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ABSTRACT 

 
It is reasonable to expect that preparation time is needed to ready a repair facility before a 
repair can be carried out.  A three-unit system with a `preparation time’ for the repair 
facility is studied in this paper.  The steady-state availability of such a system is obtained.  
The asymptotic confidence limits of the steady state availability are obtained numerically.  
 

OPSOMMING 
 
Redelikerwys kan verwag word dat ‘n herstelproses voorafgegaan word deur ‘n 
voorbereidingsproses voordat herstel ‘n aanvang kan neem.  ‘n Sisteem wat bestaan uit drie 
eenhede waar ‘n sodanige voorbereidingsproses voor herstelwerk moet plaasvind word 
ondersoek.  Die gestadigde stelselbeskikbaarheid met asimptotiese vertrouegrense word 
numeries blootgestel. 
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1.  INTRODUCTION  
 
Reliability theory is a very important branch of systems engineering and operations research 
and deals with methods of evaluating the various measures of performance of a system that 
may be subject to gradual deterioration.  Any systems analysis, in order to be complete, 
must give due consideration to system reliability.  Multiple unit systems have attracted the 
attention of many applied probabilists and reliability engineers for their applicability in 
their respective fields. Kistner and Subramanian [5] considered an n-unit warm standby 
redundant system with a single repair facility. In this case, the probability density function 
of the life time of the online unit was assumed to be arbitrary while all the other 
distributions are exponential; these results were later extended by Subramanian, 
Venkatakrishnan and Kistner [11]. Gupta and Bansal [3] studied the cost benefit analysis of 
a single server three unit redundant system with inspection, delayed replacement and two 
types of repair. A multiple component system in which n identical units connected in series 
are needed for the system to function, the units being supported by m spares and a single 
repair facility, Gupta and Bansal [3] have analyzed a cost function for a three unit standby 
system subject to random shocks and linearly increasing failure rates. The study of n-unit 
systems, even in the case of cold standbys, appears to be rather complicated. Sarma and 
Parvez [10] studied a three unit system in which all the distributions assumed are discrete. 
Muller [7] studied a three unit standby system when the life-times and repair time 
distributions are assumed to be arbitrary and obtained the expressions for reliability and 
availability.  From the above literature, it is clear that all the models have the assumption 
that the repair facility is continuously available to attend to the repair of the failed units 
(Kistner and Subramanian [5], Krishnamoorthy et al [6], Bon and Paltanea [1], Frostig and 
Levikson [2] and Ke and Pearn [4].  But it is reasonable to expect that a preparation time 
might be needed to get the repair facility ready before the next repair could be taken up.  
If this preparation time is started only when a unit arrives for repair, it is easy to solve the 
problem, since the preparation time plus the actual repair time may be taken as the total 
repair time.  But this preparation time usually starts immediately after each repair 
completion, so that the facility becomes available at the earliest.  In this paper a three-
unit standby redundant system is studied in which the preparation time has been 
introduced (Sarma [9]; Yadavalli et al [13], [14]).  Asymptotic confidence limits for the 
steady state availability are also obtained.  The numerical results are presented for the 
system measures in the last section. 
 
2.  SYSTEM DESCRIPTION  
 
a. The system consists of three identical units connected in parallel.  Either unit 

performs the system function satisfactorily.   
 
b. There is only one repair facility. Each unit is new after repair. 
 
c.  At t = 0, all the units are new and the repair facility is available.  
 
d. After each repair completion, the repair facility is not available for a random time 

which is called the `preparation time.  
 
e.  The life time, repair time and the preparation time are independent random 

variables and assumed to have an exponential distribution with parameters λ, µ, and 
γ respectively.  

 
3.  AVAILABILITY ANALYSIS  

 
Consider the state of the system to be (i , j), where i is the number of failed units, and j is 
the state of the repair facility such that j = 0 represents that the repair facility is available 
and j = 1 represents that the repair facility is unavailable. The state transitions are 
presented in Table 1.  
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When n = 3, the possible transitions are presented in Table 2.  
 

