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Nomenclature

o, angle of attack, relative to the original chord line
oidear abscissa axis intercept of / C o-vs-u, curves
a C pvs-a curve slope for finite-span wing
azo C,-vs-a curve slope for 2 dimensional (infinite-span)

wing
AR aspect ratio
b constant in Joukowski transformation

formula [mm]
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Introduction

The Function and Effect of a Leading-Edge Flap
Modern-fighter-aircraft aerofoils are designed for opti-
mum performance at high subsonic and transonic speeds,
this dictates a thin aerofoil with very little camber and a
sharp leading edge, otherwise the drag coefficient and
shockwave effects at high Mach numbers are excessive.
The problem with such an aerofoil is that it is prone to
separation, and thus lift failure, at high angles of attack.
The result is two-fold; first, the maximum lift coefficient
is limited and thus the low-speed (take-off and landing)
performance is poor. Second, the manouvrability in 'dog-
fight' situations is limited. A leading-edge flap is a high-
lift device, which improves the aerofoil's performance
under these conditions by permitting higher angles of
attack.
Figure I shows how a leading-edge flap decreases the sev-
erity of the corner through which the flow must turn in
order to remain attached at high angles of attack. Thus,
the acceleration and expansion of the flow around the
upper surface of the leading edge and the corresponding
lift generating suction pressures are more evenly distrib-
uted along the upper surface. The aerofoil is therefore
able to reach a higher angle of attack before the negative
(gauge) pressure becomes low enough to cause reversal

Control of a Leading-Edge Flap using the Nose Pressure
Distribution

M. L. Eglington*

ABSTRACT

The problem of controlling the deflection of a leading-edge flap has been investigatedfrom
an aerodynamic point of view. The ffict of a leading-edge flap on a symmetrical Joukowski
aerofoil ( 1294 thickness-chord ratio) is investigated experimentally through a set of wind-
tunnel tests and, to a limited extent, theoretically. This initial study shows that it may be
possible to control the defiection of the flap, to prevent separation and optimize the C,l Co

ratio, using the static pressure difference between symmetrical tappings at equal small sur-
face distancesfrom the leading edge, but on opposite surfaces ofthe aerofoil. In the process a
linear relationship between this pressure dffirence and the angle of attack is obtained. Thus,
a linear relationship between this pressure dffirence and C1 is also obtained.
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a) At low angle at attack,
flow stays attached and
aerofoil produces lift.

b) At high angle of attack,
separation causes loss of
lift.

Figure 1 - Etlect of a leading-edge flap

c) Etfect of leading-edge
flap is to prevent
separation at high angle
of attack.
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Figure 2 - Ellect of a leading-edge llap on the Clvs-o ""S
and separation of the upper-surface flow. The effect of a
leading-edge flap on a typical lift-coefficient (C) vs an-
gle-of-attack (a) curve is shown in figure 2. Curve A re-
presents the clean aerofoil (with no high-lift devices). In-
itially, while the flow is still attach ed, C lincreases linearly
with angle of attack. As the angle of attack increases sep-
aration begins to occur causing the lift produced to de-
crease. The C6vs-o cufve reaches a maximum when the
lift-decreasing effect of increasing separation equals the
lift-increasing effect of the increasing angle of attack;
thereafter the lift drops rapidly with increasing o. By in-
creasing the high-angle-of-attack capacity of the aerofoil,
the leading-edge flap allows it to produce a higher maxi-
mum lift coefficient (curve B).

Control of a Leading-Edge Flap and the Scope of this
Article
Due to the performance improvement described above,
leading-edge flaps are now fairly common on modern
fighter aircraft (for example the American F- l8 and F-
l6). There are, however, a significant number of older
aircraft whose performance could be notably improved
by the addition of leading-edge flaps, for example the
Mirage III.

One of the major problems that needs to be overcome
in implementing leading-edge flaps, as an upgrade on
older aircraft, is the control of deflection of the flaps. In a
dog-fight situation in particular, the deployment must be
automatic in response to the pilot's actions. Although
there is very little literature available on the control of
leading-edge flaps (in fact the author did not have access
to any such information), modern aircraft employing
leading-edge flaps are generally 'fly-by-wire' aircraft ie.
sophisticated on-board computer and electronic equip-
ment provides the interaction between the pilot and the
control surfaces of the aircraft. It appears that existing
leading-edge-flap control systems are an integrated part
of these computer systems and use complicated algor-
ithms, test data and air flight measurements to determine
the flap deflection required by the pilot's actions. In any
event computerised control is not a viable option for an
upgrade because the aircraft in question do not have the
required on-board computer systems and fitting of such
systems is limited by cost and space considerations.

