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Abstract

A finite element formulation for the analysis of laminated
composite plates ‘based on a higher-order theory is pre-
sented. This formulation leads into a discrete-continuous
scheme where the surface of the laminate is discretized
with each finite element forming a heterogeneous contin-
uum through the thickness. Rectangular and triangular fi-
nite elements are formulated. The degrees of freedom of the
nodal points of these elements are independent of the num-
ber of layers. Nonlinear laws governing the variation of
the components of the displacement vector and of the siress
and strain tensors through the thickness of layers are taken
into account. The laminate may also exhibil heterogeneous
properties in the plane of the plate, where elements with
different properties are used as an approzimation. The el-
ements are applied to the bending of laminated plates with
various loading and boundary conditions and numerical re-
sults are obtained. The solutions presented are compared
with those obtained using the three-dimensional elasticity
theory, and with the closed form solutions of other authors.
It 1s shown that the present approach reduces the number
of unknown variables and broadens the field of application
of the finite element method.

1 Introduction

Fibre-reinforced composites are now widely used in many
engineering applications for their exceptional strength and
stiffness properties relative to their weight. Therefore it is
important to be able to accurately model the behaviour of
structural components such as plates manufactured from
these advanced materials. It is well known that the use
of classical plate theory, which is based on the Kirchoff
assumptions, leads to intolerable errors in the analysis of
composite structures. If the phenomenon of transverse
shear is neglected, even the deflection of thin laminated
plates are underpredicted when the laminae differ signifi-
cantly in their elastic properties.
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Nomenclature

u;,ww  Displacement

€j,ki; Deformation of the reference surface

eij Components of the strain tensor

0 Components of the stress tensor

X Shear function

Ok Distribution functions for shear deformation

Ui Distribution functions for tangential
displacement

E Modulus of elasticity

G Shear modulus

v Poisson’s ratio

Q Shear forces

M Bending moments

D Stiffness characteristics

n,& Dimensionless coordinates

K Stiffness matrix

v,V Degrees of freedom of the nodal points

R Vector of nodal forces

Numerous approaches have been suggested which take
into account the three-dimensional stress and strain be-
haviour of multilayered plates based on two-dimensional
higher-order theories. Details of different higher-order the-
ories and their finite element modelling may be found in
reviews [1-5]. However, as mentioned in [6] and in the
review [2], some of the theories exhibit no compatibility
between the nonlinear kinematic model, which considers
the distortion of the normal, and the system of internal
forces and moments equivalent to those obtained using the
‘straight line’ hypothesis.

A higher-order theory of laminated plates and shells
without these drawbacks has been formulated by the au-
thors and is presented in [7—9]. This theory considers
plates with transversely isotropic layers of different thick-
nesses, stiffnesses, and densities, in which the number and
sequence of layers are arbitrary. The physical and me-
chanical characteristics of each layer are variable through
the thickness and the layers are assumed to be perfectly
bonded. The equations for the tangential components of
the displacement vector and the stress and strain tensors
consist of similar terms which separately take into account
the states of pure bending and transverse shear. This im-
portant feature enables the efficient numerical application
of this theory using an independent but analogous approx-
imation of the components of the displacement vector.
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2 Rectangular element of laminated plate

In this section, a rectangular element with transversely
isotropic layers of different thicknesses, which takes into
account shear deformation, is formulated. The basic equa-
tions are expressed for a model which includes transverse
shear under the normal loading ps. Since there is no shear
load on the external surfaces of the plate, the tangential
displacements of the reference surface are assumed to be
negligible. The plate has dimensions of a x b and a total
thickness of ag + a,, as shown in Figure la. The reference
surface is positioned such that the maximum transverse
shear occurs at this surface.[9] These assumptions are ac-
ceptable in many practical engineering applications.[10]

In the following analysis a subscript after a comma
denotes differentiation with respect to the variable follow-
ing the comma, and k refers to the k-th layer. The dis-
placements of the plate in the z;,z; and z directions are
denoted by u;,us and w, respectively.