State
From To Rate
(i , 0)
(i , 0) 
(i , 1) 
(i , 1) 

(i + 1, 0)
(i - 1, 0) 
(i , 0) 

(i + 1, 1) 

(n – i)λ,  i = {0,1,...,n –
 

1} 
µ,            i = {0,1,...,n} 
γ,            i = {0,1,...,n} 
(n- i)λ,    i = {0,1,...,n – 1} 

 
Table 1:  State Transitions 

 
State

From To Rate 
(0 , 0)
(0 , 1) 
(1,0) 
(1,0) 
(0,0) 
(1,1) 
(2,0) 
(2,0) 
(1,0) 
(2,1) 
(3,0) 
(2,0) 

(1 , 0)
(0 , 0) 
(2,0) 
(0,1) 
(1,0) 
(1,0) 
(3,0) 
(1,1) 
(2,0) 
(2,0) 
(2,1) 
(3,0)  

3λ 
γ 
2λ 
µ 
3λ 
γ 
λ 
µ 
2λ 
γ 
3µ 
λ 

 
Table 2:  State transitions for n = 3 

 
Figure 1 illustrates the possible states of the 3-unit system at any time and also the 
transition intensities. The balance equations are derived for the steady-state probabilities 
for the number of failed units in the system. 
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Let  
 
N (t)  ≡ 

 

Number of failed units at time t.  
 
R(t)  ≡ 

 

State of the repair facility at time t.  
 
Then {N(t) , R(t)}

 

is a continuous time Markov process with the state space  
 
S = {(i , j);  i = 1, 2, 3; j = 0, 1}.   
 
Let 
 
pij(t) = P[N(t) = i, R(t) = j]  
 

)()(3)( 010000 tptptp          (1) 

)()(3)()2()( 11001010 tptptptp       (2) 

)()(2)()()( 21102020 tptptptp        (3) 

)()()()( 31203030 tptptptp         (4) 

)()()3()( 100101 tptptp         (5) 

)()(3)()2()( 20011111 tptptptp       (6) 

)()(2)()()( 30112121 tptptptp        (7) 

)()()( 213131 tptptp          (8) 

 
In the steady-state  
 

 jtRitNPp tij   )(,)(lim       (9) 

 
Using (9), the steady-state equations for pij can be obtained as follows. 
 

01003 pp    (10) 

110010 3)2( ppp    (11) 

211020 2)( ppp    (12) 

312030 ppp    (13) 

1001)3( pp    (14) 

200111 3)2( ppp    (15) 

301121 2)( ppp    (16) 

2131 pp    (17) 

  
Since the system is operable in states (1,0), (0,0), (2,0), (0,1), (1,1), and (2,1), the steady-
state availability of the system is given by  
 




 
2

0
1 )(

n
nno ppA  (18) 
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4.  ESTIMATES FOR STEADY-STATE PROBABILITIES AND SYSTEM PERFORMANCE MEASURES  
 
Let X1,X2,...,Xn be a  random sample of failure times for operating units with probability 
density function (pdf) 
 

xexf  )(1  
 

x > 0; λ > 0. 

 
Let Y1,Y2,...,Yn be a random sample of repair times of  the failed units with pdf  

yeyf  )(2   y > 0; µ > 0. 

 
Let Z1,Z2,...,Zn be a sample of preparation times of the repair facility with pdf  
 

zezf  )(3   z > 0; γ > 0. 

 

Let X , Y , Z be the sample means of the time to failure for the operating unit, the time 
to repair for the failed units, and the time to preparation for the repair facility 
respectively.  

Then

1)( XE ,


1)( YE and


1)( ZE . It can be easily shown that X , Y and 

Z are the maximum likelihood estimates of 

1

, 

1

and 

1  

respectively.  

Furthermore, let ijp̂ be estimators of ijp . The estimator of A  can now be obtained 

through  




 
2

0
10 )ˆˆ(ˆ

n
nn ppA  (19) 

 
 
5.  ASYMPTOTIC COFIDENCE LIMITS FOR THE AVAILABILITY  
 

From the discussion in the previous section,  Â
 
is a real-valued function in X , Y , Z , 

which is also differentiable using the application of the multivariate central limit theorem 
due to Rao [8], it follows that  
 

 ),,(),,( 321 ZYXn  converges to N3(0,Σ) in the distribution as n → ∞.  

