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Abstract
The adsorption capacity of activated carbon from Doum palm (DP) seed shells on Methylene blue (MB), Methyl orange (MO) and Rhodamine 
B (RB) dyes was investigated using the batch adsorption method. The adsorbent was characterized by point of zero charge (pHPZC), scanning 
electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The effects of operating parameters such as initial dye 
concentration, adsorbent dosage, contact time, pH and temperature on the adsorption were investigated. The maximum adsorption 
capacities were found to be 81.81, 73.38 and 88.40 mg/g for MB, MO and RB respectively. The adsorption equilibrium data were analysed 
using Langmuir, Freundlich and Dubinin-Radushkevich isotherm models and it was revealed that the processes obey the Freundlich model. 
The adsorption kinetics was studied using pseudo-first order, pseudo-second order and Elovich models and observed that the adsorption 
of MB, MO and RB follow pseudo-second-order assumptions. The thermodynamic parameters revealed that the adsorption is spontaneous 
and in most cases endothermic. The results also showed that Doum palm seed shell carbons could be used as a low-cost material to remove 
anionic and cationic dyes from wastewater.
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Introduction

Dye-related environmental contamination can seriously harm 
crops and aquatic species by reducing some of their activities.1,2 

Furthermore, various researchers have shown that depending on the 
type and physicochemical characteristics of dye molecules, dyes can 
adversely affect human health and the environment.3,4 The paper, 
printing, plastics, and leather industries use a lot of dyes and water in 
their processes. The wastewater generated from the various activities 
make these industries one of the major sources of dye pollution.5-7

Water treatment techniques to remove colour molecules include 
ion exchange, coagulation, biodegradation, and precipitation. These 
techniques have significant limitations which include excessive 
energy usage, insufficient dye removal, and the production of 
poisonous sludge.8 Due to its straightforward operation, high 
efficiency at removing dye molecules, and adaptability in terms of the 
characteristics of the adsorbent employed as a separation medium, the 
adsorption method is a useful technology for removing dye molecules 
from water.9-11 Water decolourization has been carried out using a 
variety of adsorbents.12-14

Recently, many studies have focused on the use of inexpensive 
adsorbent materials for water treatment. Activated carbon (AC) is a 
highly effective adsorbent for removing heavy metals and dyes from 
contaminated solutions due to its suitable physical and chemical 
properties. High specific surface area, multiple surface functional 
groups, a well-developed internal pore structure, low density, 
good mechanical strength, ease of regeneration, good chemical 
and thermal stability, and suitability for large-scale production are 
the characteristics that make AC unique and efficient. Due to its 
affordability, abundance, renewability, adequate absorptive qualities, 
and environmental friendliness,15–17 AC has recently gained significant 
attention in wastewater treatment applications.18,19

Many studies employ inexpensive and conveniently accessible 
agricultural solid wastes as adsorbents to extract dyes from wastewater 
based on their physico-chemical properties.7 The following are the 

components of most of the agricultural solid wastes: cellulose, lignin, 
hemicelluloses, lipids, proteins, etc.20,16 Additionally, agricultural 
wastes are abundant and have potentially high adsorption capacity due 
to the range of functional groups (-OH, -C=O, -C-O, and -NH2) on 
their surface.18 Consequently, agricultural solid wastes can be employed 
as an affordable and environmentally beneficial adsorbent for the 
removal of dyes from an aqueous solution.21,18 Several adsorbents such 
as date stones,22 Date palm seeds,23 Microalgal biomass,24 Coconut 
shell,25 Banana roots,26 Ackee apple pods,27 Soya wastes,28 Corncob 
wastes29 and Watermelon rind derived from agricultural solid wastes 
have been employed in various adsorption studies.30

In this study, the potential application of Doum palm seed shell 
activated carbon to remove the Methylene blue, methyl orange and 
Rhodamine B dyes from synthetic wastewater was investigated. 
The influence of adsorption parameters including contact time, 
activated carbon dose, dye initial concentration, temperature and 
pH were studied. The characterization of the adsorbent before and 
after adsorption was achieved to identify the mechanism governing 
the binding of the dye molecules on the adsorbent. Adsorption 
thermodynamics, isotherm and kinetic studies have been carried out 
to ascertain the mechanism of the adsorption process.