The basic equations for the shear-deformable model
are

uﬁ'” = Wiz — X,i¥k;

1 = 1,2

w(z;) = ug“)(a:,-,z);

eSJ’-‘) = ng})tllk; (1)
k

25 = xipr;
k

653,3) = 0

J = 1,2

where k;; = —w,;j,fcg) = —X,j, and x Is a new un-

known function which is called the ‘shear function’.[11]
The graphical interpretation of this kinematic model is
given in Figure 2. The distribution functions of the tangen-
tial displacements ¢y and shear deformations ¢}, through
the thickness of layers are expressed as

ee(2) = fix/Gh;
e : (2)
Ye(z) =[5 (pix — pr)dz
where
eo1e(z) = [ vopzdz;
7 = Ewi/EL(1—-w);
fie(2) = fi— fiB1B™Y;
fe(z) = f;o Egrdz;
fi(z) = [ Eorzdz; (3)
Eoi = Ex/(1-v});
B = faao" Gordz;
By = [ Gorrdz;
Gok = 2Gk/(1 =)

where Er(2), vip(z) and Gi(z) = Ei/[2(1+ )] are
the modulus of elasticity, Poisson’s ratio and shear
modulus, respectively, in the plane of isotropy and
E; (2), Gy (2), vi(z) are these characteristics in trans-
verse direction.
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Figure 1. Rectangular finite element, (a) general view,
(b) nodal reactions.
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Figure 2. Kinematic model for shear-deformable theory.
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The corresponding static model is given by

o = 0

o) = Gu [(nu + vkKo2) 2 + (n(ﬁ) i anglz))] (2
B . (k

‘752) = "51)

Ugg) = GOk (1 — Vk) [KZIQZ + K(llz)’(,[)k]

oiz = Xifuk

(4)

The variation of potential energy of the r-th element
now may be expressed as

611, = / /5 [-Misbu,; — M5l + G0sal)] ds,
(4)
where the generalized displacement @w(Y) = Dy} Doy x, S,

is the r-th element. The forces le) and the moments
M;;, M) are defined as

_21) = DooDSlngl) = IDOOD()_ll faaon Ugg)wk:‘dz

M = :o" o'g.‘)zdz

M‘(jl) =] DooDallMi(jl) = DOODgll faao" U,(-;)il)kdz
(6)

where the following stiffness characteristics [10] are re-
quired
—  [on 2
Doo = fdo Gokz dz

a 7
Doi = [,) Goxrzdz @)

The variation of the external load is

§H, = / / psbwdsS, 8)
S,

The derivation of the rectangular finite element is now
given for multilayered plates. Six degrees of freedom
are assigned to each nodal point (see Figure 1b). The
first three degrees of freedom correspond to the defor-
mation caused by the bending and are the deflection w
and the two angles of rotation o and S about the axes
z1, 3 (@ = w3; # = —w,). The remaining three degrees
of freedom correspond to the shear deformation w = w(!)

which is analogous to deflection and to & = gogl) , B =
—<p(11) which are analogous to angles of rotation. Thus
at each nodal point m = 1,2,3,4 of the element r in the

local coordinate system, two groups of displacements are
defined by

{'Um} = {wm: amaﬂm}Ti
{ﬁm} = {wmy QAm, ﬂm}T
which relate to the deformation of the reference surface.

The approximation of the displacement in the region
of the FE may be introduced in the well-known form [12]

(9)

N&O JOERNAAL VOL. 9, NR 3, 1993

w(:c) = a; +ax;+aszrr + a4x% + as5x129
+agzi + a7z3 + agzrizs + agzd

+a10:c§ + auz?wz + 8124611'3%

(10)
w(z) = ar+a221+ @32, + @a3 + @521
+t_162:§ + &71:? + ﬁst%tg + 4—191)1.’!!%
+a1023 + @1123 + a1pz123
which may be written as
4
w(z) = 21 (WmOmi1 + @mOma + BmOms)
m=
. ) (11)
'J)(:c) = Z: (’lflmeml + @mOma + ﬂmemS)
m=1

where the system of approximation functions
{Omi(z), m=1, .., 4, t=1,2,3}

are given by

1362 —¢€n—3n> + 263+ 3¢

+3&n* + 293 — 263y — 263

©12(6,m) = b(n—¢&n—2n7+2n%+ 0 - &)