Therefore there is a need for a cheap, simple and easy-
to-implement method of determining and controlling
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leading-edge-flap deflection. This is an investigation into
a possible solution ie. to try to correlate the static-press-
ure distribution on the nose section of the leading-edge
flap with the performance characteristics of the aerofoil
under varying angles of attack and flight speeds for differ-
ent flap deflections. The aim is to obtain a simple re-
lationship which could be used to realise a feedback con-
trol system which would control the flap deflection so as

to prevent separation and optimize performance using
static-pressure tappings from the nose of the wing as a
feedback variable.

Outline of Procedure
The effect of a leading-edge flap on a symmetrical Jou-
kowski aerofoil of 12% thickness-to-chord ratio with a
chord length of 280mm was investigated by building and
testing the following three aerofoils:
aerofoil l: symmetrical Joukowski aerofoil.
aerofoil 2: symmetrical Joukowski with leading 20o/o ro-
tated through 7,5' .

aerofoil 3: symmetrical Joukowski with leading20o/o ro-
tated through l5'.

The aerofoil profiles are shown in figure 3. The static-
pressure distributions, lift and drag coefficients, and sep-
aration characteristics of these profiles were investigated
experimentally and, to a limited extent, theoretically at
varying angles of attack and flow speeds. The experimen-
tal results were analysed for a correlation between the lift,
drag and separation characteristics and the pressure dis-
tribution.

a) Aerofoil 1: symmetrical

b) Aerofoil 2: 7.5" nose droop at
80o/" of chord length

c) Aerofoil 3: 15' node droop at
80% of chord length

Figure 3 - Aerofoil proflles

Theoretical Investigation

The Kutta-Joukowski transformation is a well-known
conformal transformation which transforms a circle into
an aerofoil shape. The equations for the transformation
of a circle into an aerofoil of given thickness-to-chord
ratio 6nd chamber are developed and described in, inter
alia, Houghton and Brock []. Joukowski aerofoils were
used because, although the aerofoil produced is a not
practically useful one, it is easy to predict the inviscid flow
around it using Potential-Flow Theory and conformal-
transformation theory. Using these theories Houghton
and Brock develop equations for the lift and pressure
coefficients in terms of the geometry and angle of attack,
u,, of the aerofoil. Thus simple equations for the theoreti-

No leading-edge flap
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cal static-pressure distribution and lift coefficient of the
symmetrical aerofoil were obtained.

The effect of the leading-edge flap on the lift and press-
ure coefficients was analyzed using thin-aerofoil theory as
described by [] and Kuethe and Schetzer [2].

Limitations of the Theory
Complete theoretical modelling of a wing in viscous flow
is a complex problem and the theories mentioned above
have several idealrzations and limitations:

Assumption of Inviscid Flow
The theories described assume that the fluid (air in this
case) has zero viscosity. Thus they do not account for the
effects of the viscous boundary layer and provide no esti-
mate for the viscous drag.

(i) Etrect on Pressure and Lift
For attached flow around an aerofoil the pressures and
lift predicted by inviscid theories should be accurate be-
cause the effects of viscosity are limited to the (thin) vis-
cous bound ary layer.

(ii) Etrect on Drag
In general there are two main types of drag on aerofoils:
- profile drag, which is independent of lift and includes

surface-friction drag and form drag. Surface-friction
drag is the drag resulting from the viscous shear stresses
between the fluid and the aerofoil surface and cannot
exist in inviscid flow. Form drag is due to the compon-
ent of the resultant pressure force in the stream (drag)
direction. For inviscid flow it can be shown that this
component is always zero.

- induced drag, on the other hand, is lift dependent and
caused by trailing-edge vortices, which are initiated by
the pressure-equalizing flow from the pressure surface
to the suction surface at the tips of a finite-length aero-
foil. It can be shown (tll for example) that drag can
indeed exist in inviscid flow and is roughly dependent
on the square of the lift coefficient giving the C yvs- C a

curve its characteristic quadratic shape.

Thus inviscid theories do not provide useful estimations
of the drag on an aerofoil in viscous flow, and it was
beyond the scope of the project to attempt accurate theor-
etical modelling of the drag on the aerofoils.

(iii) Effect on Separation
Separation is a viscous phenomenon and cannot occur in
inviscid flow. Therefore the theories above provide no
information on the separation characterisiics of the
aerofoils.

