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Application of Modal Control to Flexible Structures
B. J. Grobbelaar* G. D. Wood** C. P. Constancon***

Abstract

The application of a classical control technique to a cantilevered beam has been considered.
A model of the beam was developed using experimental modal analysis. This model was
applied to develop a velocity feedback control law to control the first three modes of vi-
bration of the beam. The importance of modal coupling in a continuous system is demon-
strated by theoretical evaluation of the control law for an initial tip deflection, where it is
demonstrated that neglect of the coupling degrades the controller performance. The per-
formance of the velocity feedback control law in controlling flow induced flutter is then
experimentally evaluated in a wind tunnel test. The control law, while simple, is shown to
reduce the energy of vibration of the beam, in its first mode , by nearly I 50 times indicating
that classical feedback control on flexible structures can be very effective.

Nomenclature

a, The principal co-ordinate corresponding to the rth

mode
c, The velocity feedback constant from a sensor located

at x,

f, Generalised force at position x,
J The performance parameter
yiThe i'h mass norrnalised mode shape coemcient of the

rth mode
u, Beam response at x,
co,The undamped natural frequency of the r'e mode
g, Equivalent modal damping coefficient applied to the r'fr

mode

Introduction

The active control of flexible engineering structures has
become an area of increasing interest to researchers and
structural engineers. The trend in construction tech-
nology towards using lightweight materials, and the exist-
ence of refined structural design methods such as the fi-
nite element method can lead to light, flexible structures
with low damping. Consequently these structures may ex-
hibit undesirable dynamic characteristics. The appli-
cation of active control may remedy this situation since it
facilitates the modification of the dynamic characteristics
of the structure to external disturbances or excitation.
The successful implementation of active control necessi-
tates a study encompassing the following aspects.
o The identification of the structural parameters to en-

able the mathematical definition of the system and
hence the determination of suitable controller
coefficients.

e The unconditional stability of the controlled structure
to all forms of disturbance.

o The experimental verification of the
perfonnance.
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system

The purpose of this study is to present an application
illustrating the methodology as well as experimental re-
sults confirming the significant advantage which can be
derived from applying active control to a structure. The
objective of the control system presented is the minimis-
ation of the response of the first three modes of vibration
of a simple cantilevered beam. Velocity feedback forms
the basis of the control law and is considered both theore-
tically and experimentally. The system is illustrated in
Figure l.

Base Support Shaker

Figure 1: A schematic representation ol a cantileyer beam.

Theory

Mathematical Model of The Structure

The development of a suitable mathematical model of the
beam can be achieved by one of two methods. The
governing partial differential equations can be derived
and solved using standard mathematical techniques tl].
In the classical approach, the beam equation admits a
variable separable solution, where the solution is found to
consist of a product of temporal and spatial functions.
Alternatively the beam may be discretised, and an n de-
gree of freedom discrete representation of the beam devel-
oped. The latter method is usually applied, since discrete
effects, such as concentrated mass or stiffness can be ac-
counted for directly in the equations of motion. If the
latter method is pursued, the equivalent discrete beam
structure considered is illustrated in Figure 2.

The result of the discretisation is a spatial model of the
beam of the form:

(1)

0 = 200mm
r :300mm

r = 400mm

lM,rl{ti\ + tc1{il + vl{u)- {n
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Figure 2: The equivalent discrete system.
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Where LMI is the mass matrix
lcl is the damping matrix
tKl is the stiffness matrix

By assuming proportional Rayleigh damping and trans-
forming the equations of motion into principal co-ordin-
ates, it can be shown that the frequency response function
of the beam relating the input force at co-ordinat e j to the
response at co-ordinate i, can be written in terms of the
eigenvectors and eigenvalues of the equation of motion as
follows[2]:

signal applied to the amplifier, and the structural dis-
placement is contained directly in the frequency response
functions. In addition, the dynamic characteristics of the
structure and shaker are accounted for.

The frequency response functions relating the structur-
al response to the voltage input are then formulated as:

Where
rrr, is the undamped natural frequency of the r'h

mode.
e, is the equivalent modal damping damping co-

efficient applied to the r'fr mode.
0i is the itfr mode shape coefficient of the r'fr mode,

nonnalised to the voltage/force calibration.
0\ is mode shape coefficient at the shaker location

of the r'ft mode, normalised to the voltage/force
calibration.