©13(6,n) = a(—E+E&n+262— 26— €3+ €3)

O (&,m) = 382+6&n—26% 362+ 263
+2¢7° — 3¢2n

©22(&,n) = b(En—26n?+&n°)

O23(,m) = a(€2-€-€En+¢3)

Oa1(&,m) = 3n?+En— 20> —3¢En? - 3¢%y
+2¢7° + 2637

Oa2(&,m) = b(—n*+n*+&n? —£n7)

©33(£,n) = a(—€&n+26%n—¢E3n)

11 (&) =

Oun(€,n) = —&n—3€&n+3¢En? — 263y — 2n°
O (6,n) = b(-€n*+&nd)
Oa3(&,m) = a(%n—£3) (12)

where £ = £1a~! and n = z2b™! are dimensionless coordi-
nates.

The stiffness matrix for element » may be obtained
from equations (5) using (12), and may be expressed as

o1 [ Ky K] _
[K],_[Ag,],_[ o K”,], g5=1,2 (13)

where each block is symmetric. The submatrix K;; cor-
responds to the state of bending and is identical to the
stiffness matrix for a homogeneous plate [12]. The sub-
matrix Koo corresponds to the state of transverse shear,
and the submatrices K5, K21 characterize the interaction
of these states. The dimensions of the submatrices in (13)
are 12 x 12, and therefore the dimension of the matrix (13)
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Table 1 Stiffness matrix for rectangular elements

Reactions Degrees of freedom
1 2 3 4 5 6 7 8 9 10 11 12
wy, oy P wy ay P2 ws az B3 ws ay Ba
1 Riz, ki kiz kiz ks kis ke kiz ki k1o ko ki ki
2 M, koo kas kos kas kas kor kag kag k2o kaun  ko2io
3 M, kazs kas kas kas ksr kss kas kaio k3 k32
4  Rag, ksa kas kas ka7 kag kao ka0  kann ka2
5 Mo, kss kse kst kss ksg ksio  ksi1 ksi2
6 Mo, kes ker kes kes keio ke1n  ker2
7 Ras, k7z ks k7o krio ki kn2
8 Msg, ) kss kso ksio ksin  ksi2
9 Ma,, Symmetric kos koo  konn  kei2
10 R4z, kioio kio11 k1012
11 My, k111 ke
12 My, k1212

is 24 x 24. The entries of the submatrix K;; are given in
Table 1 and Appendix A. The submatrix K;, is similar
to K1, where the entries kj412y(L,t =1, ..., 12) are equal
to the corresponding entries of K13 when v11 = Doo/Doo
is replaced with 115 = Doy Dgy!. In this case the following
stiffnesses are required

Doo = Dgo— %i

Doy = /aan Ajoprzdz

Arze = ADgok/D

Av = (L+w) 1w —2(}) Be/BY) /B3,
Ak = [+ (1) Be/Ey) /BB,

(14)
The entries of the submatrix K32 can be determined in
terms of the entries kj; as

(15)

k(aa2ye+12) = (cazkne + coom) 3y’

where

caz = D1 D7l ca1 = DioDyg ¢z = D1 Dy
and oy, are additional quantities used in the calculation
of the coefficients of shear (see Appendix B). It is noted
that v1; has been replaced with vy = D;Diy' in the
coefficients k;; of stiffness matrix, where

Qn
Du = [ Gt
Dy = Dio= Do; (16)
- 2
Dy = Du- %

If the load p3 = ¢ is uniform over the finite element, then
the vector of nodal forces of the element r is given by

(B}, = 26,6, ~,6,b,0,6,~b,~a,6,~b,a) (17

In the case of a point load applied in the centre of the
rectangular element, the vector of equivalent forces is given

by

{R};

As seen in equation (8), the load ps produces work over the
displacements w. Therefore the components of the vector
of nodal forces corresponding to the displacements w equal
zero.