Singularities in the Thin-Aerofoil Theory
Thin-aerofoil theory involves replacing the airofoil by a
vortex sheet, which creates an overall lift producing circu-
lation, a velocity distribution and thus a pressure distrib-
ution along itself. This pressure distribution can be inte-
grated to find the lift force. The vortex sheet representa-
tion, however, predicts infinite velocities at the leading
and trailing edges. Thus the theory is singular at these
points. The singularity at the trailing edge can be elimin-
ated by forcing the Kutta condition and the singularity at
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the leading edge is integrable; thus the lift predicted by the
integration of the vorticity distribution is reliable.

But, because the pressure is dependent on the velocity,
the theoretical pressure distribution is particularly inac-
curate near the leading edge. In fact, for round-nosed
aerofoils in particular, the theory should predict a stag-
nation point at or near the leading edge (to conform with
reality), which it does not. Thus the nose-pressure distrib-
ution predicted by thin-aerofoil theory is not useful for
comparison with experiment.

The theory can, however, be made uniformly valid us-
ing singular perturbation theory. This theory is developed
in detail by Van Dyke [4]; chp. 4 in particular deals with
'Singular Perturbation Problems in Thin Airfoil Theory.'
Here Van Dyke develops Lighthill's rule: a multiplicative
correction factor for the velocity, which renders thin-
aerofoil theory uniformly valid near round aerofoil edges.

In essence, Lighthill's rule corresponds to fitting an os-
culating parabola centred on the expected stagnation
point on the round edge. An exact potential-flow solution
for the velocity on a parabola is available, and, according
to Van Dyke, a uniformly-valid solution for the thin-
aerofoil problem may be obtained by multiplying the vel-
ocity predicted by thin-aerofoil theory, by a correction
factor equal to the ratio of the exact solution for the par-
abola, to the thin-aerofoil solution for the region near to
the nose. The reasoning is that 'near the leading edge,
where the disturbances are large, the exact speed on the
airofoil is nearly that on the osculating parabola. Far
from the edge, on the other hand, the correction factor
approaches unity, so that the thin-airfoil solution is re-
covered where it is valid'. (Van Dyke 1975: p.60). Al-
though time restraints prevented the extension of this
analysis to a quantitative stage, the principles described
above will be used later to explain some of the results
obtained.

Effect of Low Aspect Ratio and Large Size of the Aerofoils
Relative to the Test Section
The theories discussed so far are strictly only true for two
dimensional aerofoils (ie. having infinite span), in infinite
uniform flow fields. The experimental set-up differed
from this ideal in several ways:
(i) The aerofoils were tested in an open-section wind tun-

nel with an outlet height of only 2.5 times the chord
length. (Note that this large chord length was necess-
ary in order to obtain acceptable accuracy in the lift,
drag, and pressure distribution measurements.) This
means that the aerofoils will be deflecting only a nar-
row stream of air (as opposed to an infinite stream)
and thus the force required to change the momentum
of the stream and deflect it will be lower. Therefore
the lift force and pressures generated by the aerofoil
will be lower than predicted by two dimensional
theory.

(ii) The edges of the aerofoils extended a little (7% of
span) beyond the edges of the jet of flow and the aero-
foils had a low aspect ratio:

AR- l:1,18.
,S

(l)

The important effect here is again that the experimen-
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tal pressures and resulting lift coefficients will be sig-
nificantly lower than those predicted by the two-di-
rnensional theories. This is due to the pressure-equa-
lizing flow to and from the adjacent undisturbed
atmospheric air atthe edges of the jet of flow over the
aerofoils. Due to the low aspect ratio, these edge ef-
fects will affect a relatively large portion of the entire
flow; they will therefore cause a significant overall re-
duction of the pressures and lift generated by the aero-
foils.

Concluding Comments
Due to the limitations of the theory and the complexity of
complete and accurate modelling of a 3 dimensional wing
in viscous flow, the spirit of this project was to look for
correlation between the trends indicated by the specific
theories above (and by other theory and experiment in the
literature) and the actual experimental results, rather
than to aim for accurate numerical agreement. The use-
fulness of the theoretical investigation was thus rather to
provide confidence in the experimental results by indicat-
ing that the aerofbils were exhibiting reasonable known
behaviour.

