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ABSTRACT

It is reasonable to expect that preparation time is needed to ready a repair facility before a
repair can be carried out. A three-unit system with a “preparation time’ for the repair
facility is studied in this paper. The steady-state availability of such a system is obtained.
The asymptotic confidence limits of the steady state availability are obtained numerically.

OPSOMMING
Redelikerwys kan verwag word dat ‘n herstelproses voorafgegaan word deur ‘n
voorbereidingsproses voordat herstel ‘n aanvang kan neem. ‘n Sisteem wat bestaan uit drie
eenhede waar ‘n sodanige voorbereidingsproses voor herstelwerk moet plaasvind word
ondersoek. Die gestadigde stelselbeskikbaarheid met asimptotiese vertrouegrense word
numeries blootgestel.
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1. INTRODUCTION

Reliability theory is a very important branch of systems engineering and operations research
and deals with methods of evaluating the various measures of performance of a system that
may be subject to gradual deterioration. Any systems analysis, in order to be complete,
must give due consideration to system reliability. Multiple unit systems have attracted the
attention of many applied probabilists and reliability engineers for their applicability in
their respective fields. Kistner and Subramanian [5] considered an n-unit warm standby
redundant system with a single repair facility. In this case, the probability density function
of the life time of the online unit was assumed to be arbitrary while all the other
distributions are exponential; these results were later extended by Subramanian,
Venkatakrishnan and Kistner [11]. Gupta and Bansal [3] studied the cost benefit analysis of
a single server three unit redundant system with inspection, delayed replacement and two
types of repair. A multiple component system in which n identical units connected in series
are needed for the system to function, the units being supported by m spares and a single
repair facility, Gupta and Bansal [3] have analyzed a cost function for a three unit standby
system subject to random shocks and linearly increasing failure rates. The study of n-unit
systems, even in the case of cold standbys, appears to be rather complicated. Sarma and
Parvez [10] studied a three unit system in which all the distributions assumed are discrete.
Muller [7] studied a three unit standby system when the life-times and repair time
distributions are assumed to be arbitrary and obtained the expressions for reliability and
availability. From the above literature, it is clear that all the models have the assumption
that the repair facility is continuously available to attend to the repair of the failed units
(Kistner and Subramanian [5], Krishnamoorthy et al [6], Bon and Paltanea [1], Frostig and
Levikson [2] and Ke and Pearn [4]. But it is reasonable to expect that a preparation time
might be needed to get the repair facility ready before the next repair could be taken up.
If this preparation time is started only when a unit arrives for repair, it is easy to solve the
problem, since the preparation time plus the actual repair time may be taken as the total
repair time. But this preparation time usually starts immediately after each repair
completion, so that the facility becomes available at the earliest. In this paper a three-
unit standby redundant system is studied in which the preparation time has been
introduced (Sarma [9]; Yadavalli et al [13], [14]). Asymptotic confidence limits for the
steady state availability are also obtained. The numerical results are presented for the
system measures in the last section.

2. SYSTEM DESCRIPTION

a. The system consists of three identical units connected in parallel. Either unit
performs the system function satisfactorily.

b. There is only one repair facility. Each unit is new after repair.
C. At t = 0, all the units are new and the repair facility is available.
d. After each repair completion, the repair facility is not available for a random time

which is called the "preparation time.

e. The life time, repair time and the preparation time are independent random
variables and assumed to have an exponential distribution with parameters A, p, and
Y respectively.

3. AVAILABILITY ANALYSIS
Consider the state of the system to be (i , j), where i is the number of failed units, and j is
the state of the repair facility such that j = 0 represents that the repair facility is available

and j = 1 represents that the repair facility is unavailable. The state transitions are
presented in Table 1.

60



When n = 3, the possible transitions are presented in Table 2.