The Frequency response Functions relating the shaker
input voltage to the acceleration at the three sensor loca-
tions on the beam (100 ffiffi, 200 ffiffi, 300 mm from the
base) were obtained experimentally. A Genrad 2515 mo-
dal analyser was used to generate a sinusoidal input volt-
age to the shaker over the desired frequency range while
the acceleration was measured with accelerometers. The
SDRC I-DEAS package was used to extract the modal
parameters e)7, e n and 0i. A circle fit technique [3] proved
to be sufficiently accurate, since the natural frequencies of
the structure were well separated. The natural frequency
and modal damping coefficients extracted are listed in
Table l.

Table l: Modal parameters obtained using the circle fit
technique on the experimental data

Modal parameters

Mode
I

a (Hz)
8.04

E (%)
t.067

2 43.36s 2.151

3 80.877 0.919

(3)

t2Ectt,a

Where
ro, is the undamped natural frequency of the r'h

mode.
e , is the equivalent modal damping damping co-

efficient applied to the rtft mode.
Vi is the i'h mass normalised mode shape coef-

ficient of the r'fr mode.

An alternative approach to developing a mathematical
model of the structure, and extracting the modal par-
ameters o)7, e , ry analytically, is to develop an analytical
model from experimental data directly, by applying an
experimental modal analysis technique. In this way the
modal parameters o),, €r and V are determined experimen-
tally. Through the definition of these parameters, a re-
alistic analytic model of the system evolves. Since the par-
ameters are determined experimentally by direct
measurement, the influence of boundary conditions and
the structural properties of the beam are inherently ac-
counted for.

Modal parameter extraction

In this particular application, the control force will be
applied to the structure through a modal shaker with a
current feedback control amplifier. The current feedback
control amplifier provides an armature current pro-
portional to the amplifier input voltage, and hence a force
which is proportional to this voltage. In order to relate
the amplifier input voltage directly to the structural re-
sponse, the frequency response functions relating the in-
put voltage signal to the output displacements were eva-
luated. In this way the calibration between the voltage



dr + 2Egttpr * c,t?ar: diV(t)
(i2 + 2q2a2a2 + atrar: $?V(t)
d3 + 2E3a3a3 + aSar: diV(t)
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The modal parameters extracted allow the mathematical
model of the system to be written in terms of the principal
co-ordinates:
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sensor was located at an antinode of the controlled mode
whilst being a node of the uncontrolled modes. For this
reason the response will in general contain parasitic com-
ponents due to the truncated or parasitic modes. Simi-
larly, the placement of the actuator will not excite a pure
mode. Consequently positive feedback may occur in the
parasitic or uncontrolled modes leading to instability in
these modes due to the control action introduced. This is
simply demonstrated by considering the implementation
of a control action of the first mode whilst neglecting the
intermodal coupling to the truncated or parasitic modes.
In this case the control action is assumed to be pro-
portional to the velocity measured at location l, where c1

represents the derivative coefficient chosen to achieve the
desired level of damping action in the first mode, ie:

V(t) _ c{tr

(4)
(s)
(6)

f u1 I oio?o? f a1 
'l

{ u2 f : 0i03fi { a2 F e)
Lu3) o\o3oi to3)

These principal co-ordinates are related to the physical
co-ordinates by the following mode shape matrix:

The mode shape matrix, normalised to include the volt-
agelforce calibration was obtained as:

0.032 2.855 3.182
I0l- 3.763 4.49s -s.367

8.918 t.744 - 6.393

Control techniques

The purpose of a non-predictive classical control tech-
nique is to utilise feedback information to assimilate de-
sirable structural parameters in such a manner as to im-
prove the structural response to disturbances. The task is
greatly simplified if the disturbance is known. This is true
since the bandwidth of the excitation can be identified
and the controller parameters selected to eliminate res-
onant frequencies in this bandwidth by applying a control
action to modify the modal stiffness or mass of the struc-
ture accordingly. Nevertheless, dramatic improvements
may still be obtained even if the disturbance is unknown
(for example the stochastic disturbance generated by free
stream turbulence) by applying velocity feedback to in-
crease the damping action in the principal modes of the
structure. In this study, it was assumed that an arbitrary
excitation may be encountered, and consequently a vel-
ocity feedback control action was applied.