Materials and methods

The plant materials were washed thoroughly with distilled water to 
remove any adhering dirt. It was then left to dry under the sun. The 
dried materials were crushed to powder using a mechanical grinding 
machine, then washed and rinsed with distilled water and dried in the 
oven at 105 °C for 6 h.31

The activated carbon of DP was prepared by chemical activation 
using H3PO4 (Guangdang Guanghua Chemical Factory Co. Ltd. 
Shanfau, Guangdang China). The powder of DP was mixed with 
H3PO4 in the ratio 2:1 (activating agent to the substrate) wt/wt., stirred 
intermittently for 30 min to make a slurry, and dried in an oven (Oven 
NYC 101) at 110 °C for 24 h. The samples were carbonised in a furnace 
(p. SLECTA) at 600 °C and a heating rate of 10 °C/min for 1 h. The 
resulting AC was washed several times with warm deionised water 
until the pH was constant, then filtered and dried at 110 °C for 24 h.32,33
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The stock solutions of MB, MO and RB dyes (1000 mg/dm3) were 
prepared by dissolving known amounts of the dyes in 1000 mL 
distilled water. These were diluted to the targeted concentrations to be 
used during the batch adsorption experiment.

The adsorption capacity of the DP activated carbon to remove the 
dyes from the water was examined using the batch adsorption method 
under various conditions to determine how some parameters affect 
the adsorption process. The varied parameters included, contact time 
(10 to 120 min), adsorbent dose (0.1 to 1 g), initial dye concentration 
(10 to 100 mg/L), pH of the medium (2 to 12), and system temperature 
(303.15 to 333.15 K).34 100 mL of the dye solutions in conical flasks 
were agitated at 200 rpm in incubator shaker (Innova 4000, New 
Brunswick Scientific Co. Inc. Edison, New jersey, USA). After the 
preset time, the solutions were removed and filtered and the residual 
dye concentrations were determined from the absorbance of the 
filtrate using a UV/Vis spectrophotometer (Lambda 35, Perkin Elmer, 
Milano, Italy). The quantities of the adsorbed dyes were calculated 
using equation (1).

​​q​ e​​  = ​  ​(​C​ i​​ − ​C​ f​​)​ _ m ​ × V​	 (1)

Where qe (mg/g) is the amount of dye adsorbed, Ci (mg/dm3) is the 
initial dye concentration, Cf (mg/dm3) is the final dye concentration, 
m (g) is the amount of adsorbent and V (dm3) is the volume of the 
aqueous solution.

Results and Discussion

Characterization

The changes in surface morphology caused by the chemical 
modification of bio-waste to form activated carbon and subsequent 
changes brought on by the adsorption of dye are visible in scanning 
electron microscopy (SEM) measurement (Figure 1). The SEM 
measurement of DP before activation and H3PO4-activated carbons of 
DP before and after adsorption are shown in Figure 1. The raw plant 

adsorbent typically appears with a relatively smooth surface, with 
some natural irregularities and roughness (figure 1a). Deep cavities 
and irregular pores are visible on the surface of DP-H3PO4 which can 
be identified by uneven hollow ridges (figure 1b). Because of their 
increased porosity, carbonaceous adsorbents are preferentially chosen 
for adsorptive processes. However, Figure 1(c) shows that the porous 
structures, together with the ridges and cavities, are decreased after 
dye adsorption. It may be caused by dye molecules adsorbing into 
the pores and cavities of the DP-H3PO4 surface, gradually reducing 
the surface imperfections. A similar morphology pattern has been 
reported on modified acid-treated activated carbon.35

Figure 2 shows the FTIR spectra of DP and its phosphoric acid-
activated derivative, DP-H3PO4 before and after RB dye adsorption. 
The presence of broad absorption peaks at 3500–3200 cm-1 corresponds 
to the stretching of hydroxyl groups –OH.36 The bands obtained 
2020–2140 cm-1 indicate the stretching of C—C. The presence bands 
at 1580 and 1600 cm-1 are associated with absorption due to cyclic 
alkene C=C. The presence of the band at 1050 and 1160 cm-1 show 
stretching vibrations of C—O.37 The Peaks located at 1450 cm-1 are 
assigned to the Alkane bending of C—H. Some changes were observed 
in the FTIR of the activated carbons before and after the adsorption of 
RB dye. The intensity of the bands corresponding to –OH stretching 
vibrations, C≡N groups and C=C cyclic alkene decreased, the band at 
1320 cm-1 of the DP adsorbent related to –OH bending disappeared, 
and all of the bands at the region of 1500-1000 cm-1 were slightly 
shifted to the higher wave numbers.

