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ABSTRACT 
 
Reconfigurable control of flexible manufacturing systems can allow for the efficient and 
responsive production of customised product instances. This can aid in providing make-to-
order business models for various small- to medium-sized enterprises in South Africa, and 
provide competitive advantage in a dynamic global marketplace. Reconfigurable control 
application requires an understanding of the modes of production variability in mass 
customisation manufacturing. Temporally uncorrelated workflow routings are considered as 
one of these production variability modes. In this light, this paper addresses the flexible 
material payload routing problem, and presents a mobile robot platform that has been 
developed to research and design reconfigurable routing systems. 

 
OPSOMMING 

 
Verstelbare beheer van aanpasbare vervaardigingstelsels kan die doeltreffende en 
reaktiewe produksie van doelgemaakte produkeksemplare toelaat. Hierdie beheer kan 
assisteer in die voorsiening van vervaardig-na-bestellingbesigheidsmodelle aan ’n aantal 
klein- tot medium-grootte ondernemings in Suid-Afrika, en aan hulle ’n kompeterende 
voorsprong bied in ’n dinamiese globale mark. Die instelling van verstelbare beheer vereis 
dat die modi van produkveranderlikheid in massa verbruikersaanpassingsvervaardiging 
verstaan word. Hierdie artikel spreek die probleem van aanpasbare roetebepaling van 
materiaalvragte in massa verbruikersaanpassingsvervaardiging aan. ’n Mobiele robot-
platform, ontwikkel vir navorsing in verstelbare roetebepalingstelsels, word ook voorgelê. 
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1. INTRODUCTION 
 
In order to facilitate production variability in mass customisation manufacturing (MCM), 
manufacturing control and execution systems must be able to adapt to ever-changing 
production plans, each of which is associated with a custom product instance. The 
adaptation in manufacturing control can be enabled through reconfiguring flexible 
production infrastructures so as to create required workflow through the production plant.  
 
From a control perspective, fundamental decomposition of product variability in MCM 
provides two separate production variations. The first constitutes processing variations, in 
which reconfiguration of process control parameters and assembly procedures allows for 
slight modification in the manufacture and assembly of a part or parts. Considering that 
control of elementary processes performed by machine tool infrastructure remains 
somewhat constant through time [1], this variability generator is of limited interest. This is 
mainly due to the difficulty in implementing truly reconfigurable machine tools [2]. The 
second constitutes the ‘on the fly’ generation of unique product routes. This domain is less 
physically constrained, and requires only real-time point-to-point material payload transfer. 
By considering this property, the dynamic reconfiguration required by high product 
variability in MCM is mostly limited by the generation of flexible product routings [3].  
 
The ability to implement sustained scheduling of unique routing plans would greatly benefit 
the realisation of batch-of-one production operations, and therefore MCM. This paper 
identifies and addresses the flexible routing control and execution problem in establishing 
flexible workflow for MCM. Section 2 characterises and defines the material payload routing 
environment of MCM. Section 3 presents a payload routing implementation architecture (IA) 
for flexible routing control and execution. Section 4 presents a physical instance of the IA in 
the form of a differential drive mobile robot, equipped with the materials handling 
infrastructure to carry out routing operations. Section 5 presents motion control and task 
execution results from a variety of motion control tasks carried out using the mobile 
platform. A discussion regarding this research is presented in Section 6, and Section 7 offers 
a conclusion and directions for future research. 
 
2. UNDERSTANDING PRODUCT ROUTING IN MCM PRODUCTION STRUCTURES 
 
In order to implement production structures capable of MCM, all product attributes that 
affect or influence the magnitude or frequency of customer-induced production rate 
variations must be collected and concurrently analysed. Concurrent analysis, and 
concurrent engineering for that matter, can provide insight into methods of quantifying and 
achieving production stability. Production stability is very important in implementing MCM, 
and even more so when avoiding manufacturing dead-locks during the reconfiguration of 
flexible production infrastructures.  
 
There will always be a miscommunication of concepts across engineering disciplines. For 
this reason, the concepts of MCM production structures have been encapsulated in a control 
theoretic construct. A two degree-of-freedom Single Input Single Output (SISO) control loop 
model of MCM production operations highlights the required active control efforts (Figure 
1). 
 
Figure 1, moving from left to right in the direction of ‘signal flow’, highlights critical 
control points in MCM production. This characterises the materials handling and routing 
environment required for efficient and effective production of customised product 
instances. First, the pre-filter represents one of the main contributors to establishing 
effective and efficient MCM, i.e. Design for Mass Customisation (DFMC). As mentioned 
previously, the control loop has two degrees-of-freedom, one in the forward loop and 
another in the feedback loop. DFMC is of utmost importance in MCM as it ultimately affects 
the required active control efforts and production dynamics. Enabling modularity in custom 
product design creates better utilisation of manufacturing resources [4], and allows for 
well-defined product variability mappings.   
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The Region of Convergence (RoC) has been conceptualized and included in the definition to 
serve two functions. First, a RoC acts as a restricted region, in which only one mobile 
payload routing platform may occupy a particular time instant. This ensures that higher 
level manufacturing management services can uphold mutually exclusive access to IO port 
infrastructures at processing cells. Second, the border of a region of convergence 
represents a transition zone for the type of motion control implementation. The full 
definition of a FMRP follows (Figure 3). 

 
 
 
 
 

Figure 3: A Flexible Material Routing Primitive 
Motion control when exiting a RoC is in the form of local and global navigation, as shown. 

 
The definition of a FMRP is based on the encapsulation of two payload handling operations. 
In the definition, a payload routing platform’s pose is considered as the combination of its 
global Cartesian position [ݔ,  A Material Payload Handling .ߠ T and its local orientation[ݕ
Operation (MPHO) consists of the following (see Figure 3): 
 
1. Posture stabilisation from a pose on the boundary of a RoC, [

rrr yx ,, ]T , on to a goal 

pose [
ppp yx ,, ]T, in a predetermined vicinity of an input/output port. 

2. An absolute alignment of the materials handling infrastructure with the input/output 
port, using degrees-of-freedom above those of the underlying transportation device. 

3. A material payload transfer operation, either loading or off-loading. 
 
A Material Payload Transportation Operation (MPTO) consists of a global navigation 
operation from a location [ 11, yx ]T to a second location [ 22 , yx ]T, while avoiding obstacles 

in real time. 
 
A FMRP consists of the following eight operations: 
1. A materials handling and routing task assignment from higher-level manufacturing 

management services to a mobile materials handling and routing platform. 

2. A MPTO