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ABSTRACT 
 
In this paper, we present a distribution network design problem in a supply chain system that 
minimises the total cost of location, inventory, and delivery delay. Customers’ demands are 
random, and multiple capacity levels are available for the distribution centers. The problem is 
first formulated as a mixed integer convex programming model to optimally solve medium-sized 
instances, and then a heuristic is developed for solving large-sized instances. 

 
OPSOMMING 

 
In hierdie artikel word ‘n distribusienetwerkprobleem in ‘n voorsieningsketting voorgehou waar die 
totale koste van die ligging, voorraad en afleweringsvertragings geminimiseer word. Die vraag is 
lukraak en verskeie kapasiteitsvlakke is beskikbaar in die verspreidingsentra. Die problem word 
eers geformuleer as ‘n gemengde-heeltal-konvekse model sodat mediumgrootte gevalle 
geoptimiseer kan word, waarna ‘n heuristieke benadering ontwikkel word vir die oplos van 
grootskaalse aktiwiteite. 
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1.   INTRODUCTION 
 
In the past two decades strategic supply chain design and redesign have become a major challenge 
for firms. Three major cost factors associated with designing and managing a supply chain relate 
to facility location, inventory control, and distribution. These three cost elements are highly 
related, and should ideally be considered jointly when making supply chain design decisions. (For 
an introduction to and review of various types of integration, we refer to Shen [10] and Ahmadi-
Javid and Azad [1].) 
 
Location-inventory integration problems have been studied with interest recently. In these 
problems, inventory control decisions are incorporated into the facility location decisions. 
Erlebacher and Meller [4] formulate a non-linear integer location-inventory model. They use a 
continuous approximation to solve the problem. Teo et al. [15] present an approximation 
algorithm for the problem of choosing distribution centers to minimise the total cost of location 
and inventory, ignoring transportation cost. Daskin et al. [3] apply Lagrangian relaxation to solve a 
location-inventory model. Shen et al. [11] present a location-inventory model that is similar to the 
model of Daskin et al. [3] and use column generation to solve the problem. Miranda and Garrido 
[5] present a capacitated location-inventory model that is similar to the model of Daskin et al. [3], 
and they apply a Lagrangian relaxation method to solve it. Miranda and Garrido [6] extend their 
earlier location-inventory model (Miranda and Garrido [5]) by introducing more realistic capacity 
constraints, and solve it by a Lagrangian method. Ozsen et al. [7] also present a capacitated 
location-inventory model with similar capacity constraints, and solve it by a Lagrangian method. 
Shu et al. [14] study a more general location–inventory model, and use column generation to solve 
the problem. Shen [8] proposes a multi-commodity location-inventory model, and solves it by a 
column generation method. Shen [9] considers a location-inventory with profit maximisation 
objective, and solves it by a column generation method. Snyder et al. [13] consider a new 
location-inventory model with risk pooling. Shen and Qi [12] present a location-inventory model 
whose objective also includes the routing cost, which is approximated, based only on the locations 
of the opened distribution centers. Recently Ahmadi-Javid and Azad [1] have developed a novel 
location-inventory-routing model that integrates all the location, inventory, and routing decisions. 
 
In this paper we present an integrated model that simultaneously minimises location, inventory, 
and delivery delay costs in a supply chain. The delivery delay cost is included in the total cost to 
take customer responsiveness into account in the design of the network (for another approach to 
incorporating customer responsiveness along with location, see Ahmadi-Javid and Davoudpour 
[2].) In fact, the company has to incur some costs if there is a delay in delivering the customers’ 
orders. Moreover, we consider multiple capacity levels for each distribution center to make the 
problem more realistic. We have shown that the problem, with each type of capacity constraint 
proposed by Miranda and Garrido ([5] and [6]), can be reformulated as a mixed integer convex 
program. Finally, we present a hybrid heuristic based on Simulated Annealing and Tabu Search. 
 
The remainder of this paper is organised as follows. In Section 2, the problem is described and 
formulated. In Section 3, we present the exact and heuristic solution method. Numerical results 
are given in Section 4. Section 5 concludes the paper. 
 
2. MODEL FORMULATION 
 
In this section, we describe and formulate the problem. In Section 2.1 we describe the problem, 
and in Section 2.2 we present the formulation. 
 
