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ABSTRACT 

 
Coherency is becoming a necessary feature for any risk measure, and now is an acceptable 
tool in risk management to assess the risk measures. For example, recent studies have 
strongly criticised VaR-based models for not providing a coherent risk measure. Because of 
such acceptance, it is important to improve the efficiency of the touchstone for evaluating  
risk measures in order to achieve a fairer assessment. This is just the challenge that this 
paper seeks to address. This goal is achieved on the one hand by doing some simplifications 
in axioms of coherency without losing their major financial points, and on the other hand by 
removing the paradox between two of the axioms. The new concept is called ‘sensible 
coherency’, and the risk measure that satisfies the four new simplified and corrected 
axioms will be ‘sensibly coherent’. Finally, the new axioms are applied to a particular type 
of lower partial moments as a case study. 
 

OPSOMMING 
 

Koherensie word ‘n noodsaaklike kenmerk van enige risikomaatstaf en is nou ‘n aanvaarbare 
gereedskapstuk in die beoordeling van risikomaatstawwe. Die doel van hierdie artikel word 
bereik deur enersyds die aksiomas van koherensie te vereenvoudig  en andersyds die 
paradoks tussen die aksiomas te verwyder. Die resultaat word “sinvolle koherensie” 
genoem. 
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1. INTRODUCTION 
 

In recent years a growing interest in the optimal portfolio problem, introduced by the 
seminal work of Markowitz [1], has become very apparent. This interest is due to two 
overlapping reasons. On the one side, computational advances in mathematical 
programming – both quantitatively and qualitatively – mean that the technology for solving 
financial problems with more variables or with more real assumptions, which could not be 
solved in Markowitz’s time, is now available. In the quantitative approach there is the work 
of authors like Konno and Suzuki [2] or Perold [3

As discussed above, this paper is related to risk measures, and may be categorised in that 
group of works that focus on assessment tools of financial risks. In other words, the paper 
intends to develop new criteria for the assessment of financial risk measures that are more 
helpful than previous ones. The concept developed by this paper is neither completely new 
nor innovative, but a revised version of the noble work of Artzner et al. [

], and in the qualitative approach there is 
a vast volume of literature on robust optimisation, Markov chain, multi-objective decision 
making, possibility and fuzzy theory or Minimax modeling of the problem. On the other 
side, practitioners and risk managers are confident that sometimes variance is not an 
appropriate measure of risk, and can be better measured by different statistical methods; 
and so an appropriate risk measure is necessary to address the problem more efficiently. 
This aspect of financial literature has been enriched by the development and introduction 
of new risk measures like VaR or CVaR, and by defining new features for better assessment 
of risks. The latter direction for the enrichment of the risk literature is particularly 
challenging, since from a practical point of view there are many propositions about an ideal 
risk measure, making the embedding of all of them in mathematical or statistical relations 
to some extent impossible. A criterion of coherency that encompasses the four axioms of 
subadditivity, monotonicity, translation invariance, and positive homogeneity is one of the 
most accepted risk assessment tools, and is now extensively used to analyse risk measures. 
The risk measures that satisfy all four of the above axioms are called ‘coherent’. 

 

4] in developing 
the concept of coherency. It is not intended to question the efficacy of coherency 
completely, but to highlight the fact that in some cases the concept of coherency may 
produce irrational results that will disappear under application of the new concept of 
‘sensible coherency’. 

 
The defects of the coherency criterion can be described in two ways: 

 
1. The criteria focus on the mathematical features of risk measures more than their 

practical application in finance, and the applicability of some of the axioms is 
sacrificed by the rigidity of their definition. In other words, some criteria of coherency 
are suitable for mathematical operations; but from the practical point of view they 
encompass very special cases in a way that seems to some extent illogical. 

 
2. Some axioms have paradoxes with some of the others. 
 
In this paper, by applying some simplifications to the axioms of coherency and also 
injecting some logical points, another set of criteria for assessment of risk measures is 
achieved. The new set of axioms is called ‘sensible coherency’, while the traditional set of 
axioms henceforth will be called ‘absolute coherency’, just to distinguish the new and old 
versions better. From the practical point of view, the new concept is superior to absolute 
coherency; but from the perspective of being appropriate for mathematical processing, the 
absolute version is still better. 

