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Prediction of stall inception in an axial flow compressort
K. L. Lewls'

( Received October 1990 )

The small perturbation stability analysis of Nenni and Ludwig [ 1] to predict stall inception of a
high hub-to-tip ratio blade row was extended by establishing the blade row compatibility equa-
tions in the relative frame of reference and applying them to a dffising control volume. This
control volume represents a simplified form of the flow passage found between two blades in a
compressor rotor or stator. The model predicts a neutral stability point at which a disturbance is
neither ampffied nor damped, as well as the frequency of the resulting disturbance. The model
was applied to a rotor in a single stage environmentfor which extensive experimental data was
available. The correlation of experimental and model results was acceptable. Stall inception
was predicted in terms of stalling inlet angle to within 0,5 degrees in the tip region. The corres-
ponding disturbance velocity was predicted as 0,56 blade speed compared to the measured value
of 0,62 for the complete annulus. The predictive capability of the model was found to be very
sensitive to the blade row performance characteristic. A parametric study was performed to
study the influence of the area ratio of the diffusing contol vblume. It was found that an
increase in area ratio of the dffising passage tended to delay stall inception but deuease the
disturbance velocity.
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section 2 whilst section 3 presents the experimental data
necess ary for the evaluation of the model. In section 4 the
results of the model predictions are discussed.

2. Mathematical Model

The use of perturbation methods in problems of hydro-
dynamic stability is suggested by the concept that a steady
flow field is stable if no unsteady disturbance of it grows
with time. The model comprises an analysis of the intra
blade row flow field with the resulting constants of inte-
gration being evaluated by the boundary conditions. It is
required that the only destabilizing phenomenon is de-
rived from the steady flow field itself.

2.1 Analysis of flow field in blade-free zone

The flow in the blade-free zone is assumed to be incom-
pressible and inviscid; the incompressible formulation of
the Euler equations are therefore valid in describing this
flow together with the unsteady continuity equation

+ (i.v) n - -1 Vp
p

V.i - 0 2.2

The unsteady flow model assumes that superimposed on
a steady fully specified flow field is an unknown velocity
and pressure perturbation such that

+:?V:V+ +
V 2.3

P-P+0 2.4

By assuming that the amplitude of the perturbations re-
main small the momentum and continuity equations can
be formulated explicitly in the perturbation quantities
and can be linearized by neglecting second order terms.
By assuming that the flow is cylindrical and that the
steady-flow field is axisymmetric results in the following
equations
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leads to the basic two-dimensional
equation of unsteady flow in the
the nth harmonic
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Substitution of these Fourier series into equations 2.5-2.7
and by defining a disturbance st.ream function r/ such that
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This is a linear third order equation; solving for the three
roots and the velocity perturbations described by equa-
tion 2.9 and transforming these to the relative coordinate
system results in the following expressions for the pertur-
bations
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To obtain an analytical solution it is assumed that the
perturbations are periodic in time and the 0 direction.
Then for each blade-free region the perturbation quanti-
ties can be given in the form of a Fourier series

2.tl
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where An, Bn and Dn are the coefficients of integration for
the n'h harmonic and S* is the tangent of the steady rela-
tive swirl angle.

Equations 2.ll completely define the small pertur-
bation unsteady flow field in the blade-free zone and only
the three constants of integration require solution; these
are determined by the boundary conditions.

2.2 Boundary Conditions

There are two types of bound ary condition; those which
relate to conditions far upstream and far downstream and
those which pertain to boundaries formed by the blade
rows.

Far upstream of the blade row the unsteady flow is
required to diminish to zero. This is com-rnt.rrate with
the assumption that there is no external forcing function
that precipitates flow field instability; it is the steady flow
field itself that induces rotating stall. Downstream of the
blade row it is required that the velocity amplitudes re-
main at least finite. These two conditions are satisfied if

Bn, I -- An,2 : 0

where the subscripts. I and 2 refer to upstream and down-
stream of the blade row respectively.

Again upstream of the first blade row the flow every-
where is assumed to be irrotational by virtue of Helm-
holtz's vorticity theorem. Defining the r-component of
vorticity as
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Figure I - Semi-actuator blade passage representation

The second bound ary condition is evaluated by the
consideration of the conservation of vorticity and is es-

sentially an extension of Helmholtz's vorticity law to con-
sider flow with losses.

