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Abstract

A finite element for"rnulation for th.e analysis of laminated
cornposite platl,es 'based on a higher-order theory is pre-
sented.' This forntulation leads into a discrete-continuous
scheme where the surface of the lantinat,e is discretized
with each finite elem,ent forming a heterogeneous contin-
uum through the thickness: Rectangular and triangular fi-
nite elements are formulated. The degrees of freedom of lhe
nodal points of these elemenls are independent of the num-
ber of layers. Nonlinear laws goaenting th,e uariation of
the components of the displacement uector and of lhe stress
and strain lensors th.rough the l.h.ickn.ess of layers are taken
into account. The laminate may also erh.ibit h,eterogeneous

properties in the plane of the plale, wlt.ere elentents witlt
different properties are used as &n, approritrt.al.ion. The el-

ements are applied to th,e bendin,g of lamin,ated plales with.

uarious loading and boundary conditions an.d nunterical re-
sults &re obtained. Th,e solutiorr,s presen.ted are contpared
with lhose obtain,ed usin.g tlt,e lh,ree-dint.en siott,al elasticity
theory, an,d with the closed fornt s.olutions of oth,er auth,ors.
n is shown, that the present approach reduces tlr,e number
of unknoun uariables and broadens lh,e field of application
of the finite element method.

L fntroduction

Fibre-reinforced composites are rlow widely used in many
engineering applications for their exceptional strength and
stiffness properties relative to their weight. Therefore it is
itnportant to be able to accurately model the behaviour of
structural components such as plates lnanufactured from
these advanced materials. It is rvell known that the use

of classical plate theory, which is based on the I(irchoff
assumptions, leads to intolerable errors in the ana.lysis of
composite structures. If the phenolrlenon of tra.nsverse
shea,r is neglected, even the deflection of thin larninated
plates are underpredicted wheu the la,tnirta,e diffel signifi-
cantly in their elastic properties.
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Nomenclature

Displacement
Deformation of the reference surface
Comp onents of the strain tensor
Comp onents of the stress tensor
Shear function
Distribution functions for shear deformation
Distribution functions for tangential

displacernent
Modulus of elasticity
Shea,r rnodulus
Poisson's ratio
Shear forces
Bencling mornents
Stiffness chara,cteristics
Dimensiouless coordinates
Stiffness matrix
Degrees of freedorn of the nodal points
Vector of noda,l forces

Numerous approaches have been suggested which take
into account the three-dimensional stress and strain be-
haviour of multilayered plates based on two-dimensional
higher-order theories. Details of different higher-order the-
ories and their finite element rnodelling may be found in
reviervs [1-5]. However, as mentioned in t6l and in the
review l2l, sorne of the theories exhibit no compatibility
betrveen the nonlinear kinematic rnodel, which considers
the distortion of the norrnal, and the system of internal
forces a.nd molnents equiva,lent to those obtained using the
'straight line' hypothesis.

A higher-order theory of larninated plates and shells
rvithout these dra.rvba.cks has been formulated by the au-
thors and is presented in [7-9]. This theory considers
plates with tratrsversely isotropic layers of different thick-
nesses, stiffnesses, and densities, in which the number and
sequence of la,yers are arbitrary. The physical and me-

chanical characteristics of each layer are variable through
the thickness and the layers are assumed to be perfectly
bonded. The equations for the tangential cgmponents of
the displa.cemeut vector a,nd the stress and strain tensors
consist of simila,r term.s which separately take into account
the states of pure bending and transverse shear. This im-
porta,nt fea.ture enables the efficient uumerical application
of this theory u.siug a.n independent but analogous approx-
irna,tion of the compouents of the displacement vector.
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2 Rectangular element of laminated plate

In this section, a rectangular element rvith transversely
isotropic layers of different thicknesses, which takes into
account shear deformation, is formulated. The basic equa-
tions are expressed for a model r"'hich includes transverse
shear under the normal loading ps. Since there is no shear
load on the external surfaces of the plate, the tangential
displacements of the reference surface are assumed to be
negligible. The plate has dimensions of a x b a,nd a total
thickness of ao * an as shown in Figure la. The reference
surface is positioned such that the ma-ximum transverse
shear occurs at this surface.[9] These assumptions are ac-

ceptable in many practical engineering applications.[10]
In the followittg analysis a subscript after a comma

denotes differentiation with respect to the variable follow-
ittg the comma, and k refers to the k-th layer. The dis-
placements of the plate in the rr,t2 and z directions are
denoted by uL,utrz and u, respectively.