 
The rest of this paper is organised as follows. Section 2 focuses on the concept ‘absolute 
coherency’; Section 3 discusses sensible coherency; and Section 4 investigates the state of 
coherency (absolute, sensible, or neither) of the Lower Partial Moment (LPM) of the first 
order. Finally, Section 5 sets out the most important conclusions of the study. 
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2. ABSOLUTE COHERENCY 
 
Since the notion of risk cannot be separated from the axioms underlying the definition of 
rational risky behavior, there is no objective definition of risk that could be unanimously 
accepted – i.e. there is no perfect definition of risk, and some are relatively superior to 
others. This superiority is usually analysed by criteria, the most acceptable of which in the 
literature is the concept of ‘absolute coherency’. 

 
The theory of ‘absolute coherency’ was initiated by Artzner et al. ([4], [5]) and developed 
further by Bertsimas et al. [6], Delbaen [7], Kusuoka [8], Acerbi [9], Fritelli and Rosazza 
Gianin [10], Acerbi and Tasche [11], Szego [12], and Inoue [13

5
]. For example, while Artzner 

et al. [ ] considered only discrete probability spaces, Delbaen [7] extends their definitions 
to include arbitrary probability spaces. Pelessoni and Vicig [14] defined absolutely coherent 
measures of risk over an arbitrary set of risks – a more general case than the concept of 
absolute coherency for risk measures over a linear space of random numbers. Giannopoulos 
and Tunaru [15

5

] have shown how filtered historical simulation (FHS) can provide absolutely 
coherent risk estimates; and many other works relate directly or indirectly to the concept 
of absolute coherency. The main point, however, is the fact that the impact of absolute 
coherency on the financial literature has been significant, to the extent that (for example) 
the Value-at-Risk (VaR) measure that has been widely used in finance and insurance for 
capital and risk management, has fallen somewhat out of favor in recent years due to the 
seminal paper of Artzner et al. [ ], which showed that VaR does not in general have all four 
coherence properties. The same thing has happened to the risk measures based on standard 
deviation or semi-variance. It is to be noted that VaR is absolutely coherent for elliptically 
distributed risks [16

ρ

], and when the assets’ returns have elliptically symmetric 
distributions, all these risk measures are coherent. 

 
3. SENSIBLE COHERENCY 

 
This concept results from a revision of the concept of absolute coherency. The concept 
tries to make absolute coherency more financial and less mathematical. In other words, 
although sensibly coherent measures may not be capable of mathematical processing like 
absolutely coherent measures, they can be relied on in practice more confidently. Sensible 
coherency is more general than absolute coherency; the latter is just a special case of the 
former. 

 
Sensible coherency consists of four axioms, although two of them – subadditivity and 
monotonicity – are exactly the same as absolute coherency because they are completely 
applied. Consequently, the distinction between the two concepts of coherency lies in the 
two axioms of translation invariance and positive homogeneity. The risk measure of  is 
called sensibly coherent if it satisfies the four axioms of subadditivity, monotonicity, 
sensible translation invariance, and sensible positive homogeneity. 
 
3.1. Subadditivity 

 
This axiom states that ( ) ( ) ( )yxyx ρρρ +≤+ . Satisfaction of this axiom ensures that the 
diversification principle of modern portfolio theory holds, since a subadditive measure 
would always generate a lower risk measure for a diversified portfolio than for a non–
diversified portfolio. In terms of internal risk management, subadditivity also implies that 
the overall risk of a financial firm is equal to or less than the sum of the risks of individual 
departments of the firm. 
 
3.2. Monotonicity 

 
This axiom states that ( ) ( )yx ρρ ≤  if yx ≥ . That is, a monotonous risk measure never 
considers investment opportunities with higher returns riskier than others with lower 
returns. 
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3.3. Sensible translation invariance (STI) 

 
A risk measure is sensibly translation invariant if it satisfies the following condition: 

( ) ( ) ( ) ( ) ( )
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So there is no difference between absolute and sensible coherency on the axiom of 
translation invariance if ( ) aag = . Or, expressed better: absolute translation invariance 
(ATI) is just a special case of STI, and there is no inconsistency between them. 
 