 
Where the dispersion matrix  

 

 
33

2
xij  

 
is given by  
 

 2
3

2
2

2
1 ,, diag , 

 
using the results by Rao [8], it follows that 
 

  ))(,0(ˆ 2
13 NAAn D   
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as n →∞ with  
 

ii
i i

A 



23

1

2
1 )( 















  

where  
 

),,( 321    

 

Let )ˆ(2
1  be the estimator for  )(2

1  which is obtained by replacing θ by a consistent 

estimator )Z,Y,X( ˆ  . Since  )(2
1   is a continuous function of θ, )ˆ(2

1  is a 

consistent estimator of  )(2
1   [12]. 

 
Therefore,  
 

)()ˆ( 2
1

2
1       

 
 as n .  Slutzky’s theorem gives  
 

 
)1,0(

)ˆ(

ˆ
2
1

N
AAn D

 


 

 
as n , which leads to 
 

  
  











  1

)(

ˆ

2
2
12

Z
AAn

ZP   

 

where  
2
Z  is determined from standard normal tables or statistical software packages. 

Hence, the asymptotic 100(1 - α)%  confidence limits for A∞
 
are given by 

.)ˆ(ˆ
2 n
ZA 

  
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Figure 3:  Steady state availability for changing preparation time 
 
6.  NUMERICAL ILLUSTRATION  
 
In this section, numerical results of steady-state availability, A∞ are given. Figure 2 
illustrates the repair time (θ3) vs A∞

 
for fixed failure and preparation times respectively, 

while Figure 3 illustrates the preparation time (θ2) vs A∞
 
for fixed failure and repair time.  

From Figure 2 and3 it is clear that for fixed θ1 as the repair time θ2 increases, A∞ decreases. 
Also, for a fixed θ1, A∞

 
decreases as the preparation time θ3 increases. Tables 3 and 4 

present the confidence limits (both at 95% and 99%) for different sample sizes. It is 
observed that, when n increases, the steady-state availability increases. 
 
 
8.  CONCLUSIONS  
 
This paper develops the evaluation of availability using the difference differential equations 
for the state probabilities, for a three-unit complex system. The introduction of 
preparation time for the repair facility makes the system more complex.  
 
The effects of various parameters on the system availability are numerically analyzed. 
Finally the sensitivity of system availability at specific values of parameters is examined.  
The numerical investigations indicate that as the preparation time increases the steady--
state availability decreases this also holds for the repair time. The confidence limits for 
different parameters are obtained for different sample sizes. The results indicate that, 
when the sample size increases the availability increases, which is reasonable. For future 
study, non-Markovian models can be considered with the same and other assumptions 
 
 