Moisture content, ash content and bulk density

Table 1 represents the bulk density, moisture and ash contents of the 
adsorbents used in this study. The adsorbents (DP and DP-H3PO4) 
show low moisture contents of 3.72% and 4.28% respectively. The 
moisture content value depends on the pore volume and surface area 
of an adsorbent. Therefore, adsorbents with larger pore volumes and 
surface area tend to absorb more moisture than the ones with less. 

  

 

 

  
Figure 1: SEM Images of (a) DP, (b) DP-H3PO4 before Adsorption and (c) DP-H3PO4 after Adsorption

Figure 2: FTIR Spectra of DP and DP-H3PO4 before and after RB Adsorption
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The moisture contents found in this study are far less than the value of 
11.76% obtained for Coconut fibre.38

Ash content shows the level of undesirable inorganic matter whose 
presence increases the hydrophilic nature and is capable of causing a 
catalytic effect that leads to restructuring when the activated carbon 
is regenerated.39 DP-H3PO4 shows high ash content of 46.83%. This 
reveals that DP-based adsorbents produced more ash at the pyrolysis 
temperature. This implies that DP-H3PO4 would have the least 
mechanical strength and reduced adsorption capacity due to the 
covering of the pores of the activated carbons.40 The ash content for 
DP and DP-H3PO4 are greater than the 15.30 % reported in a study on 
the adsorption of methylene blue from  textile industrial wastewater 
onto activated carbon of Parthenium hysterophorus.41

The bulk density of an adsorbent shows its tendency for agglomeration. 
Adsorbents with higher bulk densities tend to agglomerate more easily. 
In this study, DP is the carbon precursor and shows a bulk density of 
0.69 g/cm3. In the same vein, the acid-activated derivative carbon DP-
H3PO4 exhibits a bulk density of 0.52 g/cm3. Furthermore, this reveals 
that precursors with higher bulk densities produce denser activated 
carbons and that acid activation reduces the density of the biomaterial. 
The bulk density for the biosorbent and acid-derived activated carbon 
are 0.25 and 0.08 g/cm3 higher than previously reported.42

Point of Zero Charge (pHPZC)

The pHPZC analysis was carried out on the prepared adsorbents to 
determine the pH values where the surface of the adsorbents carries 
no charge as presented in Figure 3.

Figure 3 shows the plot of change in pH against initial pH and the 
pHPZC for the he activated carbon and its precursor. pHPZC is the point 
at which the surface charge generated on the adsorbent is zero.32 The 
DP and DP-H3PO4 adsorbent show values between 7.10 and 7.30 
respectively. The adsorbents with low pHPZC have high affinity to 
cationic molecules while those with high pHPZC tend to bind more 
with anionic molecules.34 Furthermore, at a pH lower than pHPZC, 
the surface of the adsorbents is protonated which in turn favours 
the removal of anionic dyes solution. On the other hand, if the pH 
of the system is greater than pHPZC, the surface of the adsorbents is 
deprotonated which exposes negative sites thereby favouring the 
removal of cationic dyes owing to the presence of OH- groups.

Batch adsorption studies

Effect of contact time

The rate of dye adsorption depends on the time that an adsorbent 
spends in contact with the dyes. In this study, this was ascertained by 
adding a constant dosage of the adsorbents in 100 mg/L of the MB, 
MO and RB solutions. The mixtures were agitated and analyzed for 
residual dye concentration at time intervals of 10, 20, 30, 40, 60, 90 
and 120 min. The adsorptive behaviours of MB, MO and RB on DP-
H3PO4 was analysed in Figure 4. The result indicated that the removal 
of the three dyes increased with time. RB was removed the most with 
a removal amount of 88.42 mg/g after 40 min. Second in the removal 
order was MB with 81.81 mg/g after 30 min whereas 73.35 mg/g of MO 
was removed at 90 min. The adsorption rate was rapid in the removal 
of RB and very slow in the case of MO. The order of removal of the 
dyes favoured the cationic dyes placing RB highest then MB and MO in 
that order. This trend could be attributed to the prevalence of negative 
charges on the adsorbent surface. A similar result was reported.43