The impractical point with ATI is its zero one approach toward risk measures. Consider, for 
example, three risk measures of

1ρ ,
2ρ and

3ρ where ( ) ( ) axax −=+ 11 ρρ , ( ) ( ) ερρ ±−=+ axax 22  

and ( ) ( ) ( )xafax 33 ρρ =+ . It can be seen that 1ρ and 2ρ are negligibly different from each 

other, but significantly different from
3ρ ; but according to ATI,

1ρ and
2ρ are different 

while
2ρ and

3ρ are the same, because
1ρ is absolutely translation invariant but

2ρ and
3ρ

are not. This sharply-defined and sometimes incorrect categorisation may result in an unfair 
evaluation of risk measures. In fact, if a risk measure is absolutely translation invariant, it 
has good mathematical and financial characteristics; but if it is not, no firm conclusions can 
be drawn. Such a defect cannot be found in the axiom of STI, because if a risk measure is 
not sensibly translation invariant, it surely cannot be relied on in financial applications. 

 
3.4. Sensible positive homogeneity (SPH) 
 
This axiom tries to address two defects that are related to APH. These defects are: 
 
1. The mathematical stringency that was discussed for ATI can again be seen in absolute 
positive homogeneity (APH). As an example, for unreasonable results of such rigidity 
consider two risk measures of variance and standard deviation that are to some extent the 
same. However,according to APH, standard deviation is absolutely positive homogenous, 
but variance is not. This instance implies that APH is not very intelligent in handling risk 
measures with the same logic but with different formulations. 
 
2. There is some kind of paradox between APH and monotonicity. Assume 0>x  and 

1<m , so xmx <<0 . In this condition, according to monotonicity ( ) ( )xmx ρρ > ; but 

according to APH, ( ) ( )mxx ρρ > . As an another case, consider the condition in which 0>x  
and 1>m ; then we shall have mxx <<0 . So according to monotonicity, ( ) ( )mxx ρρ > ; but 
according to APH, ( ) ( )xmx ρρ > . After taking into account the discussed paradox, since the 
axiom of monotonicity is fully based on reason, APH is the axiom that should be revised. 
The reason for such irrational outcomes from APH is ignorance of the assets returns signals.  
 
To remove the defects of APH, the coefficient of m  is replaced by ( )mg , while on the 
other hand its formulation is segregated on the basis of the returns signals. So the given risk 
measure of ρ  is ‘sensibly positive homogenous’ if ( ) ( ) ( )xmgmx ρρ = , where ( )mg  is as 
specified by Eq.2. if  0≥x  and by Eq.3 if 0≤x . 
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Whereas for the two versions of coherency, the axioms of subadditivity and monotonicity 
are exactly the same, and ATI is a special case of STI, the fourth axiom represents the 
major difference between absolute and sensible coherency. 

 
4. LPM and sensible coherency 

 
This section is intended to produce a case in which, for a particular risk measure, the state 
of being sensibly coherent is investigated, and on the other hand to present a new set of 
proofs on the competence of LPMs. Part 4.1 introduces the family of LPMs, and parts 4.2 to 
4.5 explore whether LPM of the first order has absolute, sensible, or no shape of coherency.  
 
4.1 LPM 
 
Generally symmetrical risk measures like variance can be clearly dismissed in favour of 
shortfall measures like LPMs [17]. For early research on the topic of shortfall measures, Roy 
[18], Markowitz [19], and Mao [20] can be named. One class of shortfall measures of risk 
that is consistent with the definition of increasing risk for arbitrary probability distributions 
is LPM. The appeal of these risk measures has been based, in part, on their consistency with 
the way individuals actually perceive risk [21

17
], and so the LPM approach is of special 

importance for applications to financial decision-making [ ]. Seminal references for the 
concept of LPM are Bawa [22,23], Fishburn [24], and Bawa and Lindenberg [25

21
], while more 

recent papers are Harlow and Rao [ ], and Grootveld and Hallerbach [26

This category of risk measures is significantly efficient, both theoretically and practically. 
Bawa [

].  
 

22,23] has shown that for every scalar τ and for every return distribution belonging 
to a certain class of distributions, the Mean-LPM model will produce portfolios that will 
dominate all other portfolios according to the concept of stochastic dominance. Harlow et 
al. [27] recommend application of LPM for the development of asset pricing models, and 
believe that the generalised Mean-LPM model overcomes the limited appeal of earlier 
formulations – and moreover, it is found that for a large set of target rates, their 
generalised Mean-LPM framework cannot be rejected in favour of an unspecified 
alternative. Unser [17] also states that empirical and simulation studies show the 
superiority of Mean-LPM based portfolio selection criteria in the traditional mean-variance 
based approach.  

 
The LPM of order α around τ is defined by Eq.4. 
 