  θ3 

n  θ2  70 80 90 100 

100  

200 
300 
400 
500 
600 
700 
800  

0.8499 
0.7415 
0.6478 
0.5710 
0.5087 
0.4577 
0.4155 

0.9509 
0.8909 
0.8245 
0.7602 
0.7014 
0.6489 
0.6024 

0.8433 
0.7357 
0.6430 
0.5672 
0.5056 
0.4552 
0.4134  

0.9476 
0.8869 
0.8203 
0.7563 
0.6978 
0.6457 
0.5996 

0.8363 
0.7297 
0.6381 
0.5633 
0.5024 
0.4526 
0.4113  

0.9441 
0.8826 
0.8160 
0.7522 
0.6942 
0.6424 
0.5967 

0.8290 
0.7234 
0.6331 
0.5593 
0.4992 
0.4500 
0.4091  

0.9402 
0.8781 
0.8115 
0.7481 
0.6904 
0.6391 
0.5938  

200  

200 
300 
400 
500 
600 
700 
800  

0.8646 
0.7634 
0.6736 
0.5987 
0.5369 
0.4857 
0.4429 

0.9361 
0.8690 
0.7986 
0.7325 
0.6731 
0.6209 
0.5750 

0.8586 
0.7578 
0.6690 
0.5949 
0.5337 
0.4883 
0.4407  

0.9324 
0.8647 
0.7944 
0.7286 
0.6697 
0.6178 
0.5723 

0.8521 
0.7521 
0.6642 
0.5909 
0.5305 
0.4804 
0.4384  

0.9283 
0.8602 
0.7900 
0.7245 
0.6661 
0.6146 
0.5696 

0.8453 
0.7461 
0.6592 
0.5869 
0.5272 
0.4777 
0.4362  

0.9239 
0.8554 
0.7854 
0.7204 
0.6624 
0.6114 
0.5667  

1000  

200 
300 
400 
500 
600 
700 
800  

0.8844 
0.7926 
0.7082 
0.6357 
0.5745 
0.5230 
0.4794 

0.9163 
0.8398 
0.7661 
0.6955 
0.6355 
0.5835 
0.5385 

0.8790 
0.7874 
0.7036 
0.6318 
0.5713 
0.5203 
0.4771  

0.9120 
0.8352 
0.7597 
0.6916 
0.6321 
0.5835 
0.5359 

0.8732 
0.7819 
0.6989 
0.6279 
0.5680 
0.5203 
0.4747  

0.9072 
0.8303 
0.7552 
0.6876 
0.6286 
0.5805 
0.5333 

0.8670 
0.7763 
0.6941 
0.6238 
0.5646 
0.5175 
0.4722  

0.9022 
0.8252 
0.7505 
0.6835 
0.6250 
0.5744 
0.5306  

Table 3:  95% Confidence interval for A∞, θ1 = 600 
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  θ3 

n  θ2  70 80 90 100 

100  

200 
300 
400 
500 
600 
700 
800  

0.8344 
0.7186 
0.6207 
0.5420 
0.4792 
0.4284 
0.3869 

0.9664 
0.9138 
0.8516 
0.7891 
0.7309 
0.6781 
0.6310  

0.8274 
0.7126 
0.6159 
0.5382 
0.4762 
0.4260 
0.3849 

0.9636 
0.9100 
0.8475 
0.7852 
0.7272 
0.6748 
0.6281  

0.8199 
0.7063 
0.6109 
0.5634 
0.4731 
0.4235 
0.3829 

0.9606 
0.9060 
0.8432 
0.7811 
0.7235 
0.6715 
0.6251 

0.8120 
0.6998 
0.6058 
0.5304 
0.4699 
0.4210 
0.3808  

0.9573 
0.9017 
0.8388 
0.7769 
0.7197 
0.6681 
0.6220  

200  

200 
300 
400 
500 
600 
700 
800  

0.8537 
0.7472 
0.6545 
0.5782 
0.5160 
0.4650 
0.4226 

0.9470 
0.8852 
0.8177 
0.7530 
0.6940 
0.6416 
0.5953  

0.8734 
0.7415 
0.6498 
0.5744 
0.5129 
0.4624 
0.4205 

0.9436 
0.8811 
0.8136 
0.7490 
0.6905 
0.6384 
0.5925  

0.8405 
0.7355 
0.6449 
0.5705 
0.5098 
0.4598 
0.4184 

0.9400 
0.8767 
0.8092 
0.7450 
0.6868 
0.6352 
0.5896 

0.8320 
0.7293 
0.6399 
0.5665 
0.5065 
0.5272 
0.4162  

0.9360 
0.8722 
0.8047 
0.7408 
0.6831 
0.6319 
0.5867  

1000  

200 
300 
400 
500 
600 
700 
800  

0.8795 
0.7853 
0.6996 
0.6265 
0.5652 
0.5138 
0.4704 

0.9212 
0.8471 
0.7726 
0.7047 
0.6448 
0.5928 
0.5476  

0.8739 
0.7801 
0.6951 
0.6227 
0.5620 
0.5111 
0.4681 

0.9170 
0.8425 
0.7683 
0.7008 
0.6414 
0.5898 
0.5450  

0.8680 
0.7745 
0.6903 
0.6187 
0.5587 
0.5083 
0.4657 

0.9125 
0.8377 
0.7638 
0.6968 
0.6379 
0.5867 
0.5423 

0.8616 
0.7688 
0.6855 
0.6147 
0.5553 
0.5055 
0.4633  

0.9076 
0.8327 
0.7592 
0.6927 
0.6343 
0.5836 
0.5396  

 
Table 4:  99% Confidence interval for A∞, θ1 = 600 
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