State
From To Rate
(i,0) (i+1,0) (n-1i)A, i={0,1,...,n-1}
(i,0) (i-1,0) H, i={0,1,...,n}
i,1 (i,0) Y, i={0,1,...,n}
(i,1) (i+1,1) (n-i)A, i={0,1,...,n-1}
Table 1: State Transitions
State
From To Rate
(0,0) (1,0) 3A
0,1 (0,0 Y
(1,0) (2,0) 2\
(1,0) 0,1) H
(0,0) (1,0) 3A
(1,1 (1,0) Y
(2,0) (3,0) A
(2,0) (1,1 M
(1,0) (2,0) 2\
(2,1 (2,0) Y
(3,0) (2,1 3p
(2,0) (3,0 A

Table 2: State transitions for n = 3
Figure 1 illustrates the possible states of the 3-unit system at any time and also the

transition intensities. The balance equations are derived for the steady-state probabilities
for the number of failed units in the system.
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Figure 1: State transition diagram of a 3-unit system
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Let

N (t) = Number of failed units at time t.

R(t) = State of the repair facility at time t.

Then {N(t) , R(t)}is a continuous time Markov process with the state space
S={G,j); i=1,2,3;j=0,1}.

Let

py(t) = PIN(®) = i, R(t) = j]

Poo (1) ==34p, () + 10, (1) (
Pro(®)==Q2A+ @) p i (1) +34p, (1) + 1, (1) (
P (€)= —(A+ 1) poy (1) +24p, () + 1, (1) (
P () == 1p5o () + Ap, (£) + 15, (1) (
P () ==BA+ 1)y (t) + tp,, (1) 6
Pa(O)==Q2A+y)p, () +3Ap, (1) + upo, (1) (
P (O)=~(A+7)pyy (6) + 24p, (t) + tps, (1) (
Pu(®)==1p5, (1) + Ap,, (1) (

In the steady-state
py=lim PN =i,R()= /] ©)
Using (9), the steady-state equations for p;; can be obtained as follows.

10
11
12

34pg =W (10)
QA+ @)piy =34pg + 11, ()
(A+ )Py =24py, + 12 (12)
HUpso = APy + 13 (13)
BA+7)Po = P (14)
A+ Y)pi, =3Py, + Upsy (13)
(A+¥)pay =24p,, + Ups (16)

(17)

Wi = Apy 17

Since the system is operable in states (1,0), (0,0), (2,0), (0,1), (1,1), and (2,1), the steady-
state availability of the system is given by

2
Am:Z(pno-l_pnl) (18)
n—0
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4. ESTIMATES FOR STEADY-STATE PROBABILITIES AND SYSTEM PERFORMANCE MEASURES

Let Xi,Xp,...,X, be a random sample of failure times for operating units with probability
density function (pdf)

fi(x)=Ade™ x>0;A>0.

Let Y4,Y5,...,Y, be a random sample of repair times of the failed units with pdf

fo(y)=ue™ y>0;p>0.

Let Z4,Z,,...,Z, be a sample of preparation times of the repair facility with pdf
fi(@)=r" z>0;y>0.

Let X', Y, Z be the sample means of the time to failure for the operating unit, the time
to repair for the failed units, and the time to preparation for the repair facility
respectively.

— 1 - 1 — 1 = =
Then E(X)=—,E(Y)=—and E(Z)=—. It can be easily shown that X, Y and
A % y
— 1 1
Z are the maximum likelihood estimates of —, — and — respectively.
H /4

Furthermore, let f)y be estimators of p, . The estimator of A., can now be obtained
through

2
Z + D) (19)
-0

5. ASYMPTOTIC COFIDENCE LIMITS FOR THE AVAILABILITY

By

From the discussion in the previous section, Aoo is a real-valued functionin X, Y, Z,

which is also differentiable using the application of the multivariate central limit theorem
due to Rao [8], it follows that

\/;[(X, Y,Z)-(6,,0,,0, )] converges to N3(0,X) in the distribution as n — .
Where the dispersion matrix

ElO'J

3x3
is given by

> = diag|6? 62,67 |,

using the results by Rao [8], it follows that
Jnld, - 4.2 0,07 0
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as n —= with

, s (94,1
o (9): { m} 51‘1‘
1 le 90,
where

0=(,,0,,0,)

Let o7 (é) be the estimator for &7} (€) which is obtained by replacing 8 by a consistent

estimator @ =(X,Y,Z). Since 07 () is a continuous function of 8, o} (f)is a
consistent estimator of o7 (6) [12].