( ) ( ) ( ) [ ]( ){ }∫
∞−

−=−=
τ

αα
α τττ 0,max; RERdFRRLPM ,  (4) 

 
where ( )RF  is the cumulative distribution function of the investment return R ; τ  is the 
target parameter; and α  determines the weight the investor places on deviations. An 
interesting advantage of LPM is its totality in comparison with the other risk measures, in 
the way that Harlow et al. [27

τ

] state that a large class of extant pricing models using risk 
measures like variance, semivariance, semideviation, probability of loss, etc. become 
special cases of the Mean-LPM framework. For example, if  equals the risk-free interest 
rate,

fR , the Bawa-Lindenberg model is obtained directly; and if in addition to 
fR=τ , 

returns have normal distribution and 2=α , the Sharpe-Lintner-Mossin CAPM model can be 
achieved [21]. The semi-variance corresponds to the LPM with ( )RE=τ  and 2=α ; the 
probability of loss that corresponds to Roy’s safety, and the expected loss, are achieved 
from LPM if 0=α  and 1=α  respectively. 

 
It is interesting to note that LPM – with all of the above-mentioned advantages – does not 
have absolute coherency, because it violates the axioms of ATI and APH. This point again 
emphasises the fact that sometimes the concept of absolute coherency is not fair in 
evaluating risk measures, and needs some kind of revision – as is done in this paper.  
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Fishburn [24] has shown that for LPM, if 1=α , it suits a risk-neutral investor, i.e. 1=α   
separates risk-seeking ( 10 <<α ) from risk averse behaviour ( 1>α ). Building on this point, 
LPM of 1=α , with no constraint onτ  (as shown in Eq.5) is chosen for further discussion. 
 

( ) ( ) ( ) ( ){ }∫
∞−

−=−=
τ

τττ 0,max;1 RERdFRRLPM . (5) 

 
4.2 The LPM and Subadditivity 
 

( )RLPM ,1 τ  is subadditive if the inequality (6) is maintained. 
 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫
∞−∞−∞−

+ −+−≤+++−
necnecnec R

Ynec

R

Xnec

R

YXnec dyyfyRdxxfxRyxdyxfyxR . (6)  

 
The inequality (6) can be rewritten as the inequality (7). 
 

( )( )( ) ( )( ) ( )( )0,0,0, yRMaxExRMaxEyxRMaxE necnecnec −+−≤+− .  (7) 

 
Since for every convex function of f we have the inequality (8), [28

( )( ) ( ) ( ) ( )yfxfyxf αααα −+≤−+ 11

] 
 

, (8) 
 
and whereas ( )( )0,uMaxE  is also a convex function, inequality (9) can be derived. 
 

( ) ( )( )( )( ) ( )( )( ) ( ) ( )( )( )0,10,0,1 yRMaxExRMaxEyRxRMaxE necnecnecnec −−+−≤−−+− αααα  (9) 

In the last inequality, if 
2
1

=α the inequality (10) is achieved as follows: 
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After multiplying the above inequality by 2, inequality (11) results. 
 

( )( )( ) ( )( )( ) ( )( )( )0,0,0,2 yRMaxExRMaxEyxRMaxE necnecnec −+−≤+−  (11) 

 
Since the inequality (12) is obvious, the inequality (11) alongside (12) assures subadditivity 
of the discussed risk measure. 
 

( )( )( ) ( )( )( )0,max0,2max yxREyxRE necnec +−≥+−  (12) 

 
4.3 The LPM and Monotonicity 
 

( )RLPM ,1 τ  is monotonous if for yx > the inequality (13) can be concluded. 
 

( ) ( ) ( ) ( )∫∫
∞−∞−

−≤−
necnec R

Ynec

R

Xnec dyyfyRdxxfxR  (13) 

 
As a first step, the inequality (13) is rewritten as the inequality (14). 
 

( )( ) ( )( )0,0, yRMaxExRMaxE necnec −≤− . (14) 

 
Lemma. If yx ≤  then ( ) ( )yExE ≤  
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Proof. 
Obviously ( ) ( ) ( )xMaxxExMin ≤≤  and ( ) ( ) ( )yMaxyEyMin ≤≤ . On the other hand, for the 
variables of x  and y , ( ) ( )yMinxMax ≤ . Since ( ) ( )xMaxxE ≤  and ( ) ( )yEyMin ≤ , it is 

concluded that ( ) ( )yExE ≤ . 
 