Experimental Details

Construction of the Aerofoils
General Design

As shown in figure 4, each aerofoil was constructed from
six 50 mm long wooden segments, which were assembled
on mild steel aligning rods to give a span of 300 mm. The
aerofoils had a chord length of approximately 255 mm
and a designed thickness-to-chord ratio of 12%. To facili-
tate measurement of the static pressure at the surface,
span-wise holes were drilled through the full span. During
testing these holes were blocked at one end and connected
to a manometer at the other. Small 0,5 mm holes, cross
drilled from the surface into these span-wise holes, en-
abled the surface pressure distribution to be measured.

Generation of Profiles
A Turbo Pascal 5.0 computer program was written to
generate the points for the Joukowski profiles using the
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standard Kutta-Joukowski transformation described by
tl]. Sufficient profile points were generated to obtain a
smooth profile ie. double point density on the nose sec-

tion, and a Lagrangian-cubic-polynomial interpolation
was used to maintain the smooth profile at the discon-
tinuities caused by the rotation of the nose section.

Machining of the Aerofoils
The aerofoils were end-milled from blocks of jelutong
and imbuia on a Maho 600 CNC milling machine by
simply linearly interpolating between the profile points,
while traversing in a clockwise direction around the pro-
file; hence the highpoint density required on the nose sec-

tion. The spanwise pressure-tapping holes and the span-
wise aligning holes in each segment were also drilled with
the CNC machine before the segment was removed.

Assembly and Accuracy of the Aerofoils
The Maho milling machine had an accuracy of 0.001 mm,
but this obviously cannot be achieved with wood. Also,
during assembly of the aerofoils, a minimal amount of
sanding was required to smooth the aerofoils in the span-
wise directior, owing to inaccuracies caused by wander-
ing of the thin drill bit when drilling the wood. The pro-
files were thus accurate to about + I mm. Another in-
accuracy was caused by the cusped trailing edges of the
Joukowski profiles; they were too thin and broke off dur-
ing machinitrg. As a result the aerofoils had chord lengths
of approximately 255 mm as opposed to the designed 280
mm. This change in chord length should have minimal
effect on the lift and pressure because the pressure coem-
cients near the trailing edge are close to zero anyway.

Sealing of Aerofoils and Pressure-Tapping Holes
A fairly major problem encountered was the leaking of
the pressure-tapping holes, owing to the porosity of the
wood and small gaps at the joints between the segments of
the aerofoils. Such leaking is unacceptable because it
leads to inaccurate measurement of the static pressure
due to flow in the pressure measuring tubes. The problem
was overcome by spray-painting the aerofoils with Glatex
8 polyurethane paint to seal the outer surface. Interaction
between the span-wise pressure holes was prevented by
injecting Glatex 8 through them with a hypodermic syr-
inge. Short lengths of aluminium tubing were forced into
the span-wise holes in each aerofoil, when the paint was
still wet, to facilitate connection to the manometer. All
the holes were then satisfactorily leak and plug tested,
and the aerofoils were lightly sanded to obtain a smooth
surface ready for testing.

Experimental Procedure :

General Outline
The aerofoils were tested in the Department's open-sec-
tion recirculating low-speed wind tunnel. Lift and drag
were measured with a mechanical 3-component wind-
tunnel balance, pressures were measured with a multi-
tube manometer, and the flow speed was measured with a
pitot-static tube. The tests were carried out over several
weeks at standard atmospheric conditions in Durban.
The atmospheric pressure during testing ranged fromFigure 4 - General design of the aeroloils
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7 52.5-7 54.0 mmHg and the average room temperature
was 25"C.

Size of Test Section and Positioning of Aerofoils
The tunnel outlet at the test section was 260 mm wide and
650 mm high. The aerofoils were mounted on the tunnel
centre-line, such that, at zero angle of attack, the leading
edge was 40 mm from the plane of the outlet. Since the
aerofoils had a span of 300 mm and were mounted sym-
metrically with respect to the tunnel centre-line, the edges
of the aerofoils extended 20 mm past the edge of the jet on
each side. The velocity distribution was investigated with
the pitot-static tube and a traverse gear: near the outlet
the velocity varied as a steep step function, which became
progressively more rounded further from the outlet, but
was still constant over the major portion of the trailing
egde of the aerofoil.

Test Speeds and Reynolds Numbers
The aerofoils were tested at 4 speeds as shown in table I
below and at angles of attack increasing from zero to sep-
aration in increments of 2".

The Reynolds numbers in table I are based on true chord
length of 255 mm.

