
N&O JOERNAAL APRIL I99I

Laminar pipe flows accelerated from rest

,^E;,1,0!,li7n*,
An integral methodwas used to analyze the temporal velocity profile development in an incom-
pressible pipeflow which has been acceleratedfrom rest,farfrom end effects. As with steady
state inlet flows, two fundamental zones are appropriate, coruesponding to the velocity profile
variation prior and subsequent to the merging of the annular boundary layer at the duct centre-
line, respectively. A dimensionlessflow acceleration parameter (a) which arises naturallyfrom
the analysis, is zero in the case ofan impulsively startedflow, and possesses non-zero constant
values for exponentially increasing fiows. When a is increased beyond a uitical value of 7 .059 ,

the boundary layer never merges. A novelflow map may be defined, containing a'triple'point at
a : 7.059. Thus the method prouides a convenient description - suitable for the application of
any of the known stability analyses to unsteady pipe flows - as well as new physical insights into
the basic nature of the flow field.
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1. Nomenclature

pipe diameter
pressure
radial coordinate
pipe radius
velocity profile shape parameter

[- r,.dlQtu)]
trme
dimensionless time (- wlR2)
axial velocity
dimensionless axial velocity ( : " ul U,)
cross-sectional mean velocity
dimensionless centreline (- U,lU)

x axial coordinate
y wall coordinate
, dimensionless wall coordinate ( - y 16 or

vlR)

Greek

a acceleration parameter ( - ry-t du ldt)
y pressure gradient param eter 2

( - [R' lU,](02ul0r')o)
6 bound ary layer thickness
61 dimensionless boundary layer thickness

(- 6lR)
d:" displacement thickness
di dimensionless displacement thickness

(- 6*lR)
A pressure gradient parameter I

( - v[6'l U,fdU,ldt)

It dynamic viscosity
v kinematic viscosity
p density
r,, wall shear stress

infinitesimal disturbances. The situation under consider-
ation is that velocity profile development which takes
place in a smooth pipe, sufficiently far from the inlet so as

to exclude end effects, during the imposition of a specified
flow variation with time.

Historically, Szymanski tl] was probably the first to
predict analytically the development of velocity profiles
in a duct subsequent to the imposition of a sudden press-
ure gradient. Letelier 12) measured flow rate variations
with time after a step change in pressure. His results
showed reasonable agreement with Szymanski's theory.
Chambre et al [3] extended Szymanski's work by analyz-
ing the flow arising from a gradually increasing pressure
gradient.

Zielke l4l studied the attenuation of water hammer
waves in frequency-dependent flows and in so doing de-
rived an integral equation relating wall shear stress in
transient laminar pipe flows to the instantaneous cross-
sectional mean velocity and weighted past velocity
changes. Indirect verification was obtained by compari-
son with the measured pressure fluctuations following a
sudden valve closure.

More recently, Mohanty and Asthana [5] have investi-
gated the spatial development of laminar flow in the en-
trance region of a smooth, uniform pipe. A fourth-degree
polynomial velocity profile was used, in conjunction with
the appropriately integrated conservation equations. The
theoretical results obtained were verified experimentally,
and were consistent with the existence of a clearly defined
'inlet' region in which a potential core was evident, as well
as a 'filled' region consisting of merged velocity profiles,
prior to the attainment of a parabolic velocity profile.
The original identification of these fundamental flow re-
gimes may be attributed to Ishizawa 16l.

The mechanism of flow development subsequent to ac-
celeration from rest, is diffusive. Hence, in the context of
insteady flows (figure I ), the initial development zone
(analogous to 'inlet' flow), prior to the merging of the
bound ary layers at the pipe centre, has a time-dependent
potential core region adjacent to a bound ary layer which
thickens with time. The sub'sequent final development
zone (analogous to the 'filled' region) is characteri zed by
the merged bound ary layers asymptotically approaching
an equilibrium shape which may be parabolic.

Apparent parallels between spatial and temporal flow
development indicated that an integral analysis could be
applied beneficially to unsteady flows. The need for a
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2. Introduction

This study deals with temporally accelerating laminar
flows in circular cross-section pipes. It should be viewed
in the broader context of establishing an appropriate base
flow model for studying the response of such flows to
*Senior Lecturer
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Figure 1 - Time development of velocity profiles in a pipe flow impul-
sively started lrom rest, showing.the anticipated 'initial' and 'final'

regrons

convenient formulation of the accelerating laminar flow
problem in the context of flow stability, together with the
physical insight achievable by characterizing flow re-
gimes in the manner of Mohanty and Asthana, has led to
this analysis.

