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Applying Nonlinear Smoothers to Remove Impulsive Noise
from Experimentally Sampled Data
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Abstract

Experimentally sampled data found to be corrupted by pulses of outliers is decontaminated by
the application of a novel pair of unsymmetric smoothers. Basic concepts of nonlinear smooth-
ing are introduced and the implementation of the particular smoothers is discussed.

Introduction

Figure 1 shows a set of measured data points from a
towed model boat experiment. Buffer overflow during
data transfer contaminated the signals with random
spikes.

A well-developed theory exists for linear filtering (for
example Hamming [1]). A linear filter, also referred to as
a linear smoother, basically replaces each data point with
the (weighted) average of it’s closest neighbours. This is
suitable for the processing of “well behaved” (e.g. Gaus-
sian) noise. However, transient outliers of unreasonable
amplitude can greatly distort some originally sound data
and the resulting “smoethed” data remains smeared with
unacceptable noise. Linear smoothing was therefore
clearly not appropriate for the detection and removal of
the impulsive noise found in the experimental data.

Various publications have reported on investigations
into the theory, properties and applications of ronlinear
smoothers [2-5], but analytical investigation is difficult
and theoretical understanding still far from adequate.
The usual task of a nonlinear smoother is to replace im-
pulsive noise by acceptable points from its immediate sur-
roundings, while leaving the values of other data points as
far as possible unaltered.

For this specific application a novel pair of unsymme-
tric smoothers (UL and LU) by Rohwer [2] was applied.
In the succeeding sections the basic concepts of nonlinear
smoothers and the principles involved in the construction
of the smoothers UL and LU are explained rather
intuitively.
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Figure 1 — Corrupted Experimental Data
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Basic Concepts of Nonlinear Smoothers

For convenience the notations and conventions used in
[2] are adhered to as far as possible.

1. A complete series of data points is denoted by a lower
case letter while the letter followed by an index en-
closed in parenthesis specifies a single point of the ser-
ies. Thus x represents the series . . ., x(i — 1), x(i),
x@+ 1), ...

2. The set of points (real numbers) obtained by selecting a
subinterval of a series is denoted by an upper case letter
followed by an index pair enclosed in parenthesis. The
indices are the lower and upper index limits of the
selected points. Thus X(s, 1) = {x(s), x(s + 1), ...,
x(t — 1), x(¢)} where it is understood that s < 7.

3. A smoother, represented by an upper case letter, is de-
fined as an operator (or algorithm) which maps each
point of an input series to a corresponding point of an
output (smoothed) series. Thus the statement y = Sx
signifies that smoother S operates on the input series x
to produce the output series y. An index enclosed in
parenthesis refers to a specific point of the series, e.g.
Y@ = Sx().

4. Nonlinear smoothers (henceforth referred to simply as
smoothers) are typically rank-based selectors and con-
catenations of these. A rank-based selector determines
the smoothed value at a point by selecting an input
point from a window (which includes the particular
point) based purely on the relative ranks amongst all
the points presently in the window.

5. The concatenation (combination) of two smoothers
refers to the resulting smoother obtained by letting one
smoother operate on the output of another smoother,
i.e.if y = Sxand z = Qy then smoother QS signifies
smoother S followed by smoother Q and we write
z = QSx. Itis easy to see that a smoother of window
size n + 1 points followed by a second smoother of
similar window size results in the final smoothed
value at a point depending on 2n + 1 points. This
effective total of a concatenation is termed the support
of the resulting smoother (equivalent to the window
size if a single rank order selector is under con-
sideration).

Two central concepts involved in Rohwer’s analysis are
ordering and idempotency of smoother operators.

1. Smoothers are ordered by a comparison of their output
series for general input. A series is equal to (=), less
than or equal to (<) or greater than or equal to (>)
another series, containing an equal number of points, if
the ordering applies to all corresponding points of the
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two series. Thus smoothers S and Q are either equal
(S = Q) or Sis less than or equal to Q (S < Q)or S'is
greater than or equal to Q (S > Q) if the ordering ap-
plies to the smoother outputs for all input series pro-
cessed by both smoothers, otherwise S and Q are not
comparable.