It is noted that the above element may also model the
external loads by moments at the nodal points, and this
improves the accuracy of the analysis.

The theory governing the finite elements requires two
groups of constraints at the boundary of the plate. The
first group, referred to as the ‘external’ boundary condi-
tions, constrains the two-dimensional reference surface of
plate and models the general type of support for the plate.
The second group, referred to as the ‘internal’ boundary
conditions, models the transverse deformations through
the thickness at the boundary of the plate. These bound-
ary conditions are modelled in terms of the degrees of free-
dom. Table 2 gives the details of the boundary conditions
and the corresponding constraints.

1_-12{4’b’ —a,4,b,a,4,-b, _a147'_b’a}z1 (18)

3 Triangular element of laminated plate

This case differs only in the geometry of the finite element
(see Figure 3a). At each nodal point m (m =1,2,3) the
group of displacements may be expressed as

{vm} {wm,am,ﬂm}T
{ﬁm} {Ibm,ém,ﬂm}T
A fourth order polynomial is used to approximate the con-

tinuous displacement field.
The dimensionless coordinates

- (19)

E=a"t(z1—clbzy); n=clay (20)
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Table 2 Boundary conditions

External Conditions
linged, Clamped,
Moving Clamped Moving Free End
Xy - Xy X —E X,
1 N 1 Xy
2 i
Constraints

w=a=0 L w=a=0 w#0 w#0

B#£0" A=0 a=£=0 af0#p

Internal Coonditions

Flexible out of the Flexible in the No constraints

plane of the edge Rigid plane of the edge (Free Edge)
1 Xa (E Xs (\ Xs ~ Xs

Constraints

=0 w=pF=0 D#£0
0 a#0 at0#p

are introduced in order to simplify the formulation of the
stiffness matrix (see Figure 3b).

In the new £,7 coordinate system the vectors of the
degrees of freedom of the nodal point m are given by

%) — ’U)m,a*, * \T
o) el (21)
{vm} = {wm’am)ﬁm}

where o}, = W g, By = —Wm¢, &) = Wm,y, and B, =

—Wm -
For each of these vectors there are nine approximation
functions given by

{om: (&n), m, t=1,2,3} (22)

These functions may be expressed in explicit form as

p11(6,m) = 1-362-3n7 +283 4+ 29°
+6(1— A1 = A2) @1 (§,m) +12(A2 — 1)
x P2 (5)7’) +12 (Al - 1) @3 (6)77)

p2(&,m) = n(1—10)"=En+(1-3X%)21(¢,n)
' + (622 — 4) @2 (€,7) — 23 (£, 7)
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p13(6,m) = E(1=8)7+&n2+(38M —1)®1(£,7)
¥21 (E; 77) = 362 - 263 + 12(1 - ’\3) q>2 (6’ 7’)+
(1= X1 = A3) [12®5 (€, m) — 621 (£, 7))
p2(&n) = En+(3r—1)@1(§n)+(4—6X3)
XQZ (6) T’) + (2 - 6A3) q)3 (6’ 77)
pa3(€,n) = E2—-E3+6(1—-X3)P2(E,m)+
(1= X1 —A3)[6®3(€,7m) — 3®1 (€,1))
ea1(€,m) = 372 —2n3+12X3%3(¢,n) +
(A2 — A3) [6@1 (&, 1) — 1282 (€, 1))

p32(6,m) = —nP+nP+(As— X) [3®1(¢,m)
_64)2 (é) 17)] - 6/\3@3 (6) 7’)
paa(E,m) = —n*6+ (B3 —2)@1(£,n) + (4 - 6)3)
x®3 (€,1) + (2 — 6)3) 3 (£, 7)
(23)
where
A = b/a;
A2 = ab/(a®+c?);
Yo = (a=b)a/ [ +(a-b)?; o
& = &n-—-E&in—E&n

®, = &&n(1-£€-n);
¢ = &*(1-£€-1n)
The system of approximation functions
{emt (171) 1?2) >

which are compatible with the degrees of freedom

m,t=1,2,3}

(8)