3. Analysis

3 .l Integral form of the governing equations

The governing conservation equations of the problem are

9p- : o (2)
0r

where r is time, u is axial velocity, p is pressure, r is radial
co-ordinate directior, x is axial co-ordinate directiotr, p is
the fluid density and v is the fluid kinematic viscosity.

These may be put into a more useful form in the follow-
ing way:

At the duct centreline,

_J_ 4L: d.U, 
.,1- I A ( _a"\f

p dx dt 'L; ar( a, ) ),

where

-L 4p-: du,

Adx dt

may be substituted into equation (l) to give

The above equation may be reduced from a (r, /) system
to wall co-ordinates (y, r). The result is multiplied by 2nr
and integrated across the bound ary layer from y - 0 to
y - 6. Non-dimensionalisation according to , - y 16;
u- ul(I,;lt: vtfR2;fi- llRanddi - d*lRleadsto

+.ry: G, ')(H),+;(#), (3)
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The displacement thickness in the above expression is de-
fined by

In addition, a mathematical statement of mass conser-
vation for the system is

2nRU,,6* : nR2(U, U) (5)

where U is the cross-sectional mean velocity.
The final form of equations (3) and (5) will be dictated

by the nature of certain dimensionless groups which
emerge as a consequence of applying bound ary condi-
tions to an assumed fourth-degree polynomial velocity
distribution.

3 .2 Boundary conditions, polynomial velocity distribution
and generalized equations.

In broad terms, if the technique of Mohanty and Asthana
[5], and Ishizawa [6] is followed, two additional pressure
gradient parameters 7 and y may be defined in the follow-
lng way:

A: rtr#

The dimensionless
are as follows:

bound ary conditions for the system

(a) Initial development zone

(b) Final development zone

(4)d:c: 
.lJ (' t)( i) dv

ou: -l-fu+ ,L9 (-a"\
0t p 0x "r A;\'Ar)

(l)

uo:0
h- I

(#),:o '

(#),:0
(H), dl (#),: -^

uo:0
h- I

w),:0
(#),: v

Wr), W),: -y + 21



N&O JOERNAAL APRIL I99I

In accordance with the five boundary conditions postu-
lated in the previous section, the following polynomial
velocity distribution is assumed:

u - Ao + At! + ArJ' + Arlt + Aolo (6)

where y _ yl6 and y - ylR are in the initial and final
development zones, respectively.

Implementation of the bound ary conditions into the
assumed profile (6) yields a velocity profile of the form

u : F0) + ArG(j) yrK(fl (7)

where

F0) _ 2t 2r' + to
G0): if, 3t' + 3y' yo)

K0): t |f + lot. 2],

^ -1 26'
tl"1 _ffi

^t-:YIt 6 + 6r

. d ).
O1 -.R

If 6r - I in the final zone, its end is defined by
h - - l2l7 together with yt - -217 ,thus indicating an
asymptotic tendency towards a parabolic velocity profile
of the form

u-2, y'

This describes steady state Hagen-Poiseuille flow.
Substitution of the polynomial expression (6) into

equation (4) leads to the following dimensionless ex-
pression for the displacement thickness:

d{€ il-6,(t _2,) at(L_1,\_TrR 'l ^\10 t20/ '\15 360/ 40

and substitution of the above equation into (5) yields

9

which may be solved in conjunction with equation (8) and
the definition for ,t, which follows:

,(t# - za,)rra+ dr) (ro)

It is appropriate to consider the initial and final zones
separately. It may be recalled that these refer to the per-
iods of time before and after the merging of the bound ary
layers, respectively.

3.3 Initial zone equations

As a consequence of the fact thatyl - 0 in this zone, the
governing equations are

describing the ratio of the instantaneous cross-sectional
mean and centreline velocities.