The greatest difficulty associated with the control of
continuous vibration systems is the consequence of a
phenomenon known as modal coupling. Modal coupling
results from the fact that while it is the principal co-ordin-
ates that must be controlled, it is the physical response at
discrete locations that is measured by the sensors. The
implications of modal coupling can be quite dramatic and
can result in:

o Complication of the control algorithm
o A reduction in the controller performance.
o Instability in the uncontrolled modes.

The source of the problem can be easily demonstrated by
examining the control of a single mode of a continuous
system. In order to implement the control action, velocity
feedback is obtained from a single sensor placed on the
structure. Since the structure is continuous, it will not be
possible to place the sensor at a location such that the
response represents only motion in the mode to be con-
trolled. If this were possible, it would require that the

Since the physical displacements are related to the princi-
pal co-ordinates in the following way:

t\- dlo, + d?o, + .tia^

The equation governing the response of the first principal
mode then becomes:

ti, * 2Erarar * al,ar: crdi@ia, + Ql,a, + . fiia,) (10)

The equations governittg the parasitic response in the n'h

truncated mode is then:

iin + 2Ena,an : cr0i(61a, + d?o, + . fia") (l l)

It is evident that in order to achieve stability in the first
mode, crdlfl
crditi
Thus in general, inter-modal coupling will occur between
parasitic modes which have been neglected in the reduced
modal model. Indeed it is quite possible that this coupling
can lead to positive feedback on the uncontrolled modes
resulting in an unstable system. One way of overcoming
this difficulty is to use a notch filter to ensure that the
control action does not excite transients in the parasitic
modes, thus reducing the possibility of a self-excitation or
instability mechanism from arising.

In view of the complications arising from inter-modal
coupling, which would be unavoidable when controlling
more than one mode, it is pertinent to consider the avail-
able options in determining the feedback constants re-
quired to ensure adequate controller performance.

Control in the presence of modal coupling

Three techniques of determining the feedback constants
in the presence of modal coupling will be considered here.
These account for inter-modal coupling in the controlled
modes, but a filter is still required to ensure stability in the
uncontrolled modes.

l. Neglecting the coupling between the controlled modes.
In this case the modal coupling is neglected and the
coupling terms appearing in the equations governing

(8)

(e)
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the principal co-ordinates are treated as external dis-
turbances. This will be acceptable if the natural fre-
quencies are well separated since the beam behaves as a
cascade of parallel filters. Any disturbance not in the
passband of each filter will be severely attenuated
which means that the coupling disturbances will be
strongly filtered. The feedback constants are selected
to provide the desired modal damping coefficients in
each of the controlled modes, which ensures the stab-
ility of the controlled modes.

2. Eigenvalue placement. Here the truncated model of the
beam together with negative feedback is used to
achieve optimum placement of the system eigenvalues.
In order to achieve this, the modal model is cast into
the state space by defining a new vector which has
twice the dimension of the number of modes retained
in the modal model:

2t

Theoretical implementation of velocity feedback

To investigate the effect of velocity feedback on vibration
attenuation, the beam response to a tip deflection is con-
sidered. Two cases are investigated, in the first case the
modal coupling is neglected and in the second the modal
coupling is accounted for by minimising the performance
index defined in equation 14. In both cases the feedback
constants from the sensors at posisitons zr : 100 ffiffi,
22 : 200 mm and 4 - 300 mm are cr, c2a;rrd ca respect-
ively. The control action is applied as the superposition of
the velocity from each sensor:

V- C!4 + czttz + csttt

Where d, -- fia,

If velocity feedback from
used then the state space

{q)+Vql{q\-tfo)

(r2)

different sensor positions is
model becomes: dL + 2Egapr * at?a, - flQror * Zzaz +

d2 + 2E2a2a2 + a\a, - dlQror * Zzaz +
(h + 2qrlo3a3 + a\a, : dlQtar * Zzaz +

Where Z, - crdl + crd) + crq\
Zz: crd? + cr03 + cr03

23: ctdl + crd) + crdl

Neglecting modal coupling

In this case the governing differential equations for the
truncated modal model become:

(15)

Z{) (16)

Z{) (17)

Zzas) (18)

(le)

(20)

(13)

Where "fo is the external disturbance force and the com-
ponents of the matrix [/] will depend on the feedback
constants.

By orthogonalising the matrix lAl, the feedback con-
stants can be determined so as to achieve some desired
distribution of the eigenvalues of lAl. This is in effect
the same as root placement for single input single out-
put systems. This has the advantage that the system
stability can be checked by observing that absolute
stability requires the eigenvalues of the matrix lAl to
have positive real parts. A typical approach would be
to ensure that the dominant root (the eigenvalue with
smallest real part) lies as far to the left of the imagin ary
axis as possible.