2.1. Problem description 
 
Consider a multi-echelon supply chain distribution system composed of a single supplier, multiple 
distribution centers, and multiple customers. Each customer has an uncertain demand that follows 
a normal distribution. The goal of our model is to choose a set of opened distribution centers to 
serve the customers, to allocate the customers to the opened distribution centers, and to 
determine the inventory policy of each opened distribution center in order to minimise the total 
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cost of location, inventory, and delivery delay. The company is liable for delay costs if it delays in 
meeting the customers’ demands. Multiple capacity levels are available for each distribution 
center. More precisely, we make the following assumptions: 
 
 Each customer has an uncertain demand that follows a normal distribution, and customers’ 

demands are independent of each other. 
 The capacity levels for each distribution center are known, and the company pays a fixed 

location cost for opening a distribution center with a capacity level. 
 The distribution centers are assumed to follow a ( Q , R ) inventory policy, i.e. when the 

inventory level at a distribution center falls to or below a re-order point R , a fixed quantity 
Q  is ordered to the supplier. Also, each distribution center holds a safety stock to buffer the 
system against stock out during lead times. 

 The company pays a fixed cost for placing an order, and holding costs for working inventory 
and safety stock at each distribution center. 

 The company pays a delivery delay cost if it cannot deliver the customer’s order within a 
predefined period of time. The delivery delay cost is linearly dependent on yearly delayed 
demands. 

 
2.2. Formulation 
 
Before presenting the model, let us introduce the notation that will be used throughout this 
paper. 
 
2.2.1. Index sets 
 
K : Set of customers 
J : Set of (potential) distribution centers 
N : Set of capacity levels available to (potential) distribution centers 
 
2.2.2. Parameters  
 

k : Mean of yearly demand at customer k , ( Kk ) 

:2
k  Variance of yearly demand at customer k , ( Kk ) 
n
jf : Yearly cost for opening and operating distribution center j  with capacity level n , 

( NnJj  , ) 
n
jb : Capacity with level n  for the potential distribution center j , ( NnJj  , ) 

jh : Inventory holding cost per unit of product per year at distribution center j , ( Jj  ) 

:ku  The time within which the goods must be delivered to customer k  in years, ( Kk ) 

:jkt  The required time for delivering the goods from distribution center j  to customer k  in 

years, ( Jj , Kk ) 

jkd : The indicator showing whether distribution center j  delays in serving customer k  or not, 

i.e. ),(
otherwise0

1
JjKk

utif
d kjk

jk 


 

 , ( Jj  , Kk ) 

s : Penalty cost for delay in delivery of one unit of product per year. 

jp : Fixed cost per each order placed with the supplier by distribution center j , ( Jj ) 

jl : Lead time of distribution center j  in years, ( Jj ) 

jg : Fixed cost per each shipment from the supplier to distribution center j , ( Jj  ) 

ja : Cost for shipment of a unit from the supplier to distribution center j , ( Jj  ) 

:jkc  Cost for shipment of a unit from distribution center j  to customer k , ( Jj  , Kk ) 
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 : Fill rate considered for inventory systems, 5.0  

z : Left  -percentile of standard normal random variable Z , i.e.   )Pr( zZ  

 
2.2.3. Decision variables 
 

),(
otherwise0

levelcapacitywithopenediscenterondistributiif1

),(
otherwise0

centerondistributitoassignediscustomerif1

NnJj
nj

U

JjKk
jk

Y

n
j

jk














 

 

jQ : Order size at distribution center j , ( Jj ) 

 
2.2.4. Elements of objective function 
 
The objective function minimises the sum of the following costs: 
 
1. The yearly cost of locating distribution centers with capacity level, given by the term 

n
j

Jj Nn

n
j Uf

 
. 

2. The shipment cost from distribution centers to customers, given by the term 
 Jj Kk

jkkjk Yc  . 

3. The expected inventory cost which is the sum of expected working inventory cost and safety 
stock cost. The expected working inventory cost includes the fixed costs of placing orders and 
the holding cost of working inventory. Let jD denote the expected total annual demand going 

through distribution center j , i.e. jD  
k

jkkY . Then the total annual cost of ordering 

inventory from the supplier to distribution center j  is given by 
2

j
j

j

j
j

Q
h

Q

D
p  . The yearly 

safety stock cost at distribution center j  is given by 
k

jkkjj Ylzh 2 . 

4. The expected cost of shipping orders of size Q  from the supplier to distribution center j  is 

given by the term  
j

j
jjj Q

D
Qag  . 

5. The expected delivery delay cost is computed as 
 


Jj Kk

jkkjkjkk dutYs )( . 