Experimental and Theoretical Results

As expected, after being non-dimensionahzed with the
dynamic pressure (Lp|f), the results at each of the four
different speeds were similar. For this reason, the results
included below are mainly for speed 3 ie. 38.33 m/s, Re -
6.21 x l0s.

C,-vs-a Curves

The experimental lift-coefficient vs angle-of-attack
curves are shown superimposed on the same axes in figure
5' Experimental Cl vs a Graph
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Figure 5 - Experimental Cpvs-o curyes
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(i) As expected, the effect of the leading-edge flap is to
delay the onset of separation, allowing the aerofoil to
handle a higher angle of attack and produce a higher
maximum lift coefficient. Table 2 compares the
angles of attack at which separation occurred and the
corresponding maximum lift coefficients.

Iable 2: Occurrence of Separation (speed _ 38 rn/s)

Aerofoil Flap
Deflection

uat
Separation

C, at
Separation

I 0' 22" 0,34

2 7 .5' 28" 0,53

3 15" 34" 0,65

(ii) Particularly noticeable is the similarity of the three
curves: they have the same slope, lie almost on top of
each other, and pass through the origin. This means
that neither the slope, nor the zero-lift angle of attack
(relative to the original chord line) was affected by
drooping the nose. It is not intuitively obvious that
drooping the nose should scarcely affect the zero-lift
angle of attack, but this result is supported by the
thin-aerofoil calculations in (iii) below, and in fact
Kuethe and Schetzer 12) prove (with thin-aerofoil
theory) that the effect of a change in the camber line
near the trailing edge, on the zero-lift angle of attack,
is far greater than the effect of a change near the lead-
ing edge.

(iii) Houghton and Brock [] show that the theoretical lift
coefficient for a 2-dimensional Joukowski aerofoil in
inviscid flow is

Ct: Zn(l + e)sin(o + B.)

Substituting the values of the transformation con-
stants used to obtain a 12% thickness-to-chord ratio,
symmetrical aerofoil (ie. e _ 0.092379,P - 0) gives

(2)

(3)

(4)

C r:2,l8nsino.

Differentiation of w.r. t. a gives the ideal inviscid two-
dimensional C pvs-a slope fo, aerofoil I :

+ 2,t 8ncosa.
oa

01

For small a this will be approximately constant and
equal to 2n per radian, and according to [] it is 'well
established that all conventional aerofoils in low
speed conditions, that is conditions in which
compressibility effects can be largely ignored, have

[constant] two-dimensional lift slopes of between 6

and 5,5 per radian.'
Using thin-aerofoil theory, it can be shown [] that

the lift coefficient of the flapped aerofoils is given by
an expression of the form

Table l: Test Speeds and Reynolds Numbers

Speed
Speed
Speed
Speed

I

2

3

4

lm/sl
22.45
30.19
38.33
44.s4

Ikm/hr]
80.52

108.7
r 38.0
160.3

Reynolds No.
3.64 x lOs
4.89 x 10s

6.21 x lOs

7 .22 x lOs

0
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Ct:2nAs* nAr, (5) (a)

where ,4e is a term dependent on the angle of attack
and the mean-camber-line shape, and Arrs a constant
dependent on the mean-camber-line shape of the
aerofoil. For the symmetrical aerofoil, it can be
shown that As _ a and that At - 0 so that

g h:2na' (6) o

Similar equations for the flapped aerofoils can be ob-
tained using the known geometry of the flapped aero-
foils to calculate As and A1. They are

N&O JOERNAAL JULIE 1992

Experimental Cl vs Cd Graph
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for the 7 .5" and l5' nose-droop aerofoils respectively.
Note that in these equations a is relative to the

original chord lines (as always in this article) and
must be expressed in radians. Setting Cr: 0 in (7)

and (8) and solving for the zero-lift angle of attack
gives ae - 0.00540 and 0.0105 radian (or 0.310' and
0.604") for the 7 .5' and l5' droop aerofoils respect-
ively. Thus the theory predicts a small shift of the Cp

vs-d curves relative to each other, but no change in
the slope. This trend agrees well with the experimen-
tal results in figure 5, especially since it is unlikely
that the experimental set-up was accurate enough to
pick up the small shifts in angle of attack.

(iv) It was also asserted above that the theoretical two-
dimensional Csvs-oc slope for each aerofoil is approx-
imately 2n per radian. In sharp contrast to this is the
experimental value of 1.10 per radian (from figure 5).
In other words, the aerofoils produced significantly
lower lift coefficients than predicted by theory. A
probable explanation for this discrepancy is the com-
bination of large chord length relative to the flow
stream, low aspect ratio, and edge effects discussed
earlier.

