to be
accurote. The expanded modes were then used to improve the finite element model's mass and
stffiess matrices. The improved and original models were used to predict the ffict of a physi-
cal modification to the struture. The improved model was seen to produce the more accurate
prediction.
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Original experimental mode shape matrix (a "ac-
tive" degrees of freedom)

Original FEM stiffness matrix

Improved FEM stiffness matrix

Original FEM mass matrix

Improved FEM mass matrix

Weighted change to original mass matrix

FEM mode shape matrix

Reduced FEM mode shape matrix

Physical displacement vector

Reduced physical displacement vector

@ Frequency

t Denotes the Moore-Penrose Generalised lnverse

Introduction

The Finite Element Method (FEM) is a numerical tech-
nique which is finding increasing application in many
fields of engineering. However, in linear structural dy-
namics, inaccurate modelling of bound ary conditions,
joints and damping may severely limit the accuracy of the
results. Therefore, before a FE model can form a basis for
the purpose of predicting the effects of design changes or
modifications to an existing structure, it is necessary to
validate the model. An experimental modal analysis
(EMA) of the structure or a prototype is usually conduc-
ted to provide this validation. If the correlation between
the two models is found to be unsatisfactory for the pur-
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set of reduced FE mode shapes, containing only the test
degrees of freedom, to the FE mode mode shapes con-
taining the full set of analytical degrees of freedom. This
unique mapping is then applied to the experimental mode
shapes to produce the expanded experimental mode
shapes (containing the full set of analytical degrees of
freedom). The procedure is outlined below:

The mode shapes (eigenvectors) represent a transform-
ation from physical to modal space.

Xr, : UnP
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tisfy the orthogonality condition described in equation
(6).

Thus it is required to minimise the Euclidean norm of:

M w: N;' ( M', M,,)N;' . (7)

Which implies the minimisation of the change to the orig-
inal mass matrix with the weighting factors (N;') applied.
These weighting factors may be chosen to sensitise the
minimisation procedure such that certain regions of the
model are most affected. Alternatively, if the FEM mass
matrix is considered to be representative of the mass dis-
tribution, a more uniform difference would exist. In this
case, it would be advantageous to normalise the matrices
such that the algorithm's sensitivity is proportional to the
magnitudes of the original FEM mass matrix elements.
This may be accomplished by selecting Nn', such that
Ni - M,,.Substituting M'r from equation (7) into equa-
tion (6) gives:

EI(I{nMrNn + M,,) En: I (8)

which can be rewritten in the form of equation (A. I ) in
Appendix A.

lNnMrNnEr: I ELM,E,,

From Appendix A the minimum-norm least-squares sol-
ution to the above equation is,

Mw - (4Nn)I(I EIM,E,)(NoE,)t

a

P is a column vector of the generalised co-ordinates in
modal space, with dimension equal to the number of
modes included in mode shape matrix U,.Therefore, con-
sidering the reduced model (the same number of modes
but fewer degrees of freedom), the equivalent expression,

Xo: UoP

(l)

(2)

(3)

(s)

contains the same vector P. Because the mode shape ma-
trices are not square it is necess ary to use the Moore-
Penrose generalised inverse to formulate a mapping be-
tween the full and reduced displacement vectors. Writing
equation (2) as P - t\X" and substituting it into equa-
tion (l) gives:

Xn: U,(LX"

(e)

or

Xn - TuX,, (4)

where T, is the transformation matrix required to map
the experimental mode shapes to the expanded set of ex-
perimental mode shapes as follows:

E,, : TuEo

Construction of the generalised inverses (see Appendix
A.3) and application of equation (7) gives the required
expression for the improved mass matrix.

MIr: M,, + M,,En( EIMTET)-'

(I EIM,E,,) ( EIM,,E,,)-', EIM,, (l l)

FE Stffiess Matrix Improvement

The formulation of the stiffness matrix improvement
used in this paper differs from that used by O'Callahan
[3], but produces very similar results. The improved stiff-
ness matrix must satisfy the equations of motion K!,E,,

- co2MI,E,. Premultiplication by I gives:

EIK!,E, - 0)2 (12)

Following the same procedure as was used for the mass
matrix improvement but using Ni - MI, gives the fol-
lowing result:

FE Mass Matrix Improvement

The mass matrix improvement process involves modify-
ing the original mass matrix Mn, and formulating the im-
proved mass matrix MI,, so as to satisfy the condition.

flu'^n^- I (6)

Where E, is the expanded mass normalised experimental
mode shape matrix.

