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Cracks in plates under shear and compression
W. Endres*

(Recelved In Flnal Form Decamber 1991)

Abstract
In gears, rolling elements like wheels or roller bearings or in blade attachments in
turbomachinery, loading conditions exist, which in the contact area lead to high compressive
stress and often superimposed shear stress, In welds, cracks or defects often remain in areas
of residual stress. If high or low cycle fatigue shear is imposed, such uacks can propagate,
but under compressive stress a defect may be less dangerous.

In this paper, aflatflaw or crack is represented by a slot of zero thickness and investigated
undcr two-dimensional conditions. It is subject to shear and compression, which creates

friction on the crack surface, reduces sliding and lowers the local stresses at the ends of the
crack. Practical consequences are discussed.

Nomenclature

A, B, E complex constants
I, J complex functions
Kr stress intensity factor, opening mode due to ten-

sile stress
K,, stress intensity factor, sliding mode due to shear

stress
T surface shear force per unit area applied at the

boundary
S surface tensile force per unit area applied at the

bound ary
surface compressive force per unit area, P - - S

hydrostatic compressive force per unit area.
half length of slot or crack
distance from crack tip, close field coordinate
cartesian coordinates
dimensionless cartesian coordinates x - x* la
complexvariable,z_ x + iy
complexvariable,(- f, + it1

elliptic coordinates
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normally ground out, if it is accessible. If that is not done,
the defects remain in a region which in many cases exper-
iences residual compressive stress.

It has already been observed that the propagation of
fatigue cracks under shear is impaired by compressive
stresses acting on the crack [2]. Friction between the crack
surfaces transmits shear forces and reduces the stresses at
the crack ends.

In geology we find similar conditions: during an earth-
quake two plates in the earth's crust slide under shear
against each other along a fault, which can be subject to
compression at the same time. The sliding fault can be
interpreted as a crack in a single elastic plate.

In these contexts stresses around a flat crack in an infi-
nite plate are investigated as a two-dimensional problem.
Classical methods of the theory of elasticity are used.

Stresses around a crack in an iffinite plate

The solution to this problem is a special case of stresses
around an elliptic hole. Complex potential functions in-
troduced by N.I. Muskhelishvili t3] lead to solutions.
Here the notations of S. Timoshenko and J. N. Goodier
[4] are used.

A crack in the x-y plane is shown in Fig. la. It reaches
fromz: x: -l toz: x: lalongthex-axis. If we
want to introduce a crack length 2a we can replace the
dimensionless coordinates x,y by x* - x.a and y* - y.a.

The complex plane z - x + i.y can be related to a
(, - r, + iq plane by
(l)z- f(O: cosh(
Curves of constant 6, n appear as ellipses and hyperbolas
shown in Fig. lb.
The boundaries of the plate are
t, - 0 at the crack, which can be interpreted as an ellipse
or slot of zero thickness, and
E- m atinfinity.
The general solution for the stresses can be written as
(2)o. + oy- I_ Re(A + B.cothO :

Re(A + B.zlJ zz - 11

(3) o, ox + 2ir*, - J -: -llQsinh30.[Bcosh('] + (C + 2E)cosh(l
+ 2D + 2E.cot\(
: -llQ@2 l)'). lB z + (c + ZE)zl

+ 2D + 2B.zlJn

P
PH

a
r
X*, Y*
X'Y
z
(
€,n
e angle from x axis, close field coordinate
tl coefficient of friction
Subscripts:
x,y . . . refer to coordinates
l-4 after o, . refer to load cases of Fig. 2

Introduction

In some cases material is subject simultaneously to shear
and compressive stresses. Contact areas in roller bearings
or between the railway wheel and the rail or in gears be-
tween the teeth are a few examples. Such conditions also
prevail in blade attachments of turbomachinery. The
stresses, shear and compression, or shear alone, can be of
cyclic nature and can lead to fatigue cracks. Whilst under
most conditions cracks originate on the surface, in some
cases they can start underneath the surface. Several inves-
tigations have dealt with this problem [ ,2]. In the case of
rolling contact it has been found that the orthogonal
shear stress acting in planes parallel to the surface can
propagate cracks below the surface.

In welds, cracks and defects are most likely to occur in
the root of the weld. In high quality welds that region is
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(b) Lines of constant elliptic coordinates €, rl shown in the
x-y plane

iy
d, avllt",-s

(a) Complex z : x + iy coordinate with crack extending
fromz- -l (-1,0)toz: I (1,0)

6"

Figure 1 Crack in infinite plate. The arrow in (a) relers to Fig. 7.