2. A smoother is idempotent if it does not alter its own
output on repeated application. In other words, if the
concatenation of smoother S with itself results in a
smoother equal to S (SS = S) then S is idempotent
(which obviously means that any power of S'is equal to

S).

As an example of simple nonlinear smoothers the popular
median smoothers can be considered. A median smoother
is a rank-based selector which, for the smoothed value of
the point centred in the selector window, selects the me-
dian of all the points in the window. Mn, or simply M, is a
median smoother with a window size of 2n + 1 points.
The smoothed value of each point x(i) is the median of the
2n + 1 points X(i — n, i + n), i.e. the values of at least
n + 1 points in the window X(i — n,i + n)are less than
or equal to Mx(i) and at least n + 1 points of X(i — n,
i + n) are greater than or equal to Mx(i). Mx(i) is the
(n + 1)-th ranked point of X(i — n, i + n).

In Figure 2 a 5-point running median (i.e. M2) is com-
pared to a 5-point running average (which is a simple lin-
ear filter). Note the stark contrast in the vacinity of transi-
ent outliers. The median smoother is trend preserving,
points of monotone (increasing or decreasing) regions are
unaltered.

——&—— INPUT - — - - LINEAR FILTER

MEDIAN SMOOTHER

Figure 2 — Comparison of a 5-point Running Median and a 5-point
Running Average

In theoretical studies the absence of data before the first
point and after the last point of an input series is con-
veniently circumvented by defining the series as doubly
infinite sequences of real numbers. In practice a finite in-
put series is usually extended at the start by duplicates of
the first point and at the end by duplicates of the last
point as far as is needed to accommodate the window (or
support in the case of a concatenation) for determining
the smoothed value of the first and last points. An obvi-
ous advantage of this is that upward or downward trends
at the start/end of the series are maintained.

Smoothers UL and LU

Refering to Figure 3, consider for the moment a constant
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sequence with an occasional outlier in the upward direc-
tion. A procedure for removing such upward pulses from
the otherwise constant sequence would be to apply a run-
ning minimum, i.e. a rank-order selector selecting the
smallest (lowest ranked) element from the window. Such
algorithm will remove all the upward pulses from the se-
quence (except for cases where the number of adjacent
pulses is greater than or equal to the window size). How-
ever, if the series also contains transient downward pulses
these will be widened by the running minimum. Further-
more, an upward trend in the series is retarded while a
downward trend is advanced. These shortcomings can be
overcome by following the running minimum by a run-
ning maximum which will then reduce the downward pulses
to their original widths, advance upward trends and retard
downward trends to restore monotone increasing/decreas-
ing sections to their original state (except possibly some
points at the transitions between upward and downward
trends). Similarly it can be argued that a running maxi-
mum followed by a running minimum will remove down-
ward pulses while retaining upward and downward trends
and upward pulses more or less in tact. These fundamental
ideas lead to the basic pair of unsymmetric smoothers, na-
mely L and U.

——S—— INPUT - —— - 3-POINT RUNNING MINIMUM
FOLLOWED BY 3-POINT RUNNING MAXIMUM

Figure 3 — Smoothing by following a Running Minimum by a Running
Maximum

Ln, or L for short, is the concatenation of a minimum
operation followed by a maximum operation each with a
window size of n + 1 points for*a total support of
2n + 1. The points of Lx can conveniently be defined by

Lx(i) = Lnx(i) = max {min X (i — n, i),
min XG+n+ 1,i + 1),..., min X, i + n)}

Similarly Un is a maximum operation followed by a mini-
mum operation, conveniently defined by

Ux(i) = Unx(i) = min {max X(i — n, i),
max X(i —n + 1,i + 1),... max X(i, i + n)}

Note that x(i) is in the centre of the range x(i — n), . . .,
x(@), . . ., x(i + n) which comprises X(i — n, i + n), na-
mely the set of 2n + 1 supporting points from which
Lx(i) and Ux(i) are selected.

L and U can be shown to be idempotent, i.e. LL = L
and UU = U. Idempotency is a most desirable property
for a nonlinear smoother. If a smoother is not idempotent
successive applications of the smoother can give different
interpretations to the same original input data.