are 
The basic equations for the shea,r-deforrnable model
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where nij
known function which is called the 'shear function'.[11]
The graphical interpretation of this kinernatic model is
given in Figurc 2. The distribution functions of the tangen-
tial displacements thn and shear deformations gr through
the thickness of layers are expressed as

B.r3
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flrrg
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Rectangular finite element, (a) general
(b) nodal reactions.
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the modulus of elastrcity, Poisson'd ratio ancl sfrear
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verse direction.

Xg =Z

.:--- 
t

\ \_

Figure 2. Kinematic model for shear-deformable theory.
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or * azxr * as'z * a+*t * alfiraz
*ao *2 + azxst * agxlrz * agxzz

*or oxl * arrc? tz * atzt:,gl

ar* aznt * asn2 * aql'c? + /'ssrl.'z 
(10)

*oo 4 + azxl- * asx2ltz * agr:gl
*ar ortr + arrc? + arzr1'rtr

The corresponding static model is given by

"53) = o

ofrr) - Gor, [t^tr * ukKzr), * (,,[i' * ur^t;') 
]rt,r

"tt) + 
"ft)

"lt) = Gon (r - ,o) l*rrz * ,'l',) h]
ots = X,;fu,

w(x) =

wlr) -

which may

-(")

*(r)

(4)

The variation of potential energy of the r-th element
now may be exptessed as

6II" = | lr,l-u;io-,;i-ilr{;)o*li) +Qt'rorl,l)] ds,

where the generalized displacement w(r) - Doo' Dotr, $]
is the r-th element. The forces Qtt) and the moments
1[U, MQ) are defined as

Qr') - DooDi,.t e[t) - DooDrt I:: ,l:) rbr,,,dz

1vt;i = I:: "[!'zd,z
[4;) - DooDir'M{;) - DooDr' I:: "lfr{t,dz

(6)
where the followittg stiffness characteristics [10] are re-
quired 

Doo = t:: Go* z2 d,z

Du = tj: Gor,l.tezd,z (7)

The variation of the external load is

6H': I lr,pshwd's'1

be written as

4

- D (-rnO-r * arnOrnz * 9^O-g)
m=l
4 (11)

rn=t

The derivation of the rectangular finite element is now
given for multilayered plates. Six degrees of freedom
are assigned to each nodal point (see Figure 1b). The
first three degrees of freedom correspond to the defor-
mation caused by the bending and are the deflection w
and the two angles of rotation a and B about the axes
tr, fr2 (* - ro,2; 0 = -LD,t).The remaining three degrees
of freedom correspond to the shear deformation w - rrl(t)
which is analogous to deflection and to a = gtt) , P =
-g\') which are analogous to angles of rotation. Thus
at each nodal point m = I,2,3,4 of the element r in the
local coordinate system, two groups of displacements are
defined by

where the system of approximation functions

{O^r(t), rn = 1, ..., 4; t - I,2,3}
are given by

Orr (€, ry) = 1 - 3€2 - €q - Jrf + 2e3 + J€zrt

+3€rl? * 2q3 - 2€3,t - 2€rf

Orz (€, rl) = b (n - €rt -2ry, +2en2 + rf - (rlt)
ors (€, ry) = o (-€ + €rt + 2€2 - 2€2q -€3 + €tr)
Ozr (€, rl) = 3€2 + €q - 2€3 - 3€rf + 2€3rt

Ozz(€, tl) =
ozs ((, rl) =
osr (€, d =

+2€rf - 3€2 n

u (ert - 2ert2 + €rlt)

" (e'- 6s - lzq * €try)
3q2 + €rt - 2rf - 3€rf - J€2 rt

+2€rf + 2€3rt

Ogz (€, ry) = 6 (- q2 + rf + €rt, - €tt)
Osg (€,ri = " (-€n + z€zrt - €"ril
oar (€, rl)

@+z (€, ry) = U (-ertz + €rt)
o+s (€, a)

where ( = rLa-r and T - xzb-l are dimensionless coordi-
nates.