C svs-C a Curves

The experimental Csvs-Ca curves are shown in figure 6.

The most important points to be noted from these curves
are:
(i) They exhibit the typical C svs-C; curVe shape ie. a

quadratic dependence of C, on C o, owing to the trail-
ing-vortex drag, and a horrzontal shift from the ori-
gin, owing to the lift-independent drag component.

(ii) Corresponding to the increased maximum C, values

is an increase in the corresponding Co values. This
point is further emphasized by a comparison of the
maximum C,lCo ratios for the different nose droops:
the C,lCoratio is an indication of the efficiency of the
aerofoil, and the maximum ratio is determined by the
slope of a line from the origin and tangential to the C,

-vs-Ca curves, as shown in figure 6. Comparison of
the slopes shows that the effect of flap deflection is to
decrease the maximum C,lCo ratio. Thus the in-

2 0.04 0.06 0.08 0.1 0j2 0.14 0.16 0.18

Gd

Exgerimental Cl vs Cd Graph
7 .5" Nose Droop

0.05 0.1 0.1 s 0.2
cd

Experimental Cl vs Cd Graph
15 o Nose Droop

Slope = 4.44,

C, -2na- 0.03 396.7.5"

C,,r.-2na,- 0.06625

(7)

(8)

(b)
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o
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Figure 6 Experimental Cyvs-Ca curyes

creased liftin g capacity of the wing must be paid for
with increased drag and decreased aerofoil 'ef-
ficiency'; this is the reason for variable geometry high
lift devices: they are only deployed when needed.

/Co y.s d Curves

Here LC, is the difference between the pressure coeffi-
cients at equal small distances from the (original) leading
edge, but on the lower and upper surfaces of the aerofoil
(as shown in figure 7) ie.

Slope of tangent
= rn€x (Cl/Cd) ratio
: €l€rofoil'efficency'

Slope : 4.71
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Distance from leading edge
(symmetrical, along surface)

Figure 7 - LCe tapping positions

LC ,: C ,rurrure C Prrrtirr- 

P 
'o*" 

- P u"" (9)
Ipu'

LC o values for several distances from the leading edge

were calculated, both experimentally and theoretically
(for the symmetrical foil only), and then plotted as func-
tions of d. Note that these distances are measured along
the aerofoil surface, not along the camber line.

The curves thus obtained were found to be remarkably
linear, and therefore least-square-linear-regression lines
were fitted to the data points. Typical experimental L,C;
vs-d curves (for distances 9 and l2 mm from the leading-
edge), with least-square lines superimposed, are included
in figure 8.

(a) s#

0510152025303540
Angle of Attack (a) t "l

* DrOOp = 0o + DrOOp =7.5' €F DrOOp = 15"

(b) Experimental ACp vs cr Graph
Dlstance from Leading-Edge = 12 mm

510152025303s
Angle of Attack (o) I "l

+ Droop = 0" + Droop =7.5'€F Droop = 15"

Flgure 8 - Experlmental L,Cr-vs-o graphs

Theoretical ACp vs cr Graph

5 10 15 20
Angle of Attack (a) [ 1

Distance from Leading Edge
-+- 14 mm 30 mm JrG 41 mm

Figure 9 - Theoretlcal ACr-vs-o llnes

The experimental curves show that LC o increases

linearly with angle of attack until separation occurs (indi-
cated by the sudden drop in L,C r). Particularly noticeable
are the similar gradients for the 0",7.5'and 15" flap de-
flections, indicating that the constant of proportionality
is independent of the flap deflection.

The second point to notice is that, just before separ-
ation occurs , LC rreaches a critical value, LC r,,,,, which is
approximately constant (allowing for experimental er-
rors) and independent of the flap deflection.

Finally, it will be noted that the effect of flap deflection
is only to horizontally shift the A,Co-vs-d line. This shift is
indicated by the abscissa axis intercept dia,", ie. the angle

of attack at which LCr- 0. Increasing the flap deflec-

tion increases d;6."1.

As shown in figure 9, a relatively linear relationship
was also obtained form the theoretical pressure distrib-
ution for the symmetrical aerofoil (obtained using the
Joukowski Transformation and potential-flow theory as
discussed by tl]). LJnfortunately though, 8s mentioned,
the potential-flow theories cannot predict separation
characteristics, and time limitations prevented extension
of quantitative theoretical predictions to the nose-
drooped aerofoils. It will be noted that the values of LCo
predicted by the 2-dimensional analysis are significantly
higher than those obtained experimentally, which is the
reason why the theoretical results have not been superim-
posed on the experimental curves. Again this discrepancy
is most likely due to the large chord length, low aspect
ratio and edge effects discussed previously.