300, 1)

214,0)

(b)

Figure 3. Triangular finite element, (a) general view,
(b) dimensionless coordinate system.
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Wm, Am, PBm, Wm, @m, B in the z; — z9 coordinate
system are given as

Om1 (-'131, 1‘2) = ¥mi (5) 77)
Om2 (xl; -772) = C¥Pm2 (£a n) (25)
Oma(z1,22) = apm3(€,1) — bema(€,7)

Then the displacements in the finite element region
may be written as

3
Z (menu + amemZ + /BmemB)

w =
m=1
5 ) (26)
w = Z: (wmeml + &m@mZ + ,BmemB)
m=1

Using equations (5), (23), and (24), the stiffness ma-
trix of a triangular element of a laminated plate may be
obtained explicitly. This matrix may also be represented
in block form as given in equation (13).

4 Numerical results and discussion

The accuracy of the finite elements developed in sections 2
and 3 is now illustrated by means of numerical examples.
Ezample 1. As a first example, a three-layered square
plate is considered with the dimensions 2a x 2a and un-
der a uniform load p3 = ¢ = 105Nm~2. The ‘external’
boundary conditions are taken as simply supported and
the ‘internal’ boundary conditions are taken as flexible
out of plane of the edge, but rigid in this plane. The
properties of the external (bearing) layers 1 and 3 are
hy = h3 = 1 x 1073m, E;, = E3 = 6.8 x 10° MPa,
G1 = G3 = 26150MPa, and v; = v3 = 0.3.
The properties of the filler layer k = 2 are hy = 15 x
10-3 m, E; = 4800 MPa, G; = 380 MPa, and v, = 0.3.
The plate is divided into four rectangular finite elements.
Noting the symmetry, the constraints of the nodal dis-
placements may be expressed as

21 =0,29 = 0; w1=a1=ﬁ1=ﬁ_)l=él=ﬂl=0
T1=a,22=0; wa=Pfe=wWy=L2=0,a2#0,a2#0
21=0,22=0a; wy=oa3=w3=a3=0,03#0,83#0
21=06,29=0; a4=Pa=a4=P1=0,ws#0,Ws#0
(27)

The general vector of the nodal displacements is
{V} = {vyl_)}T = {02,ﬂ3,'LU4,&2,B3,11)4}T (28)

Taking into account equation (17), the general vector of
corresponding nodal forces is expressed as

{R}> ={R,R}T = {11.05Nm, —11.05Nm, 479N, 0,0,0}7

(29)

The entries of the stiffness matrix [K] may be determined

using Table 1, Appendix A, Appendix B, and equation

(14) where Dgo = 11.06Nm, ¢33 = 17.44 x 1071m?, ¢y =

17.48 x 10‘4m2, and Vil = Vg = Voo =V = 0.3. The
system of algebraic equations may be written as

Kyww+ Ki2v = R

Kopiv+ Koo = 0

(30)
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Using the block principle [8] the solution is divided into
two simpler systems

') -1 2 -1
v = (I<11 - Alg) R, v = —I<12 (1(11 - I<12> R

Kyy Koo Koy

The solution gives the deflection at the centre of the
plate as wy = 3.56 x 10~3m. The analytical solution for
this case gives wmax = 3.05x 1073m. When the number of
finite elements along each side equals 4, 6, and 8, the cor-
responding maximum deflections of the plate are obtained
as Wmax = (3.19,3.11,3.08) 10~3m, respectively. The so-
lution using Reissner’s theory gives wmax = 3.16 x 1073m
whereas the classical theory gives wmax = 2.16 x 1073m
which is obviously inaccurate.