The stiffness matrix for element r may be obtained
from equations (5) using (12), and may be expressed as

lKt. = tKn,J,= | ';;: ';::]; s,s = r,2 (13)
I

where each block is symmetric. The submatrix Kn cor-
responds to the state of bending and is identical to the
stiffness matrix for a homogeneous plate 1121. The sub-
matrix l{zz corresponds to the state of transverse shear,
and the submatrices I{n, Iizl characterize the interaction
of these states. The dimensions of the submatrices in (13)
are 12 x 12, and therefore the dimension of the matrix (13)

{,*}
{0,-}

{.*, d*, g*}' 
;

{-^, dnt,, 9*IT

(8)

(e)

which relate to the deforrnation of the reference surface.
The approximation of the displacement in the region

of the FE may be introduced in the well-known form ll2l
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Table L stiffness matrix for rectangular elements
Reactions Degrees of freedom

1

2

3

4
5

6

7

8

I
10

11

12

1

1/l1

Rtt" kn
Mtt,
Mtr,
Rzt 

"M2,,
M2,,
Rg""
Mst,
Msr,
Rq, 

"Mqr,
Mqrt

23456
d1 hu2a20z
kn &rs kv &rr kro
lczz kzs ltzq kzs kza

kss ks+ Icss kea

k++ kqs k+a

kss &ro

koo

Symmetric

789101112
us ds 0s u4 a4 9a,

kn &re krg &rro lcnt lcnz
kzz kze kzg lczrc kzn lczn
ksz &se &gg &sro kgr r ksrz
k+z kqe k+g kq1p lca;-t lc4;1z

ksz &re krg krro &rr r lcs1p

kaz &oe ,tog koro kor r lcan
lczz kza kzg kzrc kzn lczn

&ea kag karo &er r (cetz

&gg kgro kgrr kgn

krrr t kntz
kntz

is 24 x 24. The entries of the submatrix I{n are given in
Table 1 and Appendix A. The submatrix I{n is similar
to I{n where the entries kr1+.'.4(l,t = 1, .. .,L2) afe equal

to the corresponding entries of /{r 1 when un = Doo I Doo

is replaced with uLz = Dor,D#. In this case the followittg
stiffnesses are required

In the case of a point load applied in the centre of the
rectangular element, the vector of equivalent forces is given

by

{,,?},' - ! {4.b. -a,4,b,a,4, -b,-a,4,-b, o}T (18)
16 t 

L'vt ,

As seen in equation (8), the load pg produces work over the

displacements ur. Therefore the components of the vector
of nodal forces corresponding to the displacements ur equal
zeto.

It is noted that the above element may also model the

external loads by moments at the nodal points, and this
improves the accuracy of the analysis.

The theory governittg the finite elements requires two
groups of constraints at the boundary of the plate. The
first group, referred to as the 'external' boundary condi-

tions, constrains the two-dimensional reference surface of
plate and models the general type of support for the plate.
The second group, referred to as the 'internal' boundary
conditions, models the transverse deformations through
the thickness at the boundary of the plate. These bound-
ary conditions are modelled in terms of the degrees of free-
dom. Table 2 gives the details of the boundary conditions
and the corresponding constraints.

3 Tbiangular element of laminated plate

This case differs only in the geometry of the finite element
(see Figure 3u). At each nodal point rrl (* = 1,2,3) the
group of displacements may be expressed as

{r^} = {.^, em, g^}r
{o*} = {a^,d^,9^}'

A fourth order polynomial is used to approximate the con-

tinuous displacement field.
The dimensionless coordinates

Doo

Dot

Lrzn =
(14)

The entries of the submatrix l{zz can be determined in
terms of the entries &11 as

Atzn = Arzr lAr
Ar

/c1r+12)(t+12) = (czzlcu + c2dtt) ril

Dn = f""," 
Go*t\d';

