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Laminar Crossflow Through Prismatic Porous Domains
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Abstract

The phase averge Navier-Stokes equation presents thefoundationfor the present quantffica-
tion of high Reynolds number uossfow through prismatic porous mediq. A representative
unit cell (RUC) model, based on a miuostructure typffication of the porous media, is
discussed. A new interpretation of the model leads to an improvement in the closed form
quantification of the pore scalefluid-solid interaction in the Darcy-Forchheimer transitional

flow region, as well as the full Forchheimer flow region. The presented unifiedflow model
renders the phase average Navier-Stokes equation a powerful toolfor numerical analysis of
transport of momentum transverse to prismatic porous media, over the whole laminar flow
region. Validity of the model interpretation is demonstrated through comparison with nu-

merical fiow solutions at the pore scale, as well as experimental results for flow across heat
transfer tube banks.

Nomenclature up mean pore velocity within pore section,

A area, ? l:?l|*l:,"t "'Ae cross-sectional pore area, p empirical inertia parameter,
c(t drag coefficient, e porosity (void fraction),
D tube diameter, I second coefficient of fluid dynamic viscosity,
d microscopic characteristic length, p fluid dynamic viscosity,
d, solid width, y nonnal vector on 56 pointing into 2",

F microscopic shear factor, P fluid mass density,
Fo low Reynolds number asymptotic microscopic { generic variable,

shear factor, <d> volumetric phase average of S,

F- high Reynoids number asymptotic microscopic \Dt volumetric intrinsic phase average of (,
shear factor, d deviation of /

-f' empirical friction factor,
Gno, maximum pore mass velocity,
g gravitational body force per unit mass,
I vector integral expression,
K hydrodynamic permeability,
I pore length,
.,n/ number of transverse tube rows,
p pressure,
A^p pressure difference,

h Q)n
q specific discharge ( u),
q magnitude of q,

Re pore Reynolds number, 2por(d- d,)llr,
Rero tubular prism Reynolds number, pqDlp,
R€q, particle Reynolds number, pqd,l p,

^% fluid solid interface,
T tortuosity,
t time,
Vr fluid filled 'void' volume,
V, solid volume,
Vo total volume,
u fluid velocity within Vr,

ur (u)r,
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Introduction

The physics of transport in porous media presents a chal-
lenging research field that finds widespread practical ap-
plication. The diversity of this is illustrated by reasearch
areas such as groundwater seep?Ea, cellular bone behav-
iour, crushable foaffis, air pollution and composite ma-
terial processes.

The first significant attempt at addressing fluid dis-
charge through porous media was postulated by
Darcy[]. The vectorrzed Darcy equation (1) relates the
specific discharge, e, linearly to the pressure gradient
through the hydrodynamic permeability, K, of the porous
medium.

Yp: pg 
"., 

(l)

Although the Darcy relationship is useful, early exper-
imental observations indicated that the pressure gradient
is related to the square of the specific discharge at higher
( > l0') Reynolds number flow. This lead to an improved
empirical relationship postulated by Forchheim erl2l. The
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Forchheimer equation (2) consists of the Darcy equation
with an additional term which is quadratic in specific dis-
charge and contains an empirical inertia param eter, p.
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the model's predicted flow losses with the empirical loss
factors presented by Jakob[8] for crossflow through stag-
gered tube banks. Good agreement is demonstrated for
0

The presented results confirms the microstructure in-
terpretation of Du Plessis and Masliyah[5] as physically
sound. It also presents further evidence that the Forch-
heimer effect is due to microscopic inertial flow phenom-
ena and does not stem from the additional macroscopic
convective term generated by phase averaging the Na-
vier-Stokes equation.

Transport Equations

The Navier-Stokes-Duhem equation governing the trans-
port of momentum in a continuum is given by

Yp: ps 
"., fpqq. (2)

Equati on (2), and similar empirical formulae, have two
major shortcomings with regard to meaningful flow
analysis in porous media. The first is the lack of macro-
scopic diffusive and/or macroscopic convective terms,
which relates to an inability to capture macroscopic
phenomena such as bound ary conditions. The second
shortcoming is their empirical basis. Empirical coeffi-
cients are expensive to generate and are often only appli-
cable over limited ranges of Reynolds numbers, due to the
incorrect parametric interpretation of the microstruc-
ture-flow interaction.