It can be shown that the circulation around a closed
contour can be described by the following equation

2.tz +-$. oi*.(;, *i):$. di- .e& *iu + il 2.r4
R

where the closed contour C is shown in figure 1. This
equation essentially states that an irrotational incom-
pressible flow may be changed into a rotational motion
by the effect of frictional forces.

This equation is strictly applicable to a flow model in
which the blade rows are present. For the present type of
flow model where an actual blade row is replaced by a
cascade containing an infinite number of infinitely thin
blades, the actions of the blades must be replaced by the
effects of extraneous forces. However, as the line integral
around the closed contour C is taken, only the loss pro-
ducing or non-conservative forces need to be considered;
the line integral of a conservative force such as that pro-
duced by blade lift is zero.

In order to utilize the vorticity compatibility relation,
an expression relating the loss producing forces to the
conservation of rothalpy is required. Since the flow ge-

ometry is axisymmetric the conservation of relative total
pressure can replace that of rothalpy. Use is made of the
unsteady relative energy equation which is integrated
about the control volume in figure I which gives

r I i.iv." ?fr,
fr- :r'r r A0 0z

the condition of upstream irrotationality implies

Dn.t -0
2.3 Blade row representation

Having defined the unsteady flow in the blade-free re-
gions, a mathematical model is necess ary to match the
flow conditions immediately upstream of the blade row to
those conditions downstream, these matchittg conditions
embodying the assumed blade row aerodynamics.

Three equations per blade row are necessary to deter-
mine the constants of integration defined in the general
unsteady flow solution for the blade-free regions. The
matching conditions used are conservation of mass flow,
conservation of rothalpy and vorticity, and a flow deflec-
tion relation.

Since the perturbation flow is assumed incompressible
the conservation of mass flow through the actuator re-
quires that the axial velocity is continuous across the
blade row.

Wz. I : Wz,2

This bound ary condition does not take into account the
relative circumferential displacement of the flow between
inlet and exit of the blade row due to blade stagger; this is
not expected to influence the predictive capability of the
model.

213 4 
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The flow through the actuator disc is assumed incompres-
sible and the flow area A, ? function of the steady flow
field only. If the area of the control volume is assumed to
vary linearly the first term in equation 2.15 is given by

0
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2.16 where R - Arl A,

The final bound ary condition supplies a relation between
the blade exit angle in terms of blade inlet angle. Using a

similar approach to that represented in equation 2.20,the
following is obtained

The convective term in equation 2.15 is manipulated us-
ing vector identities, and by applying the continuity equa-
tion becomes

frr,, S*,, ffr,2 G'.(frr, l - S*, , ffr, ,)

where G' - 
dG (taVl)

d tan p,

fiL,You - wrArL+

C I n (A'lA')

(ArlA, l)
where L -

b

The left hand side of equation 2.18 is by definition related
to the unsteady total pressure loss coefficient ( such that

2.17

Assuming that the frictional forces act essentially parallel
to the local flow direction and combining all the terms
together equation 2.15 becomes

W,A,(T T)

L++(T T) -ri dsT

The bound ary conditions that have been derived are lin-
ear in terms of the perturbation velocities. This means
that the Fourier components can be defined directly.

These conditions formulate the blade row character-
istic equations relating the unsteady flow conditions up-
stream and downstream of each blade row. It is now poss-
ible to mathematically determine specific values for the
constants of integration which appear in the general un-
steady flow solution for the regions upstream and down-
stream of the blade row. Therefore for each harmonic n, a
set of blade row bound ary conditions is generated which
contributes to the corresponding set of constants of inte-
gration. Substitution of the general unsteady flow sol-
ution into the Fourier constituents of the blade row
bound ary equations yields a system of homogeneous
equations for the unknowns An. r, Bn, , and D n, z.