Dr = Drc-Doti

Dr, = Dn- g

l"r * (rL)' En lELl t ,rti

where
c22 = DnDrot czt - DtoD# c2 = DtDtt

and o11 Er€ additional quantities used in the calculation
of the coefficients of shear (see Appendix B). It is noted

that un has been replaced with uzz = DrrDrr,' in the

coefficients lcn of stiffness matrix, where

( 15)

( 16)

If the load p3 - q is uniform over the finite element, then
the vector of nodal forces of the eletnent r is given by

{n},' = #{6, b, -a,6,b,a,6,-b,-a, 6, - b,o}T (17)

(1e)

(20)€- a-L ("t- c-L6rr); T=c tr,



li.rterrral ('orrtlit iorrs

Ilirrged, ('larrrped,

I\loving Ularnpetl l{ovirrg Ftee End

(.lortst,raints

ur=c=0 .1r=rt=0 u#0 w*0
f*0 ll=0 a=B=Q "710+p
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Table 2 Boundarv conditions

are introduced in order to simplify the formulation of the
stiffness matrix (see Figure 3b).

In the new €, q coordinate system the vectors of the
degrees of freedom of the nodal point rrt are given by
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€ (1 - €)' + €n'+ (3)r - 1) ot (€,'l)

+2Q2 ((,'l) + (4 - 6)z) os ((, ry)

3€2 - 2€3 + 12 (L - .\g) O, (€, rl) +
(1 - ,\_1 - )g) [12Or (€,'l) - 60r (€, ?)]

€2rt + (3)s - 1) ot ((, ?) + (4 - 0,\s)

x oz (€, t) + Q - 6)s) or (€, ry)

1z - €3 + 6 (1 - )s) o, (€,'l) +
(1 - )t - ,\g) [60r (€, ry) - 3or (€, ?)]

3q2 - 2rf + 12)sOs (€, rl) +
(), - ,\3) [60r (€ ,q) - I2Qz ({, rl)]

-rf * ,f * ()r - \z) [30' (€, a)

-6Qz (€, rl)J - 6)sQg (€, ?)

-q2e + (3)3 - 2) Or (€ ,rD + @ - 0)s)
x Qz (€, t) + Q - 0)s) ag (€, 

't) (23)
where

)r = blo;

\2 = abl (o'+",);
)3 = (a-b)"1 lu*@-b)'] ' (24)
01 = €q-€'n-€rt';
Q2 - €zrt(1 -€-d;
Q3 = €n'(1 -€-rl)

The system of approximation functions

{O^, (tt, ,r) ; m,t = I,2, 3}

which are compatible with the degrees of freedom

gts ({, tl)

pzt (€, tl)

Pzz (€, ry)

pzs (€, ry)

?sr (€ 
' 
tl)

esz (€, t)

pss(€, tl)

{o*}
{o^}

where ai = w^,n,

-Urn,€.

= {.*, aln, Pi"}r
= {.^, a;, ph}' (21)

B;, = -rrrn,€t ah = 6^,rt, and pi =

For each of these vectors there are nine approximation
functions given by

{Prn, (€,1) , m, t = I,2,3} (22)

These functions Inay be expressed in explicit form as

ptt(€, tl) 1-3€2 -}rf +2€3*2rf
+6 (1 - )r - )z) Or (€ ,n) + 12(^2 - 1)

xQz ((, t) + 12 ()1 - 1) Ar (€, t)
q (r - rilz - €zrt + (1 - 3)z) ot (€, tl)

+ (6)2 - 4) oz (€ ,ri - 2Qe (€, t)

(a)

E
(bl

Figure 3. Triangular finite
(b) dimensionless

element, (a) general view,
coordinate system.

lnternal (jonclitiorrs

Flexible orrt of the Flexible in the No con.straints
plane of the eclge Rigid plane of tlre e<lge (Free Edge)

Consl,rainl.s

ttr=cl-0 u1=ft39 u-r=P=Q
p#0 g=0 a*o

,fr+0

"*o*P

ptz (€, tl)
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'trsyr dm, 9*, fr^, d^,
system are given as

in the 11 fr2 coordinate

O-t (0 t, rz)
Ornz (*t, nz) = cgrnz (€, rt) (25)