Effect of adsorbent dose

To test the influence of adsorbent dosage on the removal of MB, 
MO and RB from water, various mass of the adsorbents (from 0.1 to 
1 g) were agitated with 100 cm3 of 20 mg/L solutions of the dye the 
solutions. The variation in the amount of dye removal with DP-H3PO4 
dosage is shown in Figure 5. The graph shows that the adsorption 
capacity for MB, MO and RB decreases with an increase in the dosage 
of DP-H3PO4. This might be due to the increase in the aggregation 
of the adsorbent thereby reducing the surface area availability of the 
active sites. The highest removed dye was MB at 15.43 mg/g followed 
by MO and RB with 14.32 and 9.35 mg/g respectively. The adsorption 
trend is consistent with previous findings of an optimum dosage of 
0.35 g/100 cm3.44 The pattern of this result is contrary to the findings 
with an optimum dosage of 0.8 g/100 cm3 for MB and 2 g/100 cm3 for 
Congo red (CR) dye.45

Table 1: Moisture and ash contents and bulk densities of the adsorbents

S/N Adsorbent Moisture Content (%) Ash Content (%) Bulk Density (g/cm3)

1 DP 3.72 18.48 0.69

2 DP-H3PO4 4.28 46.83 0.52

Δp
H

Figure 3: pHPZC of unactivated DP and activated DP-H3PO4

Figure 4: Effect of Contact Time on the Removal of MB, MO and RB using 
DP-H3PO4
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Effect of initial dye concentration 

The influence of initial dye concentration was studied by varying 
the concentrations of MB, MO and RB from 10 to 100 mg/dm3 
and agitated with the optimum dosages of the adsorbents for the 
optimum time previously obtained. Figure 6 shows the influence of 
initial concentrations of MB, MO and RB on their removals by DP-
H3PO4 sorbent. The result reveals that the removal of MB MO and RB 
increases with increase in the initial concentrations of the dyes. The 
adsorption capacity for MB hiked from 1.10 to 8.80 mg/g when its 
initial concentration increased from 10 to 100 mg/dm3. The removal 
of MO and RB also followed the same trend, increasing from 1.10 
and 1.97 mg/g at initial concentrations of 10 mg/dm3 to 6.84 and 
17.64 mg/g respectively at initial concentrations of 100 mg/dm3. The 
high adsorption capacity of the dyes at high initial concentrations 
could be attributed to the availability of active adsorption sites and 
their increased interaction with the dye molecules.46 This trend is in 
agreement with those described for the removal of Acriflavine, and 
Victoria blue B by Indian jujube-based activated carbon.47

Effect of temperature

The variation in the adsorbed amount of MB, MO and RB are analysed 
at varying temperatures of 303.15, 313.15, 323.15 and 333.15 K, while 
other influencing parameters such as contact time, adsorbent dosage 
and initial dye concentrations are kept constant at predetermined 
optimum values. The results of the investigation on the variation of 
adsorption of MB, MO and RB with temperature using DP-H3PO4 
as adsorbent is depicted in Figure 7. The outcome reveals that the 
adsorption capacities of MB and MO increased from 6.88 and 
4.88 mg/g at 303.15 K to 6.92 and 4.94 mg/g at 333.15 K respectively. 
This trend could be ascribed to the increase in the mobility of the MB 
and MO dye ions with an increase in temperature.48 It could also be 
due to a decrease in the viscosity of the solution which results in the 
increase in the surface activity of MB and MO which consequently 
accelerates their diffusion rate on the adsorbent channels. On the 
other hand, the adsorption rate for RB remains almost steady when 
the temperature increases from 303.15 K to 333.15 K. It could be 
explained by a steady interaction between RB molecules and the active 
sites of DP-H3PO4 adsorbent.49 Similar finding has been reported on 
the adsorption dyes using magnetic N-rich activated carbon derived 
from egg white biomass and sucrose.50

Effect of pH

Solution pH is a key factor influencing the capacity of adsorbents 
to remove organic dyes from wastewater. As one of the main 
mechanisms of adsorption, electrostatic attraction between adsorbent 
and adsorbate is related to the solution pH. The solution pH also 
determines the chemical speciation of the dye molecules as well as 
the ionization of oxygen-containing functional groups on the surface 
of the adsorbent.51 The influence of solution pH on the adsorption 
of MB, MO and RB onto DP-H3PO4 was investigated. This was 
achieved by varying the pH of the solution in the range of 2 to 12 
keeping other parameters like contact time, adsorption dosage, initial 
dye concentration and temperature constant at the predetermined 
optimum values. The influence of pH on the adsorption of MB, MO 
and RB is shown in Figure 8. It is evident from the result that the 
adsorption of MB and RB increased with an increase in pH while that 
of MO decreased in the same direction. The adsorption capacity for 
MB increases from 36.59 mg/g at pH 2 to 49.89 mg/g at pH 12. The 
removal rate of RB increased from 68.35 mg/g at pH 2 to 97.27 mg/g 
at pH 10. Whereas the adsorption of MO declined from 99.54 to 79.06 
mg/g when the solution pH was raised from 2 to 6. It can be deduced 
that the adsorbent shows high affinity for the cationic MB and RB 
dyes at high pH values and for anionic MO at low pH values. This 
might be because, as pH increases, the active groups of DP-H3PO4 
are deprotonated which increases the negative charge density and in 