Effect of Distance from the Leading Edge
It is important to note that the results obtained here are
most pronounced and usable for the tappings close to the
leading edge. Figure 10, which shows the ACo-vs-a graph
for tappings 30 mm from the leading edge, illustrates this
point.

The graphs in figure I l, below, further illustrate the
effect of distance from the leading edge on the results. The
first graph shows that although the gradient of the AC;
vs-d lines decreases with distance from the leading edge,
the gradients for the different flap deflections remain al-
most identical. The second graph plots the L,Cp crit for
each flap deflection vs distance form the leading edge.
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Distance from Leading-Edge : 30 mm

5 10 15 20 25 30 3s
Angle of Attack (a) t "l

+ DrOOp = 0" + DrOOp = 7.5o €- DrOOp = 15"

Figure 10 - Experimental ACr-vs-o graph.
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Maximum ACp vs Distance from L.E.
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0 ideal vs Distance from L.E.

5 10 15 20 25 30 35 40
Distance from Leading Edge [mm]

. Oroop = 0o 1| Droop = 7.5o E Droop = 15 "

Figure 11 - Eflect ol distance lrom leading edge

deflection gradually decrease until, for tappings 4l mm
from the leading edge, didear decreases instead of increases

with increasing flap deflection.

Effect of Speed
It was claimed earler that the experimental results were
very similar at different speeds and Reynold's numbers;
the comparative graphs in figure l2 illustrate this point.

(a) Least Squares Gradient vs Nose Droop &
Speed for Different Tapping Positions
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The general trend is for the deviation in C o *it to increase

with distance from the leading edge. This may be more
clearly seen by comparison of the L,C o-vs-d curves for dis-

tances 9, 12 and 30 mm from the leading edge, shown in
figures 8 and 10. Finally, the plot of nidear vs distance from
the leading edge shows that increments in d;6"u' with flap
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o idtal vs Nose Droop &
SpeeO itions
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Figure 12 - Etlect ol speed

Summary of Most Useful Results

I. Effect of Leading-Edge Flap Deflection:
Deflecting the leading edge flap results in delayed separ-
ation and thus allows the aerofoil to produce a higher
maximum lift coefficient C, but this lift must be paid for
in increased drag and decreased efficiency.

2. Investigation of lCo vs Angle-of-Attack (a)
2.1 Within the attached flow regime, a linear relationship

between A C, and d was obtained ie.

LCr- k$ + constant.
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ition) is determined, a feedback control system could
be implemented to prevent separation by adjusting the
flap deflection during flight to satisfy l.
Since, in general, aerofoil 'efficiency' , C,C o decreases

with increasing camber (flap deflection), the control
system may be optimized by minimizing flap deflec-
tion, while satisfying I (within a certain safety margin).
Finally, it has been shown that C, is proportional to a:

4.12

10

5.

rB
6

Eo4!t
t2

0

-2

-4

Ct - kzd,

as is LC o:

LCo- kt(a dra.ur)

(12)

(13)

it follows, therefore, that LC, a C,, and proportional
determination of C, for control purposes is possible.

Solving for d, in equation (13) and substituting in
equation ( l2) gives

Here k, was independent of flap deflection, indepen-
dent of speed, but dependent on the tapping distance
from the leading edge.

2.2 Just before separation occurs LCo reaches a critical
value, LC, ,,rt, which is also independent of flap deflec-
tion and independent of speed, but dependent on the
tapping distance from the leading edge.

2.3 The abscissa-axis intercept - didear (ie. the angle of at-
tack at which AC, -- 0) is howev er, dependent on flap
deflection while still being independent of speed and
dependent on the tapping distance from the leading
edge.

Significance for the Control of a Leading Edge Flap

The complete equation for the LC o vs d lines is thus

(14)

In order to implement such a control systeffi, the values of
kr, k, and Delta LC, *i, ?s well as knowledge of the vari-
ation of o{,o,ur as a function of flap deflection for the given
aerofoil and position of the pressure tappings will be
required.