Ezample 2. Consider the bending of a square simply
supported homogeneous plate of dimensions a x a sub-
jected to sinusoidal loading gsin(wz,/a) sin(7zz/a). The
finite element results are compared with the exact solu-
tion given in [13]. The application of the finite elements
developed in the previous sections produced accurate re-
sults even for a plate with a thickness ratio of h/a = 1/5.
In this case the number of unknown is 3.5 times less than
that of the case where 3-D elements are used (Table 3).
Table 3 also gives the results for a three-layered symmet-
rical plate subjected to a sinusoidal loading. The thick-
ness of the bearing layers is taken as hy = hg = h/6 and
the thickness of the filler layer as hy = (4/6) h. The lay-
ers are isotropic with the elastic properties £y = E3 =
103E,, v; = vy = 0.3. The boundary conditions are the
same as in the first example. The thickness ratio h/a
equals 1/10 . The discrete-continuous scheme (DCS) so-
lution is compared with the analytical solution [14] and
the 3-D finite element solution. Accurate results are ob-
tained with the number of unknowns being approximately
10 times less than that of the case of 3-D elements as in-
dicated in Table 3.

Table 3 Comparison of various solutions (Example 2)

No. of
Type of Type of FE unknown
plate  solution w g mesh values
Homo-  Exact [12] 2.098 5.244

geneous FEM 3-D 196 542 8x8x38 336
hjfa=3 FEM DCS 2.18 5.26 8x8 96

Three-  3-D [13] 925.9 125.1

layered FEM 3-D 904 118 10x10x6 1244

h/a =7 FEM DCS 914 125 10 x 10 150

where @ = waxF1 (10gh)~" and & = omaxg™!

Ezample 3. Consider a three-layered square plate sup-
ported at each of the four corners with the following char-
acteristics: dimensions a = 25h = 1 m; total thickness of
the laminate h = 40 x 10~3 m where the thickness of the
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bearing layers is hy = h3 = 2 x 1072 m, and the thickness
of the filler layer is ks = 36 x 1073 m; elastic moduli
E, = E3 = 7 x 10* MPa, E; = 70 MPa; Poisson’s ratios
VW =Vyr=V3 = 0.3.

The maximum deflections and stresses in the bearing
layers are given in Table 4 for the various types of ‘internal’
boundary conditions and loading (see Table 2). The types
of internal boundary conditions listed are: (1) rigid in and
out of the plane of the edge; (2) flexible out of the plane
of the edge but rigid in the plane; (3) flexible in the plane
but rigid out of the plane; (4) rigid at the corners with no
constraints along the sides; and (5) no internal constraints.

The results for the deflections indicate three different
types of boundary behaviour: firstly, for the first and sec-
ond type of constraints, when the shear in the plane of
the edges vanishes and the deflections are almost identi-
cal; secondly, for the third and fourth type of constraints,
shear is allowed in the plane of the edge and the deflections
increase by a factor of 1.5 to 2.2 in comparison with the
first case for point and uniform loads; and thirdly, when
there are no internal constraints to resist the shear, the
deflections increase by a factor of 1.7 to 2.8 in comparison
with the first case for the same type of loading. The re-
sults obtained for normal stresses at the centre of the plate
indicate that the type of internal constraints have only a
minor influence on these stresses in comparison with the
type of support. The stresses on the edge depend more
on the internal constraints than do the stresses away from
the edge, and are 1.2 times greater for the cases 3—5 than
those for the case 1.
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Ezample 4. Consider the analysis of the plate in
Example 1 using triangular elements. Results are given
for various numbers of elements in Table 5, where the de-
flection is given in the form @ = 10~ *wyax E/qsh; and
the stresses in the external layers are given in the form

G = Omax/q3. Defleccions are dlso determined from the

analytical solutions of various theories. Reissner’s theory
gives w = 21.39; the classical theory gives & = 14.66.
Table 5 shows that the triangular elements give accurate
results.