If U, is defined as

o,: u'
U

the implementation of equation (5) in differentiated form,
together with the definitions of ),1and yr, into equation (3)
leads to

!Y'': fr t(a, 6r)A, + fr 2(a, 61)
dt

1::1193(6) + 9o@r)
U,

).r_ gs(lr A)

where a is an 'acceleration' parameter given by

s- T'd

1tu

ldu
wv! udi

and frt, frr, Fr, g4 and I5 are defined in appendix A.
Equations (ll), (12) and (13) are a coupled set which

may be solved for any specified variation of a with time.

3.4 Final zone equations

In this zone,61 - I and equations (8), (9), (10) may be
combined to give

!q, - er@)rJ, + er@) (14)
dt

where

G(a) : ; + 40

er@): + + 80
3

3.5 The velocity profile shape parameter

A convenient dimensionless group which characterizes
the shear stress variation in unsteady duct flow systems, is

,t,:1 - d' (; - #) +',(+-#) +#(8)

(l l)

(r2)

(13)

(15)

where U is the cross-sectional mean velocity, and cn, is the
wall shear stress.

The parameter ,S may be interpreted as one whose
value reflects the shape of the velocity profile. For exam-
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ple, S - 8 corresponds to steady state Hagen-Poiseuille
flow, while S
decelerating flows, respectively.

It was appropriate to evaluate the parameter analyti-
cally, in order to serve as a comparison between different
analyses, as well as enabling subsequent experimental
verification of the theory.

Thus, equation (7) may be differentiated to yield r *,
which leads to
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which, when implemented in equation (14), lead to

i- 12
lvt _7

r-r a + 240
-c: q, + 120

r,. 4 5la-360
ll A)l d, + 240

S- tl20-2q'
a + 120

Figures 2 to 5 show the values which dr, U, and S achieve

in the areas of interest.

3.7 Solution of the governing equations

(a) Impulsively started .flow. A limiting case which is of
interest, is the velocity profile development which occurs
subsequent to a step increase of flow from rest. This hy-
pothetical limit, which may be only approximated in
practice, is consistent with a - 0 for all t, except t - 0,
at which time it is infinite.

3.6 Limiting values of the parameters

For the purpose of verifying the computation, as well as
understanding the flow mechanisms, it is worthwhile to
examine the limiting values that the parameters approach
in each of the various regimes.

The acceleration parameter a is of central importance
in characterizing the regimes. It may be loosely interpret-
ed as the ratio of the gross inertia forces to the viscous
forces acting in the system. It must be understood, how-
ever, that when a is zero, detailed inertia effects are not
necessarily absent - the flow may still be developmental.

(a) Initial zone. This zone is finite for a
tends indefinitely for a

considered independently.
61

Ifa
dl _ l. Hence equations (12) and (13) lead to
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Figure 2-Maximum values attained by thEdimensionless boundary
layer thickness lor varying acceleration parameter

Thus, the velocity profile shape parameter, S has the
value 8.57 at the end of the initial zone for a - 0 - an
impulsively started flow.

Ifa
the final zone never occurs. Hence, the values at the end
of the initial zone define the values fin lly reached, with U'

6r

Accordingly, equations (l l), (12) and (13) were used to
obtain the value in Table l.

(b) Final zone. This zone exists only for a
the limiting values are defined by d, - I and

du, :0
dt

100801020

cc

Figure 3 - Maximum values attained by the dimensionless centreline
velocity for varying acceleration parameter
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Figure 4 - Maximum values attained by the dimensionless centreline
velocity lor varying acceleration parameter, emphasizing the detail

ol the 'triple point'

A,- 2 
hr-qo(t+'il)

where ,il is a constant of integration, to be satisfied by the
boundary condition

108 96v + 26v2 2v3

1l

together with

. 490 / I/'t- 7 (.e

100 / ITr- 2t (e
The above equation

uc

has the solution

dv.30 23v + 8v2 v3

The above equations were solved slng a mlcrocom-
puter. Figures 6 to 9 show plots of dr, trr,yr, U, and Sfor
an impulsively started flow. Figure 9 provides a compari-
son between the present analysis, results yielded by the
analysis of Zielke [4], and those from a finite difference
computer programme.

(b) Exponential increase offlow rate. when a is a non-zero,
implying the existence of a time-varying cross-sectional
mean velocity U(t), equations (l l), (12) and (13) must be
solved in the initial zone and (14) in the final zone. For the
purpose of this exercise, constant values of a were chosen,
consistent with an exponential variation of cross-sec-
tional mean velocity.