Physical Explanation
Consider the physical situation: the nose sections of each
of the aerofoils are identical, except that they are rotated
through an angle with respect to the trailing section.
Therefore it seems intuitively likely that, close enough to
the leading edge, the effects of the different trailing sec-
tions on the pressure distributions will be insignificant in
comparison to the local effects of the nose shape. Thus
one could expect that certain critical conditions, eg. the
critical ACe value, woutd prevail just before separation
occurs at the nose, and that these would be approximatety
the same, independent of the leading-edge-flap deflec-
tion. One would also expect that these conditions would
be shifted with respect to the angle of attack measured
relative to the original chord line, ie. to depend rather on
the effective angle of attack of the nose section. Thus the
existence of a critical L,Co value, and the dependence of
LC o on o(ide", (which can be seen as an indication of the
effective angle of attack) are physically understandable.

This idea is the essence of Van Dyke's derivation of
Lighthill's correction formula for round edges in thin-
aerofoil theory t4].The basic principle is that, near
enough to the leading edge, any round-nosed aerofoil will
look very much like the nose of its osculating parabola,
and thus will have a pressure distribution very similar to
that of the parabola. Obviously Van Dyke gives a far
more formal and in-depth analysis, but the point here is
that the results are physically and theoretically under-
standable.

It is more difficult to explain the linearity of the LC f vs-

CI, curve; it is best just to say that it follows from the above

Ct: kr(+ + nia."r).' " k1

LC, - kr(a dia,or)

(10)

(l l)

The significance of these results for the problem of con-
trolling the leading-edge flap are:
l . Separation may be avoided by keeping LC 

o

2. LCe can be reduced by increasing dioear, for tappings
close enough to the leading-edge didear can be increased
by deflecting leading-edge flap. It follows that did.uris a

measure of the high-angle-of-attack capability of the
aerofoil: by deploying the leading-edge flup, didear is in-
creased and separation is delayed.

3. Once L,C..,,, (for a specific aerofoil and tapping pos-
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reasoning that the gradient of these curves should be in-
dependent of the flap deflection.

Finally, it also follows from the physical reasoning,
and from Van Dyke's theory, that the effects described
should be more pronounced for pressure tappings closer
to the leading edge.

Conclusion

In this project, the problem of controlling the deflection
of a leading-edge flap has been investigated from the
aerodynamic point of view. That is to pursue a relation-
ship between the more easily measured aerodynamic
characteristics of an aerofoil (pressure distribution in this
case) and the inherently more difficult to measure charac-
teristics (eg. lift, drag, and susceptibility to separation),
which one wishes to control.

The effect of a leading-edge flap on an aerofoil's
characteristics was explored by analyzing, both exper-
imentally and theoretically, three aerofoils, based on a
symmetrical Joukowski aerofoil of lzoh thickness to
chord ratio and chord length 280 ffiffi, differing only by
the angle through which the leading 20% of their profiles
was drooped (0", 7.5", and 15"). Theoretically derived re-
sults from Potential-Flow theory and Thin-Aerofoil
theory, &s well as other theoretical and experimental re-
sults from the literature, were compared with the results
of open-section wind-tunnel tests on the aerofoils. The
experimental results were found to agree well with expect-
ed trends; in particular, typical C6vs-a (angle of attack)
curves and C1-vs- Cocurves were obtained experimentally.

Regarding the control problem, it was found that
measurements of the static pressure difference, L,C, be-
tween symmetrical points at equal small distances from
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the leading edge, but on opposite surfaces of the aerofoil,
could be used as a feedback variable in a control system
for the flap deflection: First, since LC ,reaches a certain
critical value (LC 0,,i,) just before separation, and because

AC, is reduced by increasing the flap deflection, separ-

ation of the wing at high angles of attack can be avoided
by adjusting the flap deflection to keep LC , . L,Cp,,tt)

this, as discussed, is the main function of the leading-edge
flap. Secondly, because an aerofoil with increased camber
(flap deflection) produces more drag than a less cambered
aerofoil producing the same lift (cf . C,l C oratios), this con-
trol system should minimize the flap deflection while still
keepin E LC,

Finally, it must be noted that these results have only
been shown experimentally for the aerofoils tested (al-
though the linear L,Co-vs-o relationship was demonstrated
theoretically for a symmetrical Joukowski aerofoil). Be-
fore this relationship can be implemented, the dependence
of kr, LC o ,,,, and oideal on the'particular aerofoil shape and
real three dimensional wing geometry must be investigat-
ed. This project is, however, a positive starting point. A
possible topic for further investigation is to extend the
quantitative predictions of the Thin-Aerofoil theory with
Van Dyke's singular-perturbation methods [4].
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