Re 0 means the real part, Im0 the imaginary part. ( is the
conjugate of ( and A - A1 + iA2, B . . . E are complex
constants.
The stresses are
(2a) o, : t [I + Re(J)]; ox - I [I Re(J)]
(3a) r-, : + Im(J)

Load cases

Let us first consider the following four load cases:
I . Tension S > O across the crack applied at the bound ary

(at infinity) of the plate.
2. Bi-axial tension applied at the boundary of the plate.
3. Shear applied at the boundary of the plate.
4. Shear applied at the surface of the crack.

The crack opens under tension S. Under shear T the crack
surfaces deform and slide on each other, but do not separ-
ate. If compressive stress P - - S is applied, the crack is

closed and P is transmitted across it. If shear T at infinity

is adde d, a part of T is also transmitted through the crack
surfaces as friction pP (p being Coulomb's coefficient of
friction). The rest T pP leads to sliding as in case 3.

The bound ary forces S, T, P. (which have the dimen-
sion of stresses) for these cases are in the following set
equal to unity, the stresses o and r become dimensionless.
(To reverse this for values different from unity all stresses
have to be multiplied by the value of S, T, P.)

The constants in equation (2) and (3) can be deter-
mined from the boundary conditions at the surfaces in the
slot and at infinity and are summarized in the following
table:

At, A,
Br, B2

C,, C,
Dr, Dz
Er, Ez

Case 4
0,0
012

0,0
0,1

0,-l

Case I Case 2 Case 3

- 1,0 0,0 0,0
2,0 2,0 0,-2

-2,0 -2,0 0,0
0.5,0 0,0 0,0
0,0 0,0 0,1

SSSIrt S

I

S

Iyi

ltl
SSS

S

I
T,

a

],
<91

-u)
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I
S

I

S
I,S

iy

CASE 1 CASE 2
Flgure 2 Load CASES 1-4

CASE 4
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If case 3 and 4 are applied simultaneously (with equal
T) uniform shear in the whole region results. The stresses
relate as:

(4)o*o: -o*r, oy+: -oyl, T*y+: I - T*y3

The results for plane stress are represented in graphic
form. Fig. 3 shows as an example the shear stress rxy for
the Case 3. The vertical scale is given at the left. The re-
gion plotted extends from x - -2 to x _ 2 and from
y - 0 to y - 2. It shows one half of the plate and the
crack. The stresses are symmetric with respect to the ori-
gin. They decline quickly with increasing distance from
the crack tip and at the corners of the region the stresses
are already close to the values reached at infinity. The
disturbance caused by the crack is of very local nature.

-2
Figure 3 Shear stress t,, lor the case 3 plotted over the x-y plane.

3l
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6
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Flgure 4 Stresses rry, oy, or, and lirst prlnclpal stress or lor the GASES 1-4 plotted oyer lhe x.y plane.
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The CASES l-4 are shown in Fig. 4. All stresses reach
infinity at the crack tips, the stress peaks are cut off in the
plots at an arbitrary level. In CASES 3 and 4 high tensile
and compressive stresses ox exist along the edge of the

crack. It is also interesting to see how all the solutions
have similarities.

If the load in case I (or 2) now becomes negative and a

compression P (or hydrostatic compression Pr - - S) is

applied, the crack is closed and the uniform pressure P is
transmitted through the crack. The presence of the crack
has no influence on the stresses.

If a shear T of case 3 is now added, a uniform shear
stress T will be transmitted through the crack as long as

the friction is high enough to prevent sliding of the sur-
face, i.e. as long as T < pP (or P"). The presence of the

crack again has no influence on the stresses.

Only if this friction limit is surpassed will sliding start
and additional stresses according to case 4, which are pro-
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portional to (T - pP) will be set up. Only in this case will
the presence of the crack be felt and might crack growth
start.

The superposition leads to
or*_ -P+Toyr+pPcyq : -P+(T-PP)oy3

(5) o**: Tox3+pPox+ _ (T-pP)ox3
* Tr*y3+pPr*y4 _ pP+(T-pP)r*y3t*y

(* indicates that these stresses now have the dimension of
P,T) or in the case of hydrostatic pressure P"

or* _ -PH + T oyr * FPn 6yq : -PH+(T - p Pr) oyr

(6) o** _ -PH+T ox3 * PPH oxr - -PH+(T - FPH) ox3

*
'*y T r*y3 * FPH T*y4 == tl PH + (T - FPs) * t*yl

The equations on the right side show how the uniform
state of stress is disturbed by the sliding deformation in
the crack, as the shear T exceeds the friction force p P.
They are expressed by the stresses of case 3 multiplied by
(r F PJ.

Try

Flgure 5 Slreeses under compression P and superimposed shear T, Coelllclent ol lrlctlon F : 0 and 113. PIT : 2.