To obtain a non-trivial solution the eigen-value A of
the system is evaluated. This is derived from the determi-
nant of the system

I -l
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It is assumed that the unsteady coefficient may be ap-
proximated by the addition of the unsteady inertia term
to the steady loss. The steady loss coefficient is treated in
a quasi-steady manner by applying a Taylor series
expansion

By applying the binomial expansion the unsteady pertur-
bation d (tan ft) is given by
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Sufficient information is now available to apply the vor-
ticity equation to the closed contour C. As the number of
blades approaches infinity the following is obtained

*t* fru.r-frr.') *,(R4,2_'i.,,,) Lr.. Prf#

The first root is the zero amplitude solution

nl _ -(S*, z + j)

++ e' (l + s'*.,)

This solution predicts instability throughout the operat-
ing range and represents a singularity in the downstream
flow conditions. Substitution of this root into the simul-
taneous equations entails the removal of the rotational
flow term which always results in the determinant being
zero. The trivial solution needs to be factored out of the
quadratic equation in order for the other root to be ob-

2.22
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tained. Other workers including Nennr
obtained the same root.

The second root consists of real and
ponents

A Real (o) r , Ima g (o) r
r '2 

"riL 
T 

ttir,
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+ S*,,f +

q (l + s2R,

23

chord Reynolds number at design point was 1,3 x l0s.
The hub-to-tip ratio was 0,714.

Blade row performance was determined by traversing
at inlet and exit from the rotor with a three hole probe.
Characteristics as shown in figure 2 and 3 were obtained
for the hub, midspan and tip regions by mass averaging
the respective data. Similar data were obtained for the
complete annulus. Kulite pressure transducers mounted
on the casing wall were used to determine the number of
stall cells and their frequency.

and Ludwig tU
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Stall inception occurs when the imaginary part of the root Figure 2 -
passes through zero and becomes negative. There is no
direct reference in the stall inception limit expression to
the blade row characteristics other than the blade loss and
turning relationships, and overall area ratio; although the -o 8

blade chord c which is incorporated in L features in the
eigen-value matrix it is only included in the real and im- -o s

aginary components of d as part of a multiplier. It does
not influence the point at which the damping factor g -l

passes through zero. From this it can be inferied that { -1 ,

although it has been found by experiment that an increase !
in chotd l.trgth improves the stall limit of a blade row, it 3 -1 2

does so in atr indirect manner via the blade loss and turn- : -, r
ing characteristics. f

Ttre real part of the non-trivial root gives the propa- F 
-1 4

gation velocity of the disturbance as afraction of the axial _, s

velocity. The propagation velocity becomes

2.26

2.27 Figure 3 - Mass ayeraged hub, midspan and tip characteristics of
llow turning

4. Application of Stability Model

The stability criterion defines the limit at which a stream-
tube through a blade row is transformed from a steady
stable flow to one that is stable only in an unsteady mode.
The streamtube is defined as being thin and annular and
containing a blade row with predetermined steady
characteristics.

The analysis can be applied in two ways. Firstly the
stability of a streamtube which encompasses the whole
blade span can be determined if a two-dimensional rep-
resentation of the flow approximates the actual situation.

3. Experimental Data

Extensive experimental data was obtained by the author
on a low speed axial flow compressor and is reported in
t7]. A single stage configuration was used with the stator
positioned five chord lengths downstream from the rotor.
This position was chosen such that there would be mini-
mal coupling between the stator and rotor flow fields and
therefore allow the rotor to be tested as a single blade row
but in a single stage environment. The compressor blad-
ing was based on an 80% reaction design using NACA 65
profiles on a circular arccamber line. No inlet guide vanes
were necesasary due to the high reaction. The rotor blade-
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of Predicted and Measured Stall Inception Data

EXPERIMENTAL

Table l: Comparison

PREDICTED

Stream Tube
(% Blade

Span)

Area
Ratio

R

Stall
Angle
ft,

Wave
Number

n

Disturbance
Velocity

vo/vu

Angle at
stall
f'

Wave
Number

n

Cell
Velocity

vo/vu

Total (8-92) I

1,44

-67,3

- 69,4

I
2

3

I
2

3

0,5 5

0,61
0,66

0,46
0,5 3

0.58

- 65,2 3 0,62

rip (70-e2) I - 68,4 1

2

3

0,40
0,44
0,56

- 69,0

Hub (8-30) I - 63,7 I
2

3

0,67
0,71
0.72

- 62,5

Midspan (30-70) I - 69,5 1

2

3

0,68
0,73
0.77

- 65,0

The latter is approximately true in a high hub-to-tip ratio
compressor.