 
2.2.5. Mathematical model 
 
By considering the problem description presented in the previous subsection, the problem can be 
formulated as follows: 
 

 



 

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Jj Kk
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n
j

Jj Nn

n
j

dutYs

Ylzh
Qh

Ya
Q

Y
gpYcUf

)(

2
min 2




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   (1) 
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Subject to: 
 

KkY
Jj

jk 


1                  (2) 

JjU
Nn

n
j 


1                                  (3) 

JjUbY n
j

Nn

n
j

Kk
jkk  


                  (4) 

NnJjU

KkJjY
n
j

jk





,}1,0{

,}1,0{
                 (5) 

JjQ j  0                    (6) 

 
The model minimises the total expected cost discussed in Section 2.2.4. Constraints (2) guarantee 
that each customer is assigned to just one distribution center. Constraints (3) ensure that each 
distribution center can be assigned at most to one capacity level. Constraints (4) ensure that the 
total expected demand assigned to each opened distribution center does not exceed the capacity 
assigned to each distribution center. Constraints (5) enforce the integrality restrictions on the 
binary variables. Constraints (6) enforce non-negativity restrictions on the real valued variables. 
 
We can replace Constraints (4) by the capacity constraints 
 

JjUbYlzQ n
j

Nn

n
j

Kk
jkkjj  



2                 (7) 

 
which are more realistic. These constraints ensure that in the worst case the sum of the order size 
and safety stock of an opened distribution center does not exceed its capacity. 
 
3. SOLUTION METHODS 
 
In this section we propose optimal and heuristic solution methods for solving the problem. The 
optimal solution method is based on convex reformulation of the proposed model in Section 2 as a 
mixed integer convex program. The heuristic method is a hybridisation based on Simulated 
Annealing with Tabu Search to solve the large-sized instances of the problem. 
 
3.1. Optimal solution method 
 
The model (1)-(6) presented in the previous section is not convex. By observing that the optimal 
value of jQ  is: 

 

 
j

Kk
jkkjj

j h

Ygp
Q









2
* ,                  (8) 

 
the model (1)-(6) can be rewritten as the following convex program: 
 


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    (9) 

 
subject to (2)-(5). 
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If we consider Constraints (7) instead of Constraints (4), by noting that 
 

 







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


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
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


 ,             (10) 

 
the variables jQ  can be eliminated from objective function (1), and then the resulting model can 

be reformulated as the convex mixed integer program presented below by adding some auxiliary 
variables and constraints: 
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subject to (2), (3), (5) and 
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JjZZ

h
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Kk
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Kk
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JjmVZ jj                   (15) 

  JjVmZ jj  1                             (16) 

JjZZ jj  0,                   (17) 

JjWj  0                                 (18) 

  JjVj  1,0                          (19) 

 
The constant m  appearing in Constraints (15) and (16) is a large positive number. Because the 
relaxations of the models (9), (2)-(5) and (11), (2), (3), (5), (12)-(17) are convex, these models can 
be solved optimally by any solver that uses the Branch-and-Bound method to solve mixed integer 
programs. 
 
3.2. Hybrid heuristic 
 
Simulated Annealing (SA) and Tabu Search (TS) are two well-known global search heuristic 
approaches to solve hard combinatorial problems. Here we develop a hybridised SA-TS heuristic 
based on both SA and TS. The reason for choosing the hybrid heuristic approach is to avoid falling 
into local optimum traps (using SA) and to avoid search cycling (using TS). Our computational 
results show that this hybridisation improves the effectiveness of the heuristic. The parameters, 
steps, procedure for generating initial solutions, and explanation of the moves used in the 
heuristic are given in the following subsections. 
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3.2.1. Parameters of SA-TS heuristic 
 

:0T  Initial temperature 

:T  Current temperature 

:DR  Decreasing rate of temperature  

FT : Freezing temperature 
MN : Maximum number of visited solution in each temperature 

0X : Initial solution 

X : Current solution 

nhX : A solution in neighbourhood of X  

bestX : Best solution 

)(XC : Objective function value for X  
 
3.2.2. Steps of SA-TS heuristic 
 
The steps of the proposed hybrid SA-TS heuristic are as follows: 
 
Step1:   Select an initial solution 0X  (see Section 3.2.3), and set  

0XXbest  , 0XX  . 

Step2: Randomly select a move from Moves 1-4 (see Section 3.2.4) and by the selected move   
generate neighbouring solution nhX  in the neighbourhood of X . 

Step3: Is the move selected in Step 2 in the Tabu list? If yes, go to Step 4; otherwise, go to Step 5. 
Step4: If )()( bestnh XCXC   then nhXX  , nhbest XX  , update the Tabu list and go to Step 6; 

otherwise, go to Step 2 to choose another candidate move. 
Step5: Set )()( XCXCC nh  . 