Table 5 Convergency of results for triangular elements
(Example 4)

Elements based on
Shear-deformable theory

Number of

elements w &
4 17.25 167
16 19.70 176
64 20.47 205
256 20.65 213

5 Summary and conclusions

The finite element formulation presented above leads to a
discrete-continuous scheme for the analysis of laminated
composite plates where each finite element forms a hetero-
geneous continuum through the thickness. On the basis of
this scheme, rectangular and triangular finite elements are
developed which take into account the deformation of

Table 4 Solution for a 3-layered plate (Example 3)

Type of internal

boundary

Loading conditions
1
Sinusoidal 2
3
gsin TZL sin 722 4
5
1
Uniform 2
_ 3
q = const 4
5
1
Point load P at the 2
centre of the plate 3
4
5

Deflections and stresses
at the centre of the plate at the edge

Stresses

w c c
27.35 916.3 873.3
27.66 916.3 991.6
53.52 916.7 1030
53.64 915.7 1033
65.82 917.0 1034
50.90 1596 1856
51.59 1595 2098
112.7 1597 2179
113.0 1597 2181
142.8 1597 2181
22.92 3024 397.9
23.04 3023 446.9
33.28 3024 464.9
33.33 3031 466.1
38.12 3025 456.3

where @ = wWmax F1 (10gh))™! and & = omaxg~}
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transverse shear. Moreover, the degrees of freedom of the
nodal points of these elements are independent of the num-
ber of layers.

The approximations and degrees of freedom related
to the different types of stress and strain states of the
plate yield similar coefficients in the stiffness matrix and
in the blocks comprising the stiffness matrix. A significant
number of coefficients are the same as those of the classi-
cal theory, which simplifies the calculation of the stiffness
matrix and allows the experience gained in using the fi-
nite element method in similar applications on the basis
of classical theory to be extended to a non-classical ap-
proach based on the present higher-order theory.

The accuracy of the elements is illustrated by compar-
ing the results with exact, analytical and finite element
solutions of other authors. The results predicted by the
approach presented here are found to be in excellent agree-
ment with three-dimensional elasticity solutions.

The present investigation indicates that the finite el-
ements proposed in this study are highly efficient and ac-
curate, and may easily be incorporated into existing finite
element packages.
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Appendix A

Elements of submatrix K;; for rectangular FE

ki1 = kaqa = k77 = kyo10 = 45 + 4% +2.85 - 0.8v1 5

kaz = kss = keg = ki = $4+ 2 — ftvnd

kaz = kes = koo = kima =32 + 22 — Lvn}

k12 = kas = —kzg = —k1011 = 2% + 0.2 + 0.8v1;2
k13 = —kag = k7o = —k1012 = =25 — 0.23 — 0.8v113
kis = k710 = 255 — 4;"5 -28% + 0.8v11%

kis = kog = —k711 = —kg10 = & — 0.2% — 0.81/11%

k16 = —ksq = k71a = —koo = —2% — 0;2% +0.2v113
bir = kaio = 24 — 48 — 281 4 0.8v,%

kig = —ka7 = ka1y = —ks10 = 255 +0.22 — 0.2vy,2
k1o = k37 = —kq12 = —ke10 = — %5 +0.2§0.8v113
—2k 4281 — 0.8

ki1 = —kaio = kas = —ks7 = & — 0.22 + 0.2v1,2

k10 = kaz = =25

k112 = —ka10 = —kag = ke7 = —;’% + 0.2% - 0-21/11%

kyz = —kss = —kgo = k1112 = —vn1
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—_ . — b (a 13%
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_ .2 1b 4 1, b = - - — 11 1b
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_ _1la 1b_ 1 b = 17 (b 4 a
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— _2b _ 1 1 - - — — b (13}
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_ _2b_ 4 4 _ — — 13
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= —1b,4 1a 1, a _ _ _ _ 2 /1
k12 = keo = 33 + 355 — 15113 az2 = ass = ass = o = 45 (32 + 24)
= =5 (la _ 13
Appendix B ax =osn = {5 (35 — 32)
2 (1 b la
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Additional quantities for computation of the sub- 28 511 10 (14 a ' 9 b)
trix K,; for rectangular FE = B (1b _1a
ma 2 . @211 = @58 = 35 \7, 95)
46 (b a
ajp=ogyg=amr=«o =5 (-+3 — — — — _a? 2
11 44 77 1010 = 1pg (a ,,) a33 = ags = Qoo = (1212 = — % (,17% + 3%)
b (11) a
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