An averaging theorem developed by Slattery[3] and
Whitaker[4] facilitated the theoretical solution of the
macroscopic problem. The theorem, which expresses the
volumetric average of a spatial derivative of a tensorial
quantity as the spatial derivative of the volumetric aver-
age of the said tensoral quantity, presented the oppor-
tunity for the rigorous mathematical phase averaging of
the Navier-Stokes equation. The result of this is a rigor-
ous governing equation for transport of a fluid phase in a
porous continuum.

The phase average Navier-Stokes equation has two
terms in addition to the characteristic terms of the micro
Navier-Stokes equation. The first is an additional convec-
tive term generated by the phase averaging of the Navier-
Stokes convective term, and the second is a surface inte-
gral term related to microscopic shear and inertial effects.

Du Plessis and Masliyah[5] presented a Representative
Unit Cell (RUC) concept, which lead to the characteris-
ation of the porous microstructure in terms of only two
independent parameters, namely porosity and character-
istic length. Their approach has been proved[5], [6], l7l
suitable and accurate for quantifying the integral term in
the low Reynolds number (Reoo

various types of porous media.
Du Plessis[6] proposed a rectangular solid microstruc-

ture RUC for prismatic porous media. This model exhi-
bits good experimental agreement for crossflow in the
region 0
predicts the microscopic momentum loss for higher
Reynolds numbers.

The present paper formulates a new approach to quan-
tifying the surface integral term for saturated two-dimen-
sional crossflow through prismatic media and presents a
unified flow model which is applicable over a wide range
of Reynolds numbers. A semi-empirical asymptotic ex-
pression based on form drag is established for laminar
flow with pore-scale recirculation. This asymptote is then
matched to a low Reynolds number asymptote based on
fully developed flow through rectangular prismatic RUC
pore sections. The proposed model is valid over the whole
porosity range from zero through one.

A practical and common example of this type of pris-
matic porous media is found in heat transfer tube banks.
Validation of the present approach is by comparison of

W + P + AV(V.u) + LVru, (3)
ppp

Du
ftv

Dta

for an isotropic homogeneous Newtonian fluid. If the
flow is also incompressible and steady, equation (3), can
be simplified to

pY' (uu) - pg Yp + pY'u. (4)

The above Navier-Stokes equation is specialised for flow
in porous media by phase averaging the equation over a
Representative Elementary Volume (REV). A schematic
REV is shown in figure ( I ), for which local porosity is
defined as the ratio of fluid volume within the REV to
total volume enclosed by the REV.

The phase average of an extensive tensoral prop erty $
of the fluid phase within the REV, is defined as

<0> (5)

Similarly the intrinsic phase avera ge, <0\, and the phase

average deviator, d, of the fluid property d, is defi.ned as

Figure 1: Representative Elementary Volume.
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and

6- o Q)r.

(0)r
^dv,

Rigorous mathematical averaging of equation (4) was
shown by Du Plessis and Masliyah[5], to culminate in the
following governing equation for transport of momen-
tum in porous media.

p) ' le utu) - psg - eV pr+ pT'( su) -
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direct ion

Figure 2: RUC for Prismatic Porous Media.

(c) The principle of maximum staggering applies,
which means that adjacent prisms are conceptionally
staggered in such a manner that the fluid is forced to tra-
verse through all transverse duct sections. The effects of
channeling is therefore not included in the present work.

For the RUC of figure (2), of length I and solid-to-solid
distanca d, the total volume Vois given by

FIow(6)

(7)

(8)pY{e( riri) .+ 
Ir, 

*v' v u- pv)ds.

The left hand side of the above equation, as well as the
first three terms on the right hand side, closely resembles
the standard Navier-Stokes equation (4).

The fourth term on the right hand side of the equation
is the divergence of the porosity times the intrinsic phase
average of the square of the velocity deviator. It can be
shown that this term vanishes for the case of zero gradient
in porosity and zero gradient in average velocities. In
cases where such gradients do exist, this term tends to
smear out the gradients.

The surface integral term of equation (8) captures the
effect of the fluid-solid momentum transfer within the
pores. The meaningful simplistic closed form quantifica-
tion of this term is a prerequisite to unlocking the poten-
tial of the equation. To facilitate this, an explicit in-
terpretation of prismatic porous microstructures are in-
troduced in the next section.