The second approach is to consider streamtubes that
occupy only a certain fraction of the blade row annulus.
Again the flow is assumed to be two-dimensional and the
objective of the analysis is to determine which stream-
tubes will become unstable first. If the flow is identified as
unstable in one or more streamtubes but stable in others,
full rotating stall will only develop if there is insufficient
damping across the whole blade row. This is determined
by the former approach.

The curve-fitted blade row characteristics shown in fi-
gures 2 and 3 were used as input to the inception model, in
addition to the respective mean axial velocities and blade
geometry parameters. The model was then used to deter-
mine the neutral stability point represented by the tran-
sition of the stability parameter through zero as well as
the corresponding disturbance velocity. As the model
does not predict the number of disturbances or stall cells,
the wave number becomes another input. A summary of
the stall inception points as predicted by the model are
compared to the experimental data in table 1.

The influence of the area ratio R is seen to delay stall
inception; if R is chosen to be unity, that is the blade
passage is parallel-sided, a stalling inlet angle f ,, of - 67 ,3
degrees is predicted for the complete annulus. Increasing
the value of R to the geometric value of I ,44 delays stall
inception with f ,, equaling - 68 ,4 degrees. As a better
correlation was obtained for R - 1, this was retained
throughout the rest of the analysis.

The influence of wave number n is seen to affect only
the disturbance velocity vo/vu; the wave number was var-

ied from the inception value of a single cell to the steady
fully developed value of three. Figure 4 and 5 show the
graphical results of varying R and n.

If these results are compared to the experimental ones
reasonable correlation exists; however it can be seen that
actual stalling occurs earlier than that predicted. There
are two possible reasons for this discrepancy; either the
model is invalid in the assumptions taken or the exper-
imental data used as input is not representative. It was
found that the model, as can be expected, is extremely
sensitive to the gradient of the blade row characteristics.
As only a second order polynomial could be justified in
curve-fitting the pressure loss data whilst a straight line
was used to correlate the blade deflection data it is
thought that improving these would improve the degree
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Figure 5 - lnfluence of wave number n on stall inception

of correlation between the predicted and experimental
points.

When the data was applied to the hub, midspan and tip
regions a far better correlation was obtained; the model
predicted that the tip would stall first at an inlet angle p,,

equal to - 68,4 degrees. This is 0,4 degrees from the mea-
sured inception point. The facf that the rotor first experi-
enced tip stalling was confirmed by experiment. If the
diffusion factors are compared at tip, hub and midspan as

in tabla2, it would be erroneous to believe that as the hub
has the highest value it would stall first. It is however
interesting to note that the rule of thumb stating that a

diffusion factor greater than 0,6 leads to stall, is generally
valid here.

Table 2: Diffusion Factors at Hub, Midspan and Tip
(0 - 0,47)

25

In physical terms the fact that the model predicts that
the blade row will stall first at the tip but the complete
annulus will only stall later suggests that there is sufficient
damping in the rest of the annulus in the hub and midspan
regions to absorb the partial stalling of the tip. This was
not confirmed by experimental data; the stall experienced
is a full span stall covering the whole blade. This discrep-
ancy can be explained by either of two reasons; firstly the
accuracy of the curve-fitted data limits the predictive
capability of the model or substantial interaction between
the tip and midspan regions after tip stalling has occurred
leads to significant flow curvature and radial velocities.
This would tend to invalidate the two-dimensional mo-
del. It is probably a combination of the two that contri-
butes to the observed discrepancy.

Conclusions

The small perturbation analysis of Nenni and Ludwig to
predict stall inception of a high hub-to-tip ratio blade row
has been extended by improving the representation of the
blade row. The agreement of the model predictions with
experimental data is reasonable considering the sim-
plicity of the model and the accuracy of the curve-fitted
blade row characteristics. The application of this model
to other experimental data would be of benefit in gaining
experience of the predictive capability of the model as

well as identifying any inconsistencies in the assumptions.
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