O-s (tt, 12) = agrns (€, tl) - bg,rz (€,ri
Then the displacements in the finite element region

may be written as

29

Using the block principle tS] the solution is divided into
two simpler systerns

/ -&)-'u, a--u-{ /(r1 - #)-'"' a--lfu.(n,,- 9)-'"- 
\--^'-6) 

tu' v--I{*\"tt 
lizz)

(3 1)

The solution gives the deflection at the centre of the
plate as u4 = 3.56 x 10-3m. The analytical solution for
this case gives u)max - 3.05 x 10-3m. When the number of
finite elements along each side equals 4, 6, and 8, the cor-
responding muiimum deflections of the plate are obtained
a,s ?r/max = (3.19, 3.11,3.0S) 10-t*, respectively. The so-

lution using Reissner's theory gives ?r/max - 3.16 x 10-3m
wlrereas the classical theory gives u/max = 2.16 x 10-3m
which is obviously inaccurate.

Eram.ytle 2. Consider the bending of a square simply
supported homogeneous plate of dimensions o, x a sub-
jected to sinusoidal loading q sin( rrr / ") sin(zrr z I o). The
finite element results a.re compared with the exact solu-
tion given in [13]. The application of the finite elements
developed in the previous sections produced accurate re-
sults even for a plate with a thickness ratio of hf a - Ll\.
In this case the number of unknown is 3.5 times less than
tha.t of the ca"se where 3-D elements are used (Table 3).
Table 3 also gives the results for a three-layered symmet-
rical plate subjected to a sinusoidal loading. The thick-
ness of the bearing layers is taken as ht - hs = h/6 and
the tlrickness of the filler layer as hz = (416)h. The lty-
ers are isotropic with the elastic properties Et = Es =
I03Ez, ur = u2 = 0.3. The boundary conditions are the
same as in the first exa.mple. The thickness ratio h I o

equals I lI0 . The discrete-continuous scheme (DCS) so-

lution is compared with the analytical solution [14] and
the 3-D finite element solution. Accurate results are ob-
tained with the number of unknowns being approximately
10 times less than that of the ca,se of 3-D elements as in-
dicated in Table 3.

Table 3 Comparison of various solutions (Example 2)

Type of Type of
plate solution fi, 6

No. of
FE unknown

mesh values

1r --

w=

3

D
nt=l

3

D
nt,=L

(.*O,,,r * a^.Ornz * 0^O*s)
(26)

(.*O*r * a*Onrz* grr1rrs)

Using equations (5), (23), and (24),the stiffness ma-
trix of a triangular element of a la,minated plate may be

obtained explicitly. This matrix may also be represented
in block form as given in equation (13)

4 Nurnerical results and discussion

The accuracy of the finite elements developed in sections 2

and 3 is now illustrated by means of numerical examples.
Erample 1 . As a first example, a three-la.yered squa,re

plate is considered with the dimensions 2a x 2a and ult-
der a uniform load ps = q = 105Nrn-2. The 'externa,l'
boundary conditions are taken as simply supported a.nd

the 'internal' boundary conditions are taken as flexible
out of plane of the edge, but rigid in this pla.ne. The
properties of the external (bearing) layers 1 and 3 are
h1 = hs = 1x10-t*, Et = Es = 6.8x104MPa,
Gt - Gs - 26150MPa, a,nd u1

The properties of thq filler layer k
10-3 m, Ez = 4800 MPa, G2 = 380 tr{Pa, attd u2 = 0.3.
The plate is divided into four rectangula,r finite elements.
Noting the symmetry, the constraints of the noda.l dis-
placements may be expressed as

fr1- 0,t2- 0i wt- at= 0t- w1 - at= 0t - 0

x1 = a,tz - 0i wz= 0z- w2= 0z - 0,d?+0,d2+0
fr1- 0,frz= ai ws- ds- ws - a3 - 0,0s+0,0s+0
fr1 -- a,fr2= e,, aq- gq- qq= 0q - 01tLt4+0,114+0

(27)
The general vector of the nodal displa.cements is

{V} = {o,r}' -to.z,gs,?D4,c.z,gr,.n}T (2S)

Taking into account equation (17), the general vector of
corresponding nodal forces is expressed as