Therefore,
20)—> o6
0, (0) =0, (0)
as 1 — 0. Slutzky’s theorem gives

i -4

ol (0)

N(0,])

as n —> oo, which leads to

P-z, sMsza =l-«a
2 oy (0) 2

where Za is determined from standard normal tables or statistical software packages.
2

Hence, the asymptotic 100(1 - a)% confidence limits for A. are given by

. 56

i +z,°9

3
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Figure 2: Steady state availability for changing repair time
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0;
n 6, 70 80 90 100

200 | 0.8499 | 0.9509 | 0.8433 | 0.9476 | 0.8363 | 0.9441 | 0.8290 | 0.9402
300 | 0.7415 | 0.8909 | 0.7357 | 0.8869 | 0.7297 | 0.8826 | 0.7234 | 0.8781
400 | 0.6478 | 0.8245 | 0.6430 | 0.8203 | 0.6381 | 0.8160 | 0.6331 | 0.8115
100 | 500 | 0.5710 | 0.7602 | 0.5672 | 0.7563 | 0.5633 | 0.7522 | 0.5593 | 0.7481
600 | 0.5087 | 0.7014 | 0.5056 | 0.6978 | 0.5024 | 0.6942 | 0.4992 | 0.6904
700 | 0.4577 | 0.6489 | 0.4552 | 0.6457 | 0.4526 | 0.6424 | 0.4500 | 0.6391
800 | 0.4155 | 0.6024 | 0.4134 | 0.5996 | 0.4113 | 0.5967 | 0.4091 | 0.5938

200 | 0.8646 | 0.9361 | 0.8586 | 0.9324 | 0.8521 | 0.9283 | 0.8453 | 0.9239
300 | 0.7634 | 0.8690 | 0.7578 | 0.8647 | 0.7521 | 0.8602 | 0.7461 | 0.8554
400 | 0.6736 | 0.7986 | 0.6690 | 0.7944 | 0.6642 | 0.7900 | 0.6592 | 0.7854
200 | 500 | 0.5987 | 0.7325 | 0.5949 | 0.7286 | 0.5909 | 0.7245 | 0.5869 | 0.7204
600 | 0.5369 | 0.6731 | 0.5337 | 0.6697 | 0.5305 | 0.6661 | 0.5272 | 0.6624
700 | 0.4857 | 0.6209 | 0.4883 | 0.6178 | 0.4804 | 0.6146 | 0.4777 | 0.6114
800 | 0.4429 | 0.5750 | 0.4407 | 0.5723 | 0.4384 | 0.5696 | 0.4362 | 0.5667

200 | 0.8844 | 0.9163 | 0.8790 | 0.9120 | 0.8732 | 0.9072 | 0.8670 | 0.9022
300 | 0.7926 | 0.8398 | 0.7874 | 0.8352 | 0.7819 | 0.8303 | 0.7763 | 0.8252
400 | 0.7082 | 0.7661 | 0.7036 | 0.7597 | 0.6989 | 0.7552 | 0.6941 | 0.7505
1000 | 500 | 0.6357 | 0.6955 | 0.6318 | 0.6916 | 0.6279 | 0.6876 | 0.6238 | 0.6835
600 | 0.5745 | 0.6355 | 0.5713 | 0.6321 | 0.5680 | 0.6286 | 0.5646 | 0.6250
700 | 0.5230 | 0.5835 | 0.5203 | 0.5835 | 0.5203 | 0.5805 | 0.5175 | 0.5744
800 | 0.4794 | 0.5385 | 0.4771 0.5359 | 0.4747 | 0.5333 | 0.4722 | 0.5306

Table 3: 95% Confidence interval for A., 6; = 600

Figure 3: Steady state availability for changing preparation time
6. NUMERICAL ILLUSTRATION

In this section, numerical results of steady-state availability, A. are given. Figure 2
illustrates the repair time (6s) vs A. for fixed failure and preparation times respectively,
while Figure 3 illustrates the preparation time (6;) vs A. for fixed failure and repair time.
From Figure 2 and3 it is clear that for fixed 6, as the repair time 0, increases, A. decreases.
Also, for a fixed 6;, A. decreases as the preparation time 0; increases. Tables 3 and 4
present the confidence limits (both at 95% and 99%) for different sample sizes. It is
observed that, when n increases, the steady-state availability increases.