The solution procedure in the initial zone relies on the
fact that, for constant q,) the functions fr r, and g 2 of
equation (11) become implicitly dependent on U,, via
equations (12) and (13).

Implementation of constant a ( > 7 .059) in the final
zone leads to the analytic solution

O,- +(se'@)t+c er@))
G(a) 

\

where er@ and er@) were defined previously and C is a
constant whose value is decided by the values U, and t at
the end of the initial zone.

Figures 10 to 14 presents plots of dr, U,, 7r, y, and S for
various values of a.

4. Results and Evaluations

The analysis offers an increased understanding of the me-
chanisms which occur when fluid in a smooth pipe, isolat-
ed from end effects, is accelerated from rest. An integrat-
ed form of the laminar equations of motion was used,
based on a fourth-degree polynomial velocity profile, and
assuming the existence of a well-defined bound ary layer
which may coalesce at an intermediate stage of the
development.

Figures 6 to 9 present the predictions for a - 0, the
dynamic development subsequent to a step increase of
flow rate. An initial zone with a potential core may be
identified, followed by a final zone in which the velocity

l8
?.05t 10322116

(D

Figure 5 - Final values ol velocity prolile parameter lor varying acce-
leration parameter

In this instance, equations (l l), (12) and (13) of the
initial zone become

dq,. 
- lf {6r)rJ,dt

I: - LLlf 2(6) + trr(6t)
U,

7L - tr o@r)

where ffr, ffr, ff3 and ff4 are defined in Appendix A.
These may be combined to give the implicit expression

for d, below.

+- 108 96v + 26v2 2v3

30 23v + 8v2 v3

with U, - 25114 at the time corresponding to which the
boundary layers merge (d1 - l).
Equation (14) of the final zone becomes

!q, - 4o(2 rJ,1
dt
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Figure 6 - Variations ol dimensionless boundary layer thickness d,
and pressure gradient parameter ,1.' with dimensionless time in the

initial region for an impulsively started flow (a - 0)

Figure 7 -Yarlations of the pressure gradient parameters }u.' and y.,

with dimensionless time in the linal region for an impulsively started
flow (a - 0)

0080 0l-002

uc

0,20

t
Figure 8 - Variation of dimensionless centreline with dimensionless
time in the initial and linal regions for an impulsively started llow
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Figure 9 - Variation ol velocity prolile parameter with dimensionless
time lor an impulsively started flow, showing a comparison between
the present finite difference and integral solutions, and results based
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profile, consisting of merged bound ary layers, ap-
proaches a parabolic shape. This essentially parallels the
results of Mohanty and Asthana [5], who used a similar
method in order to study the spatial laminar flow devel-
opment in the entrance region of a smooth pipe.

The solution shows that the rate of change of dl with
time is non-zero when the bound ary layers merge (ac-
cording to figure 6, at approximately | : 0.063). In the
subsequent zone, 7r, yr, U, and S tend towards asymptotic
values of - 1217, -217,2 and 8, respectively (figures 7 to
9). These values are achieved at about | - 0.2. Thus, de-
spite the fact that the major change in S (between @ and
8.57) occurs during the initial development period, this is
less than I 13 of the total development time.

The variation of velocity profile parameter with dimen-
sionless time yielded by the integral analysis for an impul-
sively started flow is shown in figure 9, together with, for
the purposes of comparison, results yielded both by the
analysis of Zielke [4] and by a finite difference approach
of the present author. The three approaches deviated
from each other by a maximum of about three percent
throughout the range.

It is important to note the manner in which the present
work clarifies the occurrence of cde{ain flow regimes:

As in the spatial development case (similar to the limit
d, - 0 in this analysis), distinct zones prior to and after
the merging of the bound ary layers are apparent for small
values of a. However, as a is increased beyond a critical
value of 7.059, an indefinite core region occurs adjacent
to which the boundary layers never merge.

Figures 2 to 5 illustrate the manner in which the final
values of d1, (J, and S are affected by a. For a

the final values are achieved at the end of the final zone,
while for a

Figures 3 and 4 are particularly informative, in that
they emphasize the fact that as d is increased from zero,
the range of U,'s between the end of the initial and final
zones reduces progressively. When o( _ 7 .059 is reached,
a 'triple' point is defined, beyond which only a single (in-
itial) zone exists.