 
 5.1. If 0C , then nhXX  , and update the Tabu list. If )()( bestnh XCXC  , nhbest XX  . 

 5.2. If 0C , )1,0(Uy  , T
C

ez


 . If zy  , then nhXX  . 

 
Step6: Does the number of the visited neighbouring solution under temperature T  exceed MN ? If 

yes, go to Step 7; if not go to Step 2. 
Step7: TDRT  . 

Step8: Is the stopping criterion ( FTT  ) matched? If yes, stop; otherwise, go to Step 2. 

 
3.2.3. Constructing initial solutions 
 
To obtain an initial solution, we apply the following steps: 
 
Step 1:  Put all the customers into the set K  . 
Step 2:  Select randomly a customer from K   and delete that customer from K  . 
Step 3:  Select a distribution center randomly. If the distribution center is selected for the first     
             time, then select a capacity level for this distribution center randomly. 
Step 4:  If the remaining capacity of the distribution center selected in Step 3 is greater than the  
             demand of the customer selected in Step 2, then assign the customer to the distribution  
             center and go to Step 5; otherwise, go to Step 3 to select another distribution center. 
Step 5:  Is K   empty? If yes, stop; otherwise, go to Step 2. 
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3.2.4. Moves used to generate neighbouring solutions 
 
In Step 2 of the proposed SA-TS heuristic we apply four different moves to generate neighbouring 
solution nhX  in the neighbourhood of the current solution X . These moves are explained below. 

 
Move 1: Randomly close one of the opened distribution centers and randomly reallocate all of its 

customers to the remaining opened distribution centers. If the remaining capacities of the 
other opened distribution centers are not enough to serve the customers of the closed 
distribution center, then randomly select an opened distribution center and raise its 
capacity level in order to serve all the customers. 

 
Move 2: Randomly select two opened distribution centers, and exchange their customers. In this 

move the capacities should be adjusted to serve the new customers. 
 
Move 3: Randomly close one of the opened distribution centers, and assign its customers to a new 

distribution center that is randomly opened with enough capacity level to serve the 
assigned customers. 

 
Move 4: Randomly select two opened distribution centers. Then, randomly select one customer 

from each distribution center and assign it to the other distribution center. In this move 
the capacities should be adjusted to serve the new customers. 

 
4. COMPUTATIONAL RESULTS 
 
In this section we conduct a computational study to assess the performance of the proposed SA-TS 
heuristic. The test instances are constructed as follows. The means of yearly demands are drawn 
from a uniform distribution between 250 and 1,250, and the variances are drawn from a uniform 
distribution between 20 and 200. Also we set the following parameter values: 
 

jh  is uniformly drawn from [2, 4], 

jp  is uniformly drawn from [15, 20], 

jl  is uniformly drawn from [6/365, 10/365], 

jg  is uniformly drawn from [15, 20], 

ja  is uniformly drawn from [2, 5], 

jkc  is uniformly drawn from [2, 5], 

ku  Is uniformly drawn from [1, 6], 

jkt  is uniformly drawn from [1, 15], 

s  = 2, z = 1.96 (fill rate is 97.5%). 

 
For each potential distribution center four capacity levels are considered. Let D  represent the 
total average of the customers’ demands and J  be the number of the potential distribution 

centers; then the four capacities for the distribution center j  are defined as: 
 

)(5.2,)(2,)(5.1,)( 4321 jcapbjcapbjcapbjcapb jjjj   

where  JDcjcap j)(  and jc  is a random number between 0.8 and 1.2. 

 
The corresponding four fixed set up costs of locating and operating are as follows: 
 

       jjjjjjjj kfkfkfkf  35.1,1.1,9.0,65.0 4321  
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where jk  is drawn from a uniform distribution between 4,500 and 5,500. 

 
The program of the heuristic method is coded in Visual Basic 6 and run on a Pentium 4 processor 
with 2.8 GB RAM. For each instance, we run the heuristic method 20 times; the average objective 
value is reported in Tables 1 and 2. In the tables ‘DC’ is the abbreviation for Distribution Center, 
and the CPU times are in seconds. For each instance the tuning of the parameters of the hybrid 
heuristic is done by carrying out random experiments. 
 
In Section 4.1 we compare the hybrid SA-TS heuristic with the optimal solution method, and in 
Section 4.2 we compare the hybrid heuristic with two heuristics based on only SA or TS. 
 