The final improved mass matrix, MI,is composed of the
original mass matrix as obtained from the FE model,
combined with a matrix M,,,, constituting the difference
between the two:

Mrr' : M'r- M,

Since matrix M,,, is not unique, and as the FEM model
should be sufficiently accurate to describe the general
mass distribution in the structure, the approach is to find
the mass change matrix M,,. such that it requires the mini-
mum change to the original FEM mass matrix M n to sa-

K!,- K, + M',E,(af EIK,E,) 1M',

E perimental model

Structure ime sions

( l0)

(13)

The test specimen was a small, lightly damped structure
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made of mild steel. The shape of this structure resembled
an H, machined from a single piece of steel. Mortise joints
were machined at the ends of the frame to allow future
modification, and the assessment of joints. The dimen-
sions and details of the structure are shown in Fig. l.

Test Set-Up

The structure was suspended from two soft elastic cords
at points A and B (see Fig. I ) which a previous FE analy-
sis had shown to be nodes in the frequency range of inter-
est. The excitation was applied by two electro-dynamic
shakers attached in orthogonal directions at the points C
and D shown in Fig. l. The structure was excited by two
uncorrelated random signals over the frequency range of
interest, as required for multiple exciter testing. The acce-
lerations were measured at 38 points on the structure in
the two directions that were excited. The accelerometers
used were PCB Structcells. The outputs of the two force

Modal Model

The SDRC I-DEAS package extracted the modal model
lrom the frequency response functions using the Polyre-
ference time domain modal extraction technique. The
natural frequencies and some of the mode shapes are
shown in Fig. 2. The mode shapes are poor considering
the simplicity of the structure tested. It is believed that
this is due to the effect of the mass of the accelerometers
being moved around the lightly damped structure, since
the polyreference technique is more suited to structures
with viscous damping and is very sensitive to changes in
the structure during testing. This is substantiated by the
fact that previous tests of the structure with an impact
hammer produced smooth mode shapes (the accelero-

transducers and the
with a Genrad 2515
response functions.

3

two accelerometers were analysed
to produce the required frequency

Figure 1 - The Test Structure

meters remain stationery while the direction of the impact
and its point of application change during the test). These
mode shapes however also showed irregularities at the
accelerometer locations. Nevertheless it was decided to
use the relatively poor mode shapes in the expansion and
model improvement process as this would test the capa-
bility of the expansion process to smooth irregular mode
shapes.

The structure was retested with an impact hammer to
obtain the best possible modal model. This modal model
was employed for the modification prediction, whilst the
former was employed to assess the expansion reduction
and hence smoothing capabilities of the process.

EXP ERIMENTAL FREQUENCIES

MODE NO FREQ {ild.Z\

1 57.97
2 67.24

3 143.33

4 203.46

5 213.35
6 589.87
7 600.56
I 629.24

x

x-tLLr*n**==. 
- xxSs;6*

MODE SHAPE 2

MODE SHAPE 6

Figure 2 - Experimental Results

MODE SHAPE 7
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Analytical model

The structure was modelled usi ng 46 nodes connected by
linear Timeshenko beam elements and the first twenty
free-free modes were computed using a simultaneous vec-
tor iteration method. Some of the calculated natural fre-
quencies and mode shapes are shown in Fig.3. In this
model the fillets and end conditions of the actual struc-
ture (see Fig. l) were ignored and all the elements repre-

Figure 3 - Original FEM Modal Results
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sented a25 x 25 mm section. The most obvious effect of
this approximation was to produce the symmetric mode
number 6 (Fig. 3). Modelling the end conditions more
accurately did produce an unsymmetric mode shape very
similar to the corresponding experimental mode shape
(Fig. 2). The cruder model was chosen to investigate the
model improvement process.

FEM FREQUENCIES

MODE NO FREQ lild.Z\

1 56.35
2 62.1 3

3 129.30

4 183 .92

5 196.22

6 579.47
7 567.28
8 592.1 9

)e)e

MODE SHAPE 6

MODE SHAPE 2

MODE SHAPE 7

Improved model

Eight experimental modes and the corresponding FEM
modes were chosen for use in the model improvement
process. The FEM mode shapes were scaled to unit mo-
dal mass using the original mass matrix. The reduced
FEM mode shapes were then extracted from this matrix
and the experimental mode shapes were scaled to the lar-
gest value in the reduced FEM mode shape. The I-DEAS
software has a facility which allows matrices to be mani-
pulated by a number of standard matrix operations. This
facility was used to perform the matrix calculations re-
quired by the expansion and improvement processes.