Figure 6: Effect of Dye Initial Concentration on the Adsorption of MB, MO 
and RB onto DP-H3PO4

Figure 5: Effect of DP-H3PO4 dosage on the removal of MB, MO and RB from 
water

Figure 7: Effect of temperature on the adsorption of MB, MO and RB onto 
DP-H3PO4

Figure 8 Effect of solution pH on the adsorption of MB, MO and RB onto 
DP-H3PO4
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return, the cationic RB and MB are actively attracted. The reverse is 
the case for MO where at low pH the surface of the adsorbent becomes 
highly protonated increasing its affinity for the MO molecules. The 
adsorption pattern obtained here corresponds with the report on the 
adsorption of Direct Red 4BS, N Acid Orange II, N React Blue 19, and 
N Methylene Blue onto sludge-rice husk biochar.52

Thermodynamic studies

Table 2 shows the thermodynamic parameters for the adsorption of 
MB, MO and RB onto DP, DP-H3PO4 adsorbent. The results show 
that all the ΔG values are negative indicating the spontaneity of the 
adsorption of MB, MO and RB onto all the adsorbents. When the 
temperature increased from 303.15 to 333.15 K, the magnitudes of ΔG 
increased its negativity which reveals the increase in the spontaneity 
of the adsorption processes with the rise in temperature except for 
RB where the negativity decreases. The values of enthalpy change 
are found to be positive in the adsorption of MB and MO revealing 
that the processes are endothermic. Nevertheless, negative ΔH values 
were obtained for the uptake of RB hence the process is considered 
exothermic. The ΔH values for the adsorption of MB and MO are 
less than 20.9 kJmol-1 indicating that the adsorptions are driven 
predominantly by physisorption. The sorption of RB shows a ΔH of 
-27.92 thus the processes are attributed to chemisorption.54 It is evident 
from the result that ΔS values are positive indicating the increase in 
randomness at the solid/liquid interface.55 The cause of this could be 
attributed to water molecules being liberated as a result of molecular 
exchange between dye molecules and functional groups on the 
adsorbent surface, which led to greater irregularity at the solid/fluid 
boundary.56 The negative ΔS value is observed in RB adsorption which 
indicates a decrease in randomness at the adsorbent/liquid interface.57 
The observed behaviours of the thermodynamic parameters are similar 
to the Study on the adsorption of dyestuffs with different properties 
by sludge-rice husk biochar52 and the adsorption of organic dyes by 
HDPy+-modified clay.58

Adsorption kinetics

Pseudo-first order (PFO), Pseudo-second order (PSO) and Elovich 
models were investigated. Table 3 represents the PFO, PSO and Elovich 

model parameters for the adsorption of MB, MO and RB using DP-
H3PO4. It is evident from the result that the model that gave the best fit 
for the adsorption of MB, MO and RB onto DP-H3PO4

 is PSO. This is 
indicated by the R2 values of 0.9996, 0.9962 and 0.9994 for the fitting of 
MB, MO and RB data respectively. In addition, the calculated qe values 
obtained by PSO (80.00, 70.42 and 90.90 mgg-1) are more concordant 
with the experimental values (81.81, 73.34 and 88.42) than the values 
obtained by PFO. This corroborates the fact that the process is best 
described by the PSO model. Moreover, the PSO rate constant (k2) and 
the initial adsorption rates (h) calculated are found to be in the order 
MO > MB > RB. The data for MB, MO and RB adsorption also show 
good fitting with the Elovich model with R2 values of 0.9893, 0.9702 
and 0.9187 respectively. The desorption constant, β as indicated by the 
Elovich model is in the order MO > RB > MB. The result obtained here 
corresponds with the report on the adsorption of cationic dyes onto 
H3PO4-activated Ziziphus Mauritania seeds.47