Prismatic Microstructure

The RUC is a schematic representation of a hypothetical
control volume containing a single pore, which captures
the locally averaged essence of the microstructural para-
meters in a physically plausible manner.

Du Plessis[6] proposed a rectangular prismatic solid
representation as shown in figure (2) for prismatic porous
media. This RUC clearly captures the media's porosity,
characteristic solid-to-solid length and porous medium
type. It also has other notable characteristics, for example
(i) solid-fluid interfaces suitable for simplistic area inte-
gration, and (ii) applicability in the total porosity range.
Cylindrical primatic solid representation would not have
these characteristics.

In addition to the geometrical interpretation embedded
in the RUC, the following assumptions are made to relate
the RUC to physical saturated crossflow in prismatic po-
rous media:

(a) There exists no velocity component parallel to the
prism axes of the RUC.

(b) The RUC is rotationally invariant and can always
be orientated with one face of the prismatic solid parallel
to the local specific discharge 4. Since the solid represen-
tation is hypothetical, this RUC characteristic does not
add any restrictions to the actual physical porous
medium.

A rectangular prismatic solid representation with a
square cross sectional area of d!, leaves the remaining
fluid volume, Vf, as

vr - l(d' d?)

poroslty, t, as

Vo - ld2' (e)

( l0)

(l l)

(12)

The average streamwise pore velocity, u, which is the
average streamwise velocity of the fluid phase at the mini-
mum pore cross sectional flow area, A o, ts given by

., qA qd
v^-P Ae d d,'

The presence of solid matter in porous media forces fluid
particles to follow a tortuous route through the media.
This characteristic of a porous medium is expressed as the
tortuosity of the medium, and is defined as the ratio of the
total tortuous path length , d,, to the characteristic length,
d, where the tortuous path length is the ratio of the fluid
volume enclosed by the RUC, to the minimum pore cross
sectional flow area in the RUC. The present definition of
tortuosity, which is the inverse of that used by Du Ples-
sis[6], has bigger interpretive appeal, since an increase in
tortuous path length , d,, is reflected by an increase in tor-
tuosity, T.

From equations ( 10) and (12) it follows that
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Straightforward combination of equations (l l) and (13)
yields the characteristic functional relationship between
porosity and tortuosity for prismatic porous media

T- I + Jl r. ( 14)

A rigorous mathematical link between the RUC model
and the phase averaged Navier-Stokes equation (4), can
be established by relating the fluid velocity, u, the average
pore velocity, uo, and the specific discharge, g, to each
other.

An expression for the cross-sectional pore area, A* is

found by combining the definitions of tortuous path
length and tortuosity, with the expression for Voof equa-
tion (9).

2l

the first term of the equation can be rearranged in terms
(13) of the rate of shear strain, i.e.T- d': I + 4dd

pqF" ( l8)

(le)

(20)

(2t)

Consider now fully developed laminar flow in the axial
direction of a streamwise orientated pore. The shear
stress generated between the solid and the fluid in the
axial direction of this pore, i.e. the second term in the
integral expression of equation (18), leads to a momen-
tum loss which has been quantified by Shah and Lon-
don[ 1] in terms of the following friction factor:

Considering the volumetric flow rate through the RUC,
and using the pore area expression of equation ( I 5), the
following relationships are easily verified.

Integration of the pressure deviation term of equation
( I 8) along fluid-solid interfaces oriented parallel to the
macroscopic streamwise direction, has no net result due
to the symmetry of the RUC. The shear rate term of equa-
tion ( I 8), integrated along solid faces perpendicular to the
flow direction of figure (2), has no component in the flow
direction. Integration of the pressure deviation term
along these surfaces, will however contribute to the
streamwise momentum loss. Denoting front and rear per-
pendicular solid faces with respect to the flow direction,
and considering the pressure deviation integral over these
faces, it is clear that the pressure deviation integral must
equal the shear stress induced momentum loss along the
streamwise orientated pore. With y orientated inwards
into the solid representation, as well as taking the defi-
nition of friction factor into account, the second term of
equation ( I 8) can be quantified for the RUC as

q- (u) - c(u)t: rr+- ur+

[,- p*las: d,tpu2,
Jlt 0v

(pv)dS - d,tpu?o #

(ls)

(16)

(17)

Microscopic Fluid-Solid Interaction

The surface integral over the fluid-solid interface con-
tained in (4), can be quantified by considering the mo-
mentum transfer between the two phases at the micro-
scopic level. For saturated crossflow through prismatic
media, the hypothetical RUC described in the previous
section will be employed to find a solution of the follow-
ing form for the whole laminar flow region:

I: (1tv'Vu pv)dS: -pqF.