 
4.1. Comparison of optimal and heuristic solution methods 
 
In this section we compare solutions of the proposed heuristic with the optimal solutions obtained 
by solving model (9), (2)-(5). The model is solved by Lingo 8. Seventeen instances are solved; the 
results are given in Table 1. It can be seen that the solutions of the heuristic are optimal or near 
optimal in several instances. The average CPU times of the heuristic are considerably less than 
those of the optimal solution method. 

 

# # Customers # Potential DCs Cost CPU time Cost CPU time Error (%)
1 4 2 19754.3 3 19754.3 1 0.00
2 6 3 24322.6 7 24322.6 3 0.00
3 7 3 27462.7 13 27462.7 5 0.00
4 8 4 32841.5 18 32841.5 9 0.00
5 9 4 36528.4 39 36528.4 11 0.00
6 20 5 73938.6 121 73938.6 26 0.00
7 30 8 121463.1 183 122279.8 35 0.67
8 40 12 176413.6 297 177692.5 47 0.72
9 50 15 218175.2 429 220416.7 61 1.03
10 60 17 269745.2 981 272456.3 74 1.01
11 70 19 303951.5 1936 307424.8 89 1.14
12 80 21 362431.6 2973 366826.1 104 1.21
13 90 23 406682.4 5103 411894.3 120 1.28
14 100 25 471295.3 2 hours limit 450223.7 137 -
15 120 30 577384.5 2 hours limit 534793.2 171 -
16 150 35 751270.2 2 hours limit 672364.1 221 -
17 180 38 897841.3 2 hours limit 792199.5 272 -

Heuristic methodOptimal method

 
 

Table 1:  Comparison of optimal and hybrid heuristic solution methods 
 
4.2. Comparison of hybrid heuristic with SA and TS heuristics 
 
In this section, we compare the hybrid heuristic with a heuristic based on SA or TS. The 
procedures for obtaining initial solutions and candidate moves in the SA and TS heuristics are 
similar to the ones exploited in the hybrid SA-TS heuristic. For each instance, the tuning of the 
parameters of both heuristics is done by carrying out random experiments. In Table 2 we compare 
the three heuristics. It can be seen that the solution quality of the hybrid heuristic is better than 
both SA and TS heuristics. Moreover, we can see that the SA heuristic is better than the TS 
heuristic in both solution quality and CPU time. 
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# # Customers # Potential DCs Cost CPU Time Cost CPU Time Cost CPU Time
1 30 8 122279.8 35 133763.5 34 133957.1 34
2 40 12 177692.5 47 179658.4 45 179563.2 46
3 50 15 220416.7 61 223731.5 58 224043.6 59
4 60 17 272456.3 74 276261.1 71 277168.9 72
5 70 19 307424.8 89 313594.8 86 315816.3 87
6 80 21 366826.1 104 374543.2 100 377197.6 101
7 90 23 411894.3 120 421197.4 115 423864.8 118
8 100 25 450223.7 137 461451.8 132 465376.3 136
9 120 30 534793.2 171 544817.5 164 546362.2 169
10 150 35 672364.1 221 685234.8 214 687023.9 216
11 180 38 792199.5 272 809143.6 264 811215.4 269
12 200 40 853423.1 308 872816.4 300 878942.5 305
13 230 43 961957.8 361 986095.5 352 995364.1 357
14 250 45 1039612 400 1068794 391 1080246 398
15 280 48 1154184 454 1192313 444 1213854 450
16 300 50 1235617 494 1284570 482 1312826 486

Hybrid SA TS

 
 

Table 2:  Comparison of hybrid SA-TS heuristic with SA and TS heuristics 
 

5. CONCLUSIONS 
 
In this paper we consider an integrated location-inventory model in a supply chain distribution 
network. The network is a multi-echelon supply chain distribution system composed of a single 
supplier, multiple distribution centers, and multiple customers. Multiple capacity levels for each 
distribution center are available. The goal of the integrated model is to choose a set of opened 
distribution centers to serve the customers, to allocate the customers to the opened distribution 
centers, and to determine the inventory policy of each opened distribution center such that the 
total cost of location, inventory, and delivery delay is minimised. The delivery delay cost is 
included in the total cost to take customer responsiveness into account during the design of the 
network. Considering multiple capacity levels for each distribution center makes the problem 
more realistic. 
 
We have shown that the problem can be modelled as a mixed integer convex program. We also 
present a hybrid heuristic based on Simulated Annealing and Tabu Search. We study the integer 
programming model and hybrid heuristic by conducting a numerical experiment. The numerical 
experiment indicates that the model can be used to solve optimally medium-sized instances; 
moreover, it shows that the hybrid heuristic is both effective and efficient. 
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