Since  yx ≥  then yRxR necnec −≤− , and consequently ( ) ( )0,0, yRMaxxRMax necnec −≤− . Based on 

the Lemma, it can be concluded that ( )( ) ( )( )0,0, yRMaxExRMaxE necnec −≤− . So ( )RLPM ,1 τ  is 

also a monotonous risk measure.  
 
4.4 The LPM and STI 
 
To determine whether ( )RLPM ,1 τ  is absolutely or sensibly translated invariance, or neither 
of them, ( )ax +ρ should be calculated as is done in Eq.15.  
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As can be seen in Eq.15, 

( ) ( ) ( ) ( )∫∫
−

∞−−

+−=
aR

X

R

aR
Xnec

necnec

nec

dxxfadxxfxRag
 so because ( ) aag ≠ , ( )RLPM ,1 τ  is 

not absolutely translated invariance but sensibly translated invariance, its ( )ag  should 
meet two characteristics. It obviously meets the first one because, if 0>a , ( ) 0>ag , and if 

0<a , ( ) 0<ag . For the second characteristic, it should be checked whether ( )
a
ag

∂
∂ is positive or 

negative. Since ( ) ( )∫
−

∞−

>=
∂

∂ aR

X

nec

dxxf
a
ag 0  it is proved that ( )RLPM ,1 τ  is sensibly translated 

invariance.  
 
4.5 The LPM and SPH 
 
It is apparent that ( )RLPM ,1 τ  does not have APH; but to determine whether or not it has 

SPH, at the first step ( )mg  should be calculated. Since there are two methods for 
presenting ( )RLPM ,1 τ , the ( )mg  can be formulated both statistically and mathematically. 

The statistical and mathematical expression of ( ) ( )
( )x
mxmg

ρ
ρ

=  is shown by Eqs (16) and (17) 

respectively. 
 

( )( )
( )( )0,max

0,max
xRE

mxRE

nec

nec

−
− , (16) 

 

( ) ( )

( ) ( )∫

∫

∞−

∞−

−

−

nec

nec

R

Xnec

m
R

Xnec

dxxfxR

dxxfmxR
. (17) 

If 0≥x  and 1>m  or 0≤x  and 1<m , for ( )RLPM ,1 τ , on the basis of what follows and 
Eq.16 it is concluded that ( ) 10 << mg . 
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( ) ( )
( )( ) ( )( ).0,0,

0,0,
mxRMaxExRMaxE

mxRMaxxRMaxmxRxRmxx

necnec

necnecnecnec

−>−
⇒−>−⇒−>−⇒<  

 
And if 0≥x  and 1<m  or 0≤x and 1>m , for ( )RLPM ,1 τ , on the basis of what follows and 
Eq.16 it is concluded that ( ) 1>mg . 
 

( ) ( )
( )( ) ( )( )0,0,

0,0,
xRMaxEmxRMaxE

xRMaxmxRMaxxRmxRxmx

necnec

necnecnecnec

−>−
⇒−>−⇒−>−⇒<  

 
The other thing that should be checked is the signal of ( )

m
mg

∂
∂  that is different for 0≥x  and 

0≤x . To check this point, the mathematical definition of ( )mg  (Eq.17) will be used. The 
first derivative of ( )mg  is shown by Eq.18. 
 

( )
( )

( ) ( )∫

∫

∞−

∞−

−

−
=

∂
∂

nec

nec

R

Xnec

m
R

X

dxxfxR

dxxxf

m
mg

  (18) 

 

According to the above equation, for 0≥x , we have ( ) 0<
∂

∂
m
mg  and for 0≤x , we have 

( ) 0>
∂

∂
m
mg . So it is concluded that LPM of the first order is sensibly positively homogenous. 

 
5. CONCLUSION 
 
Beside general reviews of the field of portfolio selection, concepts of coherency, and the 
risk measure of LPM, the main contribution of this paper is to present a new concept for 
evaluating risk measures entitled ‘sensible coherency’. To be honest, the new concept is a 
new version of the popular concept of ‘coherency’. The new concept is exactly the same as 
the old one on the axioms of subadditivity and monotonicity; to some extent it is different 
on the axiom of translation invariance; and it is completely different on the fourth axiom. 
The changes are made to make the concept more practical and give it greater potential to 
yield good results. Lastly, it has been checked that, whether LPM of the first order is 
sensibly coherent or not, it was proved to be sensibly coherent but not absolutely coherent.  
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