Transformation of the pressure deviation term of equa-
tion ( 18) follows in a similar way, according to the argu-
ments above, yielding

l^The above shear factor ^F, is a physical shear resistance
coefficient per unit cross area for the porous domain and
is equal to the quotient of porosity, e , and hydrodynamic
permeability, K, for fully developed flow.

Low Reynolds Number Flow

As Reynolds numbers approach zero, fully developed
laminar flow between parallel plates is assumed as rep-
resentative of the RUC fluid-solid interaction in the axial
direction of a pore. This follows from the fact that a pore
will be flanked by the two parallel edges of the solid repre-
sentations in adjacent RUCs. The assumption, which is
similar to the approach of Du Plessis[6], holds for both
streamwise and transverse pores, due to the principle of
maximum staggering.

To facilitate the closed form solution of equation ( l7),

The closed form solution for the factor Fo, of equation
( l8), can now be established as follows through the com-
bination of equations (9), (13), (20), (21), and the ex-
pression for Reynolds number.

(22)

It is convenient and informative to express Fo only in
terms of the two fundamental independent characteristics
of the porous mediuffi, namely porosity and character-
istic length. Manipulation of equations (l l), (13), (14),
(15), and (22), as well as noting that the minimum pore
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cross section al area,
required result:

Ar,, rs given by l(d

F"d? - (l Jl s),

Recirculation

An asymptotic solution for equation (18) will be sought
based on the assumption that form drag dominates shear
strain rate effects at high Reynolds number flow. Form
drag stems from pore-scale recirculation on the lee side of
prismatic solid matter in the porous domain. The result-
ant streamwise pressure deficit can be expressed in terms
of the pore velocity magnitude uo, and a pressure drag
coefficient c d, as

A'p : Lptro.

The high Reynolds number asymptotic value of equation
( I 8) is therefore empirically quantified for the RUC
through equation (24) as

24(l - s)'
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d,), yields the macroscopic momentum transport in prismatic porous
domains.

(23)
Discussion

Typical examples of prismatic porous domains are found
in heat transfer tube banks, although in the latter case the
tubes are arranged in arrays rather than isotropical and
therefore do not comply with the maximum staggering
condition. The present results are compared with empiri-
cal pressure drop factors for such tube banks, in order to
gain confidence in the listed assumptions and proposed
simplifications. Due to the mentioned non-isotropy of the
tube banks it is expected that the theoretical results pre-
sented will overpredict tube bank pressure drops.

Holman[g] presented the pressure drop due to the flow
of gases over a bank of tubes as

(24) Yp: ryh)'

(2s)

In this equati on f is an empirical friction factor, l/ repre-
sents the number of transverse rows and subscripts w and
b refer to wall and bulk fluid properties respectively. For
a large number of transverse rows, zero heat transfer and
steady state flow in the global x-direction, equation (28)
can be simplified to

ttrF*--ryq)

F*d?: ffo + Jl - s ),(l e)

Fd?- 2a0 _ e)i +R:,{o(l +v,l -s )r(l -e)
(1 -ut1 -5;z 2t"

F'- can be isolated in terms of porosity and characteristic
length, through manipulation of equations (9), (l l), (14)
and (25), yielding

dp 2f 'G'^,.r

dx pd

Jakob[8] constructed the empirical staggered tube
friction factor, f', of equation (32).

(2e)

(28)

(30)

(33)

Comparison of the solid volume representation of the
RUC with the tube bank cylindrical tubes of diam eter D,
implies that

D2.
The numerical value of the drag coefficient, cd, will de-

pend on the actual prism cross section shape and smooth-
ness, most closely resembling the specific physical porous
medium. Although the true pore-scale flow is very com-
plex, it is proposed that this simplistic approabh will cap-
ture the essence of recirculation effects through the physi-
cally sound RUC pore velocity description.