{r?}" - { R, R}' = { 11.05Nm, - 11.05Nm, 479N, 0, 0, 0}t
(2e)

The entries of the stiffness matrix [/(] ma,y be determined
using Table 1, Appendix A, Appendix B, and equation
(14) where Doo = 11.06Nm, czr = L7.44 x 10-1m2, c2z =
17.48 x 10-4m2, and un = vtz = vzz - u = O.3. The
system of algebraic equations may be rvritten as

/(rru*I{nD = R
Iizru*Iizzu = 0

where t) - tomax h (10q h)- 1 and A - omax q-L

Erample 3. Consider: a three-layered square plate sup-
ported at ea,ch of the four corners with the following char-
acteristics: dimensions a = 25h - 1 m; total thickness of
tlre larninate h - 40 x 10-3 m where the thickness of the

Homo- Exact [12J 2.098
geneous FEM 3-D 1.96
tt.fa-+ FEMDCS 2.18

Three- 3-D [13J 925.9
layered FEM 3-D 904
hl" - + FBIU DCS e14

5.244
5.42 8x8x8
5.26 8x8

125.1

118 l0x10xO
125 10 x l0

336
96

1244
150

(30)
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bearing layers is h1 - hs = 2 x 10-3 m, and the thickness
of the filler layer is h2 = 36 x 10-3 m; elastic moduli
E1 = Es = 7 x 104 MPa , Ez = 70 \{Pa; Poisson's ratios
u1 -u2-us=0.3.

The rna-ximuln deflections and st,resses in the bearing
la.yers are given in Table 4 for the various types of internal'
boundary conditions and loading (see Table 2). The types
of internal boundary conditions listed are: (1) rigid in and
out of the plane of the edge; (2) flexible out of the pla,ne

of the edge but rigid in the plane; (3) flexible in the plane
but rigid out of the plane; (4) rigid at the corners rvith no
constraints along the sides; and (5) no interna.l constra,ints.

The results for the deflections indicate three different
types of boundary behaviour: firstly, for the first and sec-

ond type of constraints, when the shear in the plane of
the edges vanishes and the deflections are almost identi-
cal; secondly, for the third and fourth type of constraints,
shear is allowed in the plane of the edge and the deflections
increase by a factor of 1.5 to 2.2 in comparison with the
first case for point and uniform loads; and thirdly, when
there are no internal constraints to resist the shear, the
deflections increase by a factor of 1 .7 to 2.8 in comparison
with the first case for the same type of loadittg. The re-
sults obtained for normal stresses at the centre of the plate
indicate that the type of internal constraints have only a
minor influence on these stresses in comparison with the
type of support. The stresses on the edge depend more
on the internal constraints than do the stresses away from
the edge, and are 1.2 times greater for the cases 3-5 than
those for the case 1.
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Erample 4. Consider the analysis of the plate in
Example I using triangular elements. Results are given
for various numbers of elements in Table 5, where the de-
flection is given in the form fr = 10-nr^r*h/qsh1 and
the stresses in the external layers are given in the form
A = dmax lqt. Defleccionr al€ also determined from bhe

analytical solutions of various theories. Reissner's theory
gives fi = 21.39; the classical theory gives fr = 14.66.
Ta,ble 5 shows that the triangular elements give accurate
resul ts.

Table 5 Convergency of results for triangular elements
(Example a)

Elements based on
Number of Shear-deforrnable theory
elements fr) A

4

16

64
256

17.25
19.70
20.47
20.65

r67
176
205
213

5 Summary and conclusions

The finite element formulation presented above leads to a
discrete-continuous scheme for the analysis of laminated
composite plates where each finite element forms a hetero-
geneous continuum through the thickness. On the basis of
this scheme, rectangular and triangular finite elements are
developed which take into account the deformation of

Table 4 Solution for a 3-layered plate (Example 3)

Type of internal Defleetions and stresses Stresses
boundary at the centre of the plate at the edge

LoadingconditionsfiAa

1

Sinusoidal 2

3

qsin + sinff 4

5

Uniform

q - const

Point load P at the
centre of the plate

27.35
27.66
53.52
53.64
65.82

50.90
51.59
112.7
113.0
r42.8

1 22.92
2 23.04
3 33.28
4 33.33
5 38. 12

1

2

3

4

5

916.3
916.3
916.7
91,5.7

917.0

1596

1595

r597
r597
r597

3024
3023
3024
3031
3025

873.3
991 .6

1030

1033

1034

1856

2098
2r79
2181
2181

397.9
446.9
464.9
466.r
456.3

wlrere 6 - ?omax h(10qh))-1 and 6 - dmax q-r
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transverse shear. Moreover, the degrees of freedom of the
nodal points of these elements are independent of the num-
ber of layers.