Median smoothers are not idempotent, Ln < Mn< Un,
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i.e. Ln and Un bound the median smoother of the same
support (Mn). This means that any upward outliers re-
moved by a running median will also be removed by L of
the same support and any downward outliers removed by
a running median will also be removed by U of the same
support. L and U also bound their input (Lx < x < Ux)
but Mx and x are not comparable.

Groups of not more than n consecutive upward/down-
ward outliers are removed by L/U. In designing L and U,
n should therefore be chosen as at least the maximum
number of consecutive expected outliers. A sequence of
more than # “outliers” (in the same direction) is interpret-
ed as a significant pattern in the data. L removes upward
outliers and retains downward outliers while U removes
downward outliers and retains upward outliers. This de-
fect is overcome by concatenating the basic unsymmetric
smoothers to obtain UL and LU which both remove up-
ward and downward outliers.

UL and LU can also be shown to be idempotent
and LnUn > Mn > UnLn. From Lx < x < Ux it
follows that LU < U and UL > L and therefore
Un > LnUn > Mn > UnLn > Ln, i.e. LnUn and
UnLn are narrower bounds on Mn than Ln and Un. (Note
that the support of UnLn and LnUn is 4n + 1 while Ln,
Un and Mn have a-support of 2n + 1.)

LU and UL both satisfy the design criterion and their
lack of symmetry should be seen as natural, indicating an
interval of fundamental uncertainty associated with the
recognition of impulsive noise [2].

Implementation of the Smoothers UL and LU

Consider the construction of the smoother UL. UnLn s
the concatenation of four rank-order selectors; a running
minimum followed by a running maximum followed by a
second running maximum followed by a final running
minimum, each with a window size of n + 1 points. It is
clear that two successive running maximum operations
each with a window size of n + 1 points are equivalent to
a single running maximum with a window size of 2n + 1.
Therefore:

ULx(i) = min Z(i, i + n)

= min {z(i), . . ., z(i + n)}, where
(i) =max Y@ — n,i + n)

= max {y(i — n), . . ., (i), . . ., y(i + n)}, with
() = min X(i — n, i)

= min {x({ — n), . . ., x(i)}

(The placement of the individual windows for the min-
/max operations is not important, all that matters is that
ULx(i) is supported by the 4n + 1 points X(i — 2n,
i + 2n). This requirement is clearly met by the above re-
presentation because the sums of the offsets from i of the
lower and upper limits of the Z, Y and X ranges respect-
ivelyare0 —n — n= —2nandn + n + 0 = +2n)

UL can be implemented as a procedure which returns
successive points of ULx as it receives x point by point,
with an obvious time lag of 2r points. With the above
representation the memory requirement for such a pro-
cedure is two buffers of » + 1 points each (X and Z) plus
one buffer of 2n + 1 points (¥). In the following formal
presentation of the procedure for calculating a single
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point of UL the individual memory locations of the
buffers are referred to as xq, X1, - - -, X,3 Yo, V1 - - - Vanand
Zo, Z1, - - - Z,. The buffers are used circularly; as the oldest
value in a buffer is discarded the latest value entering the
buffer is placed in the same memory location and a buffer
pointer is updated by an appropriate modulo function in
order to keep track of the “front end” of the buffer. As-
suming that the necessary initializations of buffers (X, Y,
Z) and pointers (i for X and Z, j for Y) have been done
before the first execution of the procedure, the procedure
for calculating the next point of UL (UL,.,,), given the
next point of x (x;,), with a time lag of 2n points between
them, is as follows:

Begin UL
ke—(@+1)mod(m+ 1);/« (j+ 1)mod(2n + 1);
Xmin € min ({xin’ X05 -+ o xn}\xk);
Ymax € Max ({xmin: Yos - - o yZn}\yl)’
ULresull + min ({ymax’ 205 + - o Zn}\zk);
e kje b X« X Y < Xminy Zi < Venan
End UL
(Note: Operator “\” is used to signify the exclusion of an
element from a set; thus {x;,, xo, . . ., X,}\X, means “all
elements of the set {x,,, xo, . . ., X,} but excluding x,”.)