Unified Model

A semi-empirical unified solution to the surface integral
term of equation (8) is constructed through asymptotic
matching of the low Reynolds number asymptote of
equati on (23) and the high Reynolds number asymptote
of equation (26). The superposition technique described
by Churchill and Usagi[2] will be used. A unit shifting
exponent is selected for simplicity.

(26)

{) TC
a, "4

G^o*is the mass velocity at the minimum flow area of the
RUC and is equal to pDp. This relationship, together with
equations (11), (14), (16) and (30), facilitates the rewriting
of equation (29) in terms of the porosity and a character-
istic length, &S follows:

-+(uZ)- 
4f'*uog 

+ Jl - s 1zl 1 - 6. (31)
ctx \ pq / ,lne

Substitution of the surface integral term of the phase av-
erage Navier-Stokes equation (8), by the result of the
above equatiotr, renders the phase average Navier-Stokes
equation a powerful tool for numerical solution of

l@

bank

(32)

Equations ( I I ) and (30) facilitates the expression of the
above factor in terms of the present RUC nomenclature.

0.24e(r

(27)

+ d
s)o 108

54

=.Jt
I

'-r ' 
[1.77 -2(r



due to assumption (i).
(iii) Macroscopic bound ary effects are considered in-

significant resulting in the omission of the third and
fourth terms on the right hand side of the equation.

(iv) Gravity does not participate in the solution of hori-
zontal flow.

(v) The gradient of the intrinsic phase average pressure
is equal to the measured pressure gradient over the tube
bank.

Equation (8) may consequently be simplified to
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Direct comparison of results requires the speciahzation of 100000
the phase average Navier-Stokes equation (8) for the flow
conditions empirically quantified by equations (3 l) and
(33). This is accomplished through the following consi-
derations in terms of equation (8):

(i) The macroscopic flow is one-dimensional (x-direc-
tion) and fully developed.

(ii) The left hand side of the equation equates to zero
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Figure 3: Quantilication ol prismatic porous media resistance to
crossllow lor a porosity ol 0.43.
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Consecutive application of equations (17), (27) and (30)
transforms equation (34) into a format suitable for the
straight forward calculation of pressure drops over stag-
gered tube banks, based on the presented unified model.

dp - _( s\'E: -\tD')/\

FDz: -4p-(q\.dx\pq/

I qotr -rli *ca*qo(l +Jl _s )r(l _r)-l
L"(l -Jl -e )' Jn* J

(34)

(35)

r 00000

The above quantifcation of the surface integral term in
the phase average Navier-Stokes equation is graphically
compared with the empirical relations of Holman[g] and
Jakob[8] in figures (3), (4) and (5). The graphs explore
porosities of 0.43,0.61 and 0.81 respectively. Numerical
iolutions for low Reynolds number flow by Coulaud et 10000

al[O], as well as the flow development model of Du Ples-
sis[6] , are included in the graphs for completeness.

The high Reynolds number laminar flow asymptotic X
drag coefficient for smooth circular cylinders subjected to tr
free stream crossflow conditions, falls in the range of 0.8 l00O
to I .2.The unified model shows good experimental agree-
ment for lower drag coefficient values (c o : 0.5), which
may be attributed to a recovery of pressure behind each
cylinder caused by the geometrical arrangement. Such an
effect will be more pronounced at lower porosities, which
is confirmed by figures (3) to (5). 100

Conclusion

A semi-empirical quantification of the surface integral
term of the phase average Navier-Stokes equation is pre-
sented for laminar crossflow through prismatic porous l0
domains. The solution is derived for the whole porosity I

range from zero through one, and exhibits acceptable ac-
curacy in the Darcy through Forchheimer flow regions. Figure 4:
The validity of the listed assumptions and simplifications

Quantilication of prismatic porous media resistance to
crossllow for a porosity ol 0.61.

r 0000

Cou I oud [to]
Unified Model lC6=11

Du Pless is[o]
Unified Model lC6=0.51
Jokob[e]

El Cou I oud [to]
Unified Model lC6=11
Du Pless is[e]
Unified Model lC6=0.51
Jokob[e]
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Figure 5: Quantilication of prismatic porous media resistance to
crossllow lor a porosity of 0.81.
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at high Reynolds numbers are illustrated through com-
parison of the presented unified model results with exper-
imental pressure drops over heat transfer tube banks.
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