Figure 5 shows that S may fall below the value 8 for
accelerating flows, achieving a minimum value of 6.667
for a : 7.059. This intuitively unexpected result implies
the possible occurrence of velocity profiles more triangu-

Itinat

ntal
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lated, or inflexional, than in the parabolic case. The ex-
planation for this phenomenon is clear from figures 12

and 13, and the definition for S, reiterated below:

13

I1

Theminimumvalueof7,,attainedforallvalueSofa<
7 .059, is - 1217. Additionally, Tt varies between 0 at
d, - 7.059 and -217 ata - 0, while dr achieves its maxi-
mum value of unity for the ran ge 7 .059
combination of these factors, together with the fact that,
within the above range, the dimensionless centreline U,

achieves a minimum value of I .944, results in values of S
less than eight.

Although the above explanation elucidates the math-
ematical reasons for the above-mentioned result, its
physical significance requires clarification via further
analysis and experimentation.

A clear shortcoming of the method is the manner in
which it leads to singularities for certain of the para-
meteis at the interface between the initial and final zones
(for example, see figures 10, 12 and l3). The correlation
between this solutio4 and others for an impulsively start-
ed flow (figure 9) suggests that anomalies (only present

Figure 12 - Variations of the pressure gradient parameter ?'., with
dimensionless time lor ditlerent values ol the acceleration parameter

0,1
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Y1

Figure 13 - Variations of the pressure gradient parameter y, with
dimensionless time lor ditlerent values ol the acceleration parameter
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Figure 10 - Variations of
.ryith dimensionless time

t
dimensionless boundary layer thickness
for different values of the acceleration

parameter

1'oo'

t
Figure 11 - Variations of dimensionless centreline velocity with di-
mensionless time for ditlerent values ol the acceleration parameter

0,25

t
Figure 14 - Variations ol velocity profile parameter with dimension-

less time for ditlerent values of the acceleration parameter

for a
val, however.

The favourable comparison with the computer sol-
ution for a - 0 adds general credibility to the approach.
On the basis of the fact that the singularities were equally
in evidence for this limiting case as for values of a exceed-
rng zero, it is cautiously expected that the validity of the
method would extend to the whole range of d's. However,
this remains to be confirmed.

od
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o denotes interface betveen
initial and finat regions
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5. Conclusion

As indicated in the Introduction, the main purpose of this
exercise has been to provide a base flow for a linear stab-
ility analysis. Therefore, while other techniques (for ex-
ample transfonn or finite difference methods) might yield
equally valid results, the main strength of the integral
analysis is the manner in which velocity profiles may be
reconstructed analytically using the predicted values of 71

and Tr.Thus the formulation allows any of the known
stability analysis to be used. In addition, it is anticipated
that the parameteric framework provided by this ap-
proach will lead to an elegant representation of the linear
stability problem applied to this class of flows.

Appendix A

The functions 91in equaitons (l l), (12) and (13) are de-
fined as follows:

F 1(a, 6)

fr 2(a, 6)

F 
'(6') -

fro@)-

I5(a, 6) 301il 180/d?

equations (l l), (12) andThe functions 2f ,

(13)whena-0

a(3\ 6?) +
pertaining to

are

24tr t(6r) -

2416r-a(6+6r)
66r

6 + 6,
tY-*6 

ar

61 6?

60 180

iut -t/'+ I

a(108d1 - 2461it 360161
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Table I Asymptotic values of the parameters in the in-
itial region for a
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tr r(6r) _ 0

ff,(6) : 61 6i
r\ L' 60 180

tr o@r) : arru, 
Ja, 

+ I

trr(6r): #

d1 d" 1r a, s

0.1 667.037 0.197 1.063 4r.810

0.2 167.038 0.387 l.l3l 2r.89t

0.3 7 4.446 0.57 I 1.206 I 5.3 10

0.4 42.040 0.750 t.287 12.066

0.5 27.042 0.923 1.376 10. l s9

0.6 r 8.896 I .091 1.472 8.922

0.7 l 3.986 1.254 t.s77 8.070

0.8 10.801 1.412 t.691 7.450

0.9 8.618 I .565 1.813 7.007

1.0 7 .059 1.714 r.944 6.667