Some of the resulting smoothed mode shapes are shown
in Fig. 4.Itcan be seen that the expansion process has not
only expanded the mode shapes correctly but has also
smoothed them completely. Mode shape 7 and to a lesser
extent mode shape 2 show deflections of the cross mem-
ber which were not shown in the original experimental
mode shapes. Therefore these degrees of freedom which
were not measured have been simulated by the expansion
process. [Jnfortunately it is not yet possible to measure
rotational motions for comparison with the calculated
values.

MODE SHAPE 2

Figure 4 - Expanded Mode Shapes

MODE SHAPE 7
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Appendix A: The Moore-Penrose Generalised Inverse

A.I Introduction

This appendix presents a brief description of the theory of
the generalised inverse. The interested reader requiring a

more comprehensive mathematical description is referred
to the text by Ben-Israel and Greville [6].

E. H. Moore introduced the subject in 1920, referring
to it as "the reciprocal of the general algebraic matrix". In
this paper he defined a unique inverse for all matrices. It
was, however, only in the 1950's that the least-squares
properties were discovered and extended by Bjerhammar
and Penrose respectively t6].

A.2 Penrose Conditions

Moore showed that there exists a unique inverse for any
general nonzero matrix. Penrose presented four condi-
tions for the calculation of the unique inverse. "The four
equations:

oAXA:A,
o XAX : X,,

o @n* - AX,
o (XA)* - XA

have a unique solution for any A." - Penrose [7].

This unique solution is often denoted by At and is known
as the Moore-Penrose generalised inverse. Other non-
unique generalised inverses which do not satisfy all of the
above four conditions can be constructed. These inverses
have useful least-squares propertres which will be men-
tioned later. The notation used for these inverses is that
used in ref [6]. A generalised inverse satisfying the first
and third conditions, for example, will be denoted ur 7(t'3)
and is an element of A{ 1,3} the set of all generalised in-
verses satisfying the first and third Penrose conditions.

A.3 Construction of Generalised Inverses

As only the unique generalised inverse .4t is used in this
paper the construction of non-unique inverses [6] is not
presented.

If matrix A is a m x n matrix of rank r, (r
there exists a factorisation A - FG such that F is a m x r
matrix of rank r and G is a r x n matrix also of rank r.
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This is known as the full-rank factorisation of matrrx A.
MacDuffee showed that the full-rank factorisation is re-
lated to the Moore-Penrose generalised inverse by the fol-
lowing formula[6]:

trr - G*(FAG*)-rrx

Note that if A is a real matrix the Hermitian transpose
(denoted by *) reduces to the normal transpose.

4.4 Least-Squares and Minimum-Norm Properties

If Ax - b is an inconsistent linear system of equations,
with Aofsizem x nand bofsizem x l,aresidualvector
r - b Ax can be defined. It is often desirable to find
the solution x which will make the Euclidean nonn of the
residual vector a minimum. ie. To make I'i: 

,

I r l' : ll b Ax ll' a minimum. It can be shown that
this is achieved by using any generalised inverse of A
which satisfies the first and third Penrose conditions. Be-
cause this is not a unique generalised inverse there are
infinite solutions (x) which satisfy the imposed condition.
These solutions may be written as:

x- A(1.3)b + Q Aa3)A)y,
where -y is an arbitrary nx I vector. Note that if A is of full
column rank then the above expression produces a
unique solution.

If there are an infinite number of solutions it is necess-
ary to impose additional constraints on the solution in
order to achieve a unique solution. For example, it is
possible to find a minimum norm solution, (a solution
which makes ll x ll2 a minimum). It can be shown that
such a solution is found by x - trtt'+)6.

"The least-squares solutions of ,4x _ b coincide with
the solutions of Ax - AAtr3) b" [6]. The minimum-norm
solution of the latter equation is therefore x - A(t'4)A1(t'3)
b.

It was shown by Urquhart that A(t'4)Atr{tJt _ A+,

therefore x - A+ b is the minimum-norm least-squares
solution to the inconsistent linear system of equations
Ax: b.

shown that the minimum-
to the inconsistent matrix

[Jsing this result it can be
norm least-squares solution
equatron

AXB: D

is, X - A|DB+.

(A.r)