The approximations and degrees of freedom related
to the different types of stress and strain states of the
plate yield similar coefficients in the stiffness matrix a.nd

in the blocks comprising the stiffness matrix. A significa.nt
number of coefficients are the sarne as those of the classi-
cal theory, which simplifies the calculation of the stiffness
rnatrix and allows the experiellce gained in using the fi-
nite element method in simila,r applications on the basis
of classical theory to be extended to a non-classical ap-
proach based on the present higher-order theory.

The accuracy of the elements is illustrated by compar-
ing the results with exact, analytical and finite element
solutions of other authors. The results predicted by the
approach presented here are found to be in excellent agree-
ment with three-dimensional elasticity solutions.

The present investiga,tion indicates that the finite el-
ements proposed in this study are highly efficient and ac-

curate, and may easily be incorporated into existing finite
element packages.
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Erements or sub-"::;::l"""rangurar FE

krr= kq+=kzz= &rors= 4#+4*
kzz = kss - &se - krl1l - tt +

kn = kqs = -kza = -krorr - 2# +

&rs = -kqa - kzs -- -k1012 = -2* - 0.2i - 0.grni

kt+ = kzrc - 2# - 4* - 2.8*+ 0 .8un*
krs= kzq=-kzn =-kero -# -0.2i-0.8211j
&ro = -ksq - kztz = -&gro - -2* - 0.Zi +0.2a1I

kn = &+ro - 2* - 4# - 2.8* + 0 .8rn*
krs = -kzz - &qrr = -krro - 2# +0.2: - 0.Zun*

&rro = kqz = -2# - 2* + 2.8* - 0 .8rn*a

4!
15a

4o
l3T

krrr = -ltzrc - kqa = -ksz - #
knz = -&sro = -ltqg - kaz - -1
kzs = -kso = -&ag - k1 LLz = -utt

0.2: + 0 .zvn*

+0.2+-0.2a11



kzs - itf + #,"rr*
kza -&gr1 = kzg= &gs =ks:r- = &orr

11 =,trg-koe-0
kza -+!+*rtt*
kzn ++*-*rrt*
eso -+f+trttt

kg,: ++t-*"ttt

32

Appendix B

Additional quantities for computation of the sub-
matrix Kzz for rectangular FE

0rr - a+q- azz = 01ors = ffi (* + f )
arz-o,+s--o7s= -a1011 =t e*+f)
0rg - -o,46 - azg - -a1012 = # (+f + *)
at+=&z1o=# (L7t.40*)
ats - c.zq- -o7tt- -@slo = * (Zt- +*)
0ro - -0s4= o.zrz - -0e10 = # (+i t - *)
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c,tz=cr41o-# (tz*-46t)
0rg - -a2z = a+rl - osro = * (f - +i*)
0rg - asz - -a4Lz = -0oro - $ (+f - +*)

0gg - 0oo - 0gg - 01 212 == -# (*no + 3*)
0go = agL2 = -S (+ t +i*)
0gg =o,612_*(** _+t)

asrz - 0og - ,4o Gt - **)
aZg - @SO - Ogg - ALLTZ= AZA - OgS = 0.8L2 = 0911 =
azg = oB8 = a5t2 - ootl'= aztz = o311 - otrg - oog - 0

0rro = eyz - +ri (* + t)
0rrr - -d210 = aqs - -0sz = * (+* +;)
atrz--ago= -c.4 -c,ez-6(+f +*)
azz - cstr - 'ss = 0111r = {! (+*+ gf )

rlzs = 0811 = +; (*f - +*)
o.ze= 0E1r = -{i (* j + *f)
azn-'rs -#(+*-3f)