Txy

Flgure 6 Stresses under hydroslalic compresslon PH and superlmposed shear T, Coeflicient ol frlc{lon p : 0 and 113. PqlT : 2.
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Fig. 5 shows the stresses o - o*/T when the compression
P is twice the shear T with a coefficient of friction p - I 13
and, as a reference without friction. The first principal
stress o1 has been added. Fig. 6 shows the same for the
case of hydrostatic pressure P".

The volumes of the tensile peaks of the first principal
stress, which are a measure of the elastic energy which can
promote cracking, are strongly reduced as compression is
applied and as the coefficient of friction increased. Hy-
drostatic pressure leaves even a smaller tensile peak than
unilateral compression in the y-direction only. See arrows
in Fig. 4 case 3, Fig. 5 and 6. Hydrostatic pressure should
therefore reduce the danger of cracking more effectively.

Finally Fig. 7 shows a close-up of Fig. 5 at the crack tip
atx - l, seen in the direction of the arrow in Fig. la, i.e.
underanangleof 0: -314n: -135".

The first principal stress o1 has a ridge of maxima in
this direction. A crack due to this stress will start running
from the crack tip at x - I perpendicularly to ol, i.e.
under0- -ll4n- -45".

:0

CRACK

Y == 0

CRACK

y:0
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One must always keep in mind that the problem is sym-
metric, i.e. both crack tips are equally prone to crack.

Fracture mechanics look only at the immediate neigh-
bourhood of the cracks. Using local coordinates r, 0, see

Fig. I a, for small values of r the stresses at the crack tips
transit to Westergaard's solution (see A. S. Kobayashi
t5l). With the stress intensities

(7) K, - J; aS and K,, - Jrc aT for our CASES I and
3, and keeping in mind that we have set &, S, T equal to
unity, the stress (with dimensions: o*) become for CASE
l:

-L .2
0

-x
x : 1.9

o*yr : +cos I tr - sin $.sin +lJ27tr 2L 2 2)

(8)o**,- #cos;tr + ri'Isin+]

,r* KI -i- e e 30
e -.,,- Sln-.COS^r' J27tr 2 2 2

o7

:1

o1

:l

-0.2Tf:-4<'a
-1350

Flgure 7 Cloae-up ol o, : o',/T of Fig. 5 at the crack tip at r : 1, seen ln the dlrection ol lhe arrow in FIg. la.
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And for CASE 3:

o*y, #"" 91, + cos I..o,

(e) o*", 
J+c( 

s !.tin 
9.ro 3e

2

+* ..^II ^e.[t ,rn9ri1r'*y3 
Jfrc(slt 2\,,rr

If compression and shear are superimposed the stress in-
tensity factor of case 3 is reduced by the factor
(l pP/T) as can be found from equ. (5,6). The com-
bined shear stress is:
r*, - p P + (T pP) r*y3 and as the first term be-

comes small compared to the others close to the crack tip
(r+0):

(10) r*r*/(T r*vr) - (l - p P/T): K,'/K,,r
For hydrostatic pressure PH the same formula applies.

Discussion

It is obvious that the volume of the tensile peak of the first
principal stress and the deformation energy stored close
to the crack tip is strongly reduced by friction. Therefore,
in cases where crackittg due to high local tension (princi-
pal stress or) is preponderant, like in brittle materials or
under fatigue, the friction caused by compression in-
creases the resistance to cracking. The crack will in such
cases grow in directions deviating from its initial direc-
tion, roughly perpendicular to the ot stress ridge in Fig. 7.

If the shear T is alternating with a total range A T,
whilst P is constant with time (for example a residual
stress in a weld), slippage in the crack will only occur if
A T > 2 pP or P" respectively. Only then is the presence

of the crack felt and stresses (equ. 5,6) caused by the crack
occur.

If T and P have different time histories, like in rolling
contact, the stresses have to be investigated stepwise.

However, one has to keep in mind that the coefficient
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of friction can vary widely, and can in the case of alternat-
ing load even change with the number of cycles. The value
of this model is also limited by the fact that flaws or other
defects are rarely flat and plane as assumed here. Cracks
have significant asperities and roughness at a grain size
level which would have a major effect on frictional inter-
action of a crack.

Conclusion

Flat flaws or cracks subject to shear have high stress
peaks at the end of the cracks. If first compression with a
resulting friction between the crack surfaces and then ad-
ditional shear is applied, sliding in the crack is reduced,
the peaks are narrower than without friction and the
stress intensity K,, is reduced. Crack growth will start at a
higher load level. This welcome increase in strength can
be lost if the compressive stress is removed, for example,
by stress relieving heat treatment of weld roots.

In contact problems damage normally originates at the
surface despite the fact that the maximum shear stress in
the Hertzpressure distribution or related cases lays below
the surface [6]. The described mechanism certainly contri-
butes to this experience.
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