8. CONCLUSIONS

This paper develops the evaluation of availability using the difference differential equations
for the state probabilities, for a three-unit complex system. The introduction of
preparation time for the repair facility makes the system more complex.

The effects of various parameters on the system availability are numerically analyzed.
Finally the sensitivity of system availability at specific values of parameters is examined.
The numerical investigations indicate that as the preparation time increases the steady--
state availability decreases this also holds for the repair time. The confidence limits for
different parameters are obtained for different sample sizes. The results indicate that,
when the sample size increases the availability increases, which is reasonable. For future
study, non-Markovian models can be considered with the same and other assumptions
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6;

6, 70 80 90 100

200 | 0.8344 | 0.9664 | 0.8274 | 0.9636 | 0.8199 | 0.9606 | 0.8120 | 0.9573
300 | 0.7186 | 0.9138 | 0.7126 | 0.9100 | 0.7063 | 0.9060 | 0.6998 | 0.9017
400 | 0.6207 | 0.8516 | 0.6159 | 0.8475 | 0.6109 | 0.8432 | 0.6058 | 0.8388
500 | 0.5420 | 0.7891 | 0.5382 | 0.7852 | 0.5634 | 0.7811 | 0.5304 | 0.7769

100 | 600 | 0.4792 | 0.7309 | 0.4762 | 0.7272 | 0.4731 | 0.7235 | 0.4699 | 0.7197
700 | 0.4284 | 0.6781 | 0.4260 | 0.6748 | 0.4235 | 0.6715 | 0.4210 | 0.6681
800 | 0.3869 | 0.6310 | 0.3849 | 0.6281 | 0.3829 | 0.6251 | 0.3808 | 0.6220
200 | 0.8537 | 0.9470 | 0.8734 | 0.9436 | 0.8405 | 0.9400 | 0.8320 | 0.9360
300 | 0.7472 | 0.8852 | 0.7415 | 0.8811 | 0.7355 | 0.8767 | 0.7293 | 0.8722
400 | 0.6545 | 0.8177 | 0.6498 | 0.8136 | 0.6449 | 0.8092 | 0.6399 | 0.8047
500 | 0.5782 | 0.7530 | 0.5744 | 0.7490 | 0.5705 | 0.7450 | 0.5665 | 0.7408
200 | 600 | 0.5160 | 0.6940 | 0.5129 | 0.6905 | 0.5098 | 0.6868 | 0.5065 | 0.6831
700 | 0.4650 | 0.6416 | 0.4624 | 0.6384 | 0.4598 | 0.6352 | 0.5272 | 0.6319
800 | 0.4226 | 0.5953 | 0.4205 | 0.5925 | 0.4184 | 0.5896 | 0.4162 | 0.5867
200 | 0.8795 | 0.9212 | 0.8739 | 0.9170 | 0.8680 | 0.9125 | 0.8616 | 0.9076
300 | 0.7853 | 0.8471 | 0.7801 | 0.8425 | 0.7745 | 0.8377 | 0.7688 | 0.8327
400 | 0.6996 | 0.7726 | 0.6951 | 0.7683 | 0.6903 | 0.7638 | 0.6855 | 0.7592
1000 500 | 0.6265 | 0.7047 | 0.6227 | 0.7008 | 0.6187 | 0.6968 | 0.6147 | 0.6927

600 | 0.5652 | 0.6448 | 0.5620 | 0.6414 | 0.5587 | 0.6379 | 0.5553 | 0.6343
700 | 0.5138 | 0.5928 | 0.5111 | 0.5898 | 0.5083 | 0.5867 | 0.5055 | 0.5836
800 | 0.4704 | 0.5476 | 0.4681 | 0.5450 | 0.4657 | 0.5423 | 0.4633 | 0.5396

Table 4: 99% Confidence interval for A., 6, = 600
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