3. Using performance parameters. If the nature of the dis-
turbance is known, it may be possible to optimise the
beam response by minimising a suitably defined per-
formance parameter. A good example is where the dis-
turbance is an initial tip deflection, in this case a suit-
able performance parameter becomes:

J- ( l4)

Where T is sufficiently large to allow the vibration to
die out.

tti is the displacement at the i'h sensor location.

Clearly minimisation of this performance parameter
will account for the modal coupling and is equivalent
to finding the optimum eigenvalue distribution that
will minimise the settling time for the given initial
conditions.

If the modal coupling is neglected then the coupling
forces are modelled as disturbances and the constants cr,
c2 and c3 zta selected to achieve an effective modal damp-
ing factor of unity. This ensures that the initial values of
the principal co-ordinates decay at the maximum rate and
also that the system is stable. The required values of the
feedback constants are easily determined as:

The effectiveness of velocity feedback in attenuating an
initial tip deflection of l0 mm was determined by numeri-
cally stimulating the governing equations where the neg-
lected modal coupling terms were retained as disturbance
forcing functions. The initial conditions for the principal
co-ordinates were determined by using standard bending
theory which gives the initial deflection of the beam as:

u- E<r, x)
2P\

These initial displacements were transformed into princi-
pal co-ordinates via the mode shape matrix. Displace-
ment vs time plots for sensor 3 located 300 mm from the
base are given in Figure 3 for the uncontrolled case and in
Figure 4 for the controlled case.

It is apparent from these figures that even when modal
coupling is neglected, the decay rate is greatly improved.
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Figure 3: Uncontrolled beam response at positlon 3.
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Flgure 4: Gontrolled beam response at position 3, neglecting modal
coupling.

Accounting fo, modal coupling

The effect of modal coupling can be incorporated into the
solution of cr cz and cs by minimising the performance
index defined by equation 14. It is evident that:
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the global minimum of ,I is found. Application of the
steepest descent technique to the governing differential
equations was performed using a fourth order Runge-
Kutta solver and for the given initial conditions, the opti-
mum feedback constants were determined as:

(24)

Simulated Response

Two sets of control parameters have been determined, the
first set is determined by neglecting modal coupling and
the control constants are selected on the basis of achiev-
ing critical damping and hence the minimum settling time
in each principal coordinate independently. The second
set is determined as an optimum set of coefficients in the
presence of modal coupling with respect to a performance
criterion of minimum physical response settling time. The
response at the three sensor locations, to an initial tip
deflection of l0 mm is simulated with respect to these sets
in figures 5, 6, 7 .
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Figure 5: Beam response at position 3 (solld llne respresents optlmal
control).
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Minimisation of this index was performed by using the
maximum descent root finding technique [4]. The maxi-
mum descent technique makes use of the fact that for a
given set of feedback constants do - (cr, cr, c.), the direc-
tion of maximum decrease in ,I is give by:

xl O-5

il: -vJ: -(y,y,y)OCr OCz OCt
(22)
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The technique then requires minimisation of the perform-
ance index along the line

d- do aVJ

Once the value of the parameter a that minimises J along
this line has been determined, the process is repeated until
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Figure 6: Beam response at position 2 (solid line respresents optimal
control).
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Figure 9: A schematic representatlon of the control loop.

The accelerometer located 300 mm from the base of the
beam was used to measure the response of the beam. An
analogue controller was employed to implement the con-
trol law. The signal entering the controller was filtered to
eliminate the high frequency noise or signals produced by
parasitic modes. The controller consisted of a single
amplifier which multiplied the incoming signal by the re-
quired constant (accounting for the calibration constant
of the accelerometer). This signal was then passed
through an analogue integrator, which converted it into
the required velocity format.

An electrodynamic shaker was attached at location l,
close to the base of the beam by a stinger, and applied the
control force. Since the power amplifier of the shaker em-
ployed a current feedback device which produced an out-
put current and hence force proportional to the input
voltage, the shaker performed directly as a force actuator.