Adsorption isotherms

Adsorption isotherms explain the dye molecule distribution between 
solid phase and bulk solution. In the equilibrium state, a certain 
relationship exists between the concentration of solute in the solution 
and the amount of solute adsorbed by the adsorbent under the fixed 
conditions.59 It also provides information on the surface properties 
and adsorption behaviour of the adsorbent and helps to study the 
adsorption mechanism.60 The adsorption data was analyzed by fitting 
to Freundlich, Langmuir and Dubinin-Radushkevich isotherm 
models. The Langmuir, Freundlich and Dubinin-Radushkevich 
isotherm parameters for the adsorption of MB, MO and RB onto DP-
H3PO4 are evaluated and shown in Table 4. The result shows that the 
highest R2 values for MB and MO (0.9943 and 0.9853 respectively) 
obtained by the Freundlich model imply that the adsorptions of MB 
and MO are best described by the Freundlich isotherm. The KF

 values 
obtained show that the adsorption capacities are in the order MB > 
MO. On the other hand, the extent of heterogeneity and adsorption 
favourability as indicated by the n parameter are 2.7663 and 3.5829 
for MB and MO respectively. This implies that the adsorption of MO 
is more favourable and heterogeneous than MB. Langmuir model 
exhibits the best fitting in the experimental data for RB adsorption 

Table 2: Thermodynamic Parameters for the Adsorption of MB, MO and RB onto DP-H3PO4

Adsorbent Dye ΔH (kJ/mol) ΔS (kJ/mol.K)
ΔG (kJ/mol)

303.15 K 313.15 K 323.15 K 333.15 K

DP-H3PO4

MB 11.7751 0.0537 -4.5011 -5.0380 -5.5749 -6.1118

MO 19.2644 0.0750 -3.4811 -4.2314 -4.9817 -5.7320

RB -27.9234 -0.0661 -7.8903 -7.2295 -6.5687 -5.9078

Table 3: Kinetic model parameters for the adsorption of MB, MO and RB onto DP-H3PO4

S/N Kinetics Model
Parameters

Values

MB MO RB

1

Pseudo-First Order qe (mgg-1) 169.2388 19.5524 50.5825

K1 (min-1) 0.2119 0.0468 0.0762

R2 0.8795 0.9867 0.8320

2

Pseudo-Second Order qe (mgg-1) 80.0000 70.4225 90.9091

k2 (gmg-1min-1) 0.0256 0.0672 0.0044

h (mgg-1min-1) 163.9344 333.3333 36.1011

R2 0.9996 0.9962 0.9994

3

Elovich model α (mgg-1min-1) 472.8719 190921.8826 716.6898

β (gmg-1) 0.0876 0.2042 0.0913

R2 0.9893 0.9702 0.9187
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onto DP-H3PO4. This is indicated by the higher R2 value of 0.9695 as 
compared to 0.9205 and 0.7680 obtained by Freundlich and Dubinin-
radushkevich models respectively. This reveals that RB adsorbed in 
monolayer onto energetically homogenous active sites of DP-H3PO4 
with the absence of mutual interaction between the dye molecules. The 
values of the RL parameter (0.0298 – 0.0031) show that the adsorption 
process is favourable. Freundlich form adsorption similar to this was 
reported in a study on the uptake of reactive blue 19 and reactive red 
218.61 The Langmuir model fitting was also reported.35

Conclusions

In this study, activated carbon (DP-H3PO4) was prepared from 
Doum palm seed shell using H3PO4. The SEM analysis reveals 
irregular porous structures; whereas the FTIR results show oxygen-
containing functional groups on the surface of the activated carbon. 
The maximum adsorption capacity for MB, MO and RB dyes was 
obtained after the contact time of 30, 40 and 90 min respectively. The 
uptake of MO dye is enhanced at acidic pH while the adsorption of 
MB and RB are enhanced at basic pH. The adsorption capacities of 
all the dyes increased with the increase in their initial concentration 
and decrease with an increase in the adsorbent dosage. The maximum 
adsorption corresponds with the calculated values obtained by the 
pseudo-second-order (PSO) kinetic model. The thermodynamic 
studies show that the adsorption of all the dyes is spontaneous as 
indicated by the negative ΔG. However, ΔH values are positive for 
MB and MO indicating endothermic adsorption and negative for RB 
which indicates exothermic adsorption. Kinetic studies revealed that 
the adsorption process follows the PSO model whereas the adsorption 
isotherm study indicates that the process follows the Freundlich model. 
It is evident from the result that Doum palm-activated carbon can 
serve as a plausible adsorbent for the removal of dyes from wastewater.
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