An easy way to initialize the process is to fill all three
buffers with zeros (say) and then to successively run the
procedure with each of the 2n points preceding the start of
the input series in order to support the first point as ex-
plained earlier (typically all duplicates of the first point).
Then x(1), x(2), . . ., x(2n + 1) are run through the pro-
cedure before ULx(1) emerges, etc. After processing the
last point of the input series a further 2z points are needed
in order to obtain the last 2n UL values (typically dupli-
cates of the last input point are used). Before the first
execution of the procedure, buffer points / and j must be
initialized to any values in the ranges 0 < i < n and
0 <j<2n(eg i=j=0).(The contents of memory
locations , /, x,;,, and y,.,, need not be retained between
procedure calls.)

If a vector processor is available an interesting option is
to calculate LU and UL simultaneously in one procedure
by noting that LU(x) = — UL(—x).

Note that the calculation of X, Vmx and UL,
(which is the minimum of the Z buffer) need not neces-
sarily involve a complete scan of the buffers for each
execution of the procedure. The previous values of the
minima and maxima can be compared to the latest values
entering the buffers to determine if complete buffer scans
are necessary or whether only the previous and latest va-
lues need to be considered for a new maximum or mini-
mum. This saving of computing time can be very signifi-
cant for large supports (large n). The previous values of
Xmin and y,,, are available as y; and z; respectively. The
minimum of the Z buffer, z,, (say), must now also be
retained by the procedure. Before the first execution z,
should be initialized to a value not less than the smallest
value in the initial Z buffer (e.g. initialize z,,,, = 0). With
the preceding in mind the “faster” version of the proce-
sure is as follows:
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Begin UL
k< @@+ 1)mod(n + 1);/ « (G + )mod(2n + 1);
if x, > y, then x,;, « min(y, x;,) else x,;, < min ({x;,,
X0, LEEIRY) xn}\xk);
if y, < z; then y,,, « max(z, x.,,) else
Ymax € max(xmim Yos « + s y2n}\y1);
if z, > z,;, then z;, « min(z,;,, Vm.) else

Zmin € min({ymam Zoy + v o Z,,}\Zk);

ULresull < Zminy

[« k’.] N l; Xi € Xins yj < Xmins Zi < Vmax
End UL

LU can be calculated by a similar procedure but with the
max and min operations (and of course the < and >
tests) interchanged. A verbatim copy of the procedure
can also be used to calculate LU by using LU(x)
= —UL(—x).If LU and UL are to be calculated simul-
taneously (in parallel) by the latter method two copies of
the procedure are of course needed in order to maintain
the integrity of the buffers, pointers, etc. of each of the
two concurrent processes.

Smoothing of the Experimental Data

In the case of our experimentally sampled data, outliers
were replaced by the average of UnLn and LnUn. The
width of the impulsively corrupted segments dictated an n
of about 1000 which, however, far exceeded the period of
relatively small oscillations occurring in the sequences of
uncorrupted data (see Figure 4). The removal of wide
impulses and the retention of oscillations with small
periods are conflicting requirements. UL and LU (and M
or, for that matter, any rank-based selector) are clearly
only trend preserving as far as trends of relatively long
duration are concerned. Under the assumption that the
amplitude of impulsive noise far exceeded the amplitude
of the small oscillations in the uncorrupted data (as seems
reasonable from inspection of Figures 1 and 4) it was
possible to differentiate directly between outliers and
valid data. If ULx(i) — 0 < x(i) < LUx(i) + 6 where ¢
is an appropriate tolerance, data point x(i) was con-
sidered valid otherwise x(i) was replaced by (ULx(i) +
LUx(i))/2. Figures 4 and 5 depict the results.
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Figure 4 - Segment of Corrupted Data and Decontaminated Result
(10000 points)
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Figure 5 - Decontaminated Experimental Data. (Compare to Figure 1)

Conclusion

The pair of unsymmetric smoothers LU and UL has been
found to be useful in the removal of impulsive noise con-
tained in important experimental data. The example illus-
trates the ease of implementation and the flexibility in
innovative adaptation.
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