Experimental evaluation of velocity feedback

Observation of the beam in the wind tunnel revealed two
important facets of the flutter problem:
o The flow induced vibration was aperiodic due to the

highly nonlinear aerodynamic interaction between
free- stream and structure. The motion of the beam was
characterised by small oscillations with intermittent
large amplitude excursions.

o The interaction between the beam and the free stream
excited a dominant response in the first mode of vi-
bration. This was observed to be the case visually and
confirmed by obtaining a power spectrum of the signal
from the accelerometer.

Consequently, it was decided that control of the first
mode should yield significant advantage and provide a
reasonable test of the single mode controller developed.

Adequate filtering was applied to account for the neg-
lect of modal coupling, thus only one control constant
need be evaluated. This constant was selected so as to
achieve the maximum physically realisable damping in
the first mode, ensuring the most rapid decay of a disturb-
ance.

The feedback
damping of the

V(t) : cttts

constant required to achieve critical
first mode, can be evaluated from

(2s)

the natural modal damping is very

-1
OE

Time (s)

Flgure 7: Beam response at position 1 (solid llne respresents optimal
control).

It is evident from these plots that both sets of constants
dramatically influence the beam response, as expected.
However, it is also evident that the optimal parameters
achieve the shorter settling time. Figure 8 presents a plot
comparing the voltage signal required to implement the
control action. It is interesting to note that the voltage
requirement is less in the case of optimal control, and
hence so is the energy input. This emphasises the import-
ance of modal coupling. Both cases have been treated
theoretically; practical limitations on the control voltage
would limit the degree of feedback achievable.
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Flgure 8: Control voltage input to the shaker (solid line represents
optimal control).

7 Practical implementation of the control system

Although the study considered the active control of three
modes of the beam, which was demonstrated numeri-
cally, experimental implementation of the control was
limited to a single mode for simplicity.

The components of the control system

Figure 9 shows the general representation of the closed
loop system used to implement velocity feedback in con-
trolling a flexible beam.

Porver Arnplifier Signal Conditioner

Furthermore, since
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small, the value of the feedback constant required to
achieve critical damping is

-2a,c3: 
M, Q6)

This gives ca : - 358.4. However, the input voltage to
the amplifier is limited to l0 volts, and a reduced constant
of c. x - 35 was finally employed. This represents an
induced damping factor of approximately l0%.

Experimental Results

The autospectrum of the accelerometer voltage record for
the uncontrolled system and controlled system is present-
ed Figure 10. In this figure, the solid line represents the
uncontrolled structure, whilst the dotted line represents
the structural response with control.

Auto ggectnum

t .62E-0 r

I .50E-0 t

3.02E-07
4.0 I .0

L inean Fnequency lHz)
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bration amplitude and energy content, it is pertinent to
observe that this effect is not purely due to the control
action. The non-linear interaction between the free
stream and the structure induces the excitation to the
structure. Attentuation of the excitation, or the mechan-
ism by which it arises will result in dramatic attenuation
of the response. Thus the controller action not only in-
fluences the transient response of the beam to aerody-
namic disturbances, but it effectively influences the gener-
ation of these disturbances resulting in a dramatic re-
duction in the observed response. The effect of reducing
the large amplitude excursions is to reduce the energy of
the vibrating beam by approximately 150 times. This is
where the effectiveness of the controller is most noted,
whilst it is apparent that the controller is not effective in
controlling the small amplitude vibrations.

Conclusion

This study has demonstrated the process involved in ap-
plying active velocity feedback control to a cantilever
structure. It has been demonstrated numerically that it is
possible to apply the principle of modal control to a con-
tinuous structure, and consequently control more than
one mode. Inclusion of the modal coupling significantly
improves the effectiveness of the controller. Neglect of
modal coupling without adequate consideration of the
parasitic modes, may lead to instability in these modes.

An experiment was conducted to assess the benefits of
applying active control to reduce the flow induced re-
sponse of a cantilever beam placed in a wind tunnel. Dra-
matic improvements were observed, even though the un-
controlled system behaved in a highly nonlinear fashion.
This application clearly demonstrates that in such a situ-
ation, applying active control not only achieves attenu-
ation of the transient structural response, but as a result
also reduces the severity of the excitation mechanism, re-
sulting in a gearing effect in terms of the observed reduc-
tion in amplitude of vibration.
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Flgure 10: The autospectrum ol the controlled and uncontrolled data.

The reduction of the amplitude of response in the con-
trolled system is estimated to represent an attenuation of
150 times in terms of the energy of the beam. Although
the overall result of aplying active control to the beam in
this circumstance represents a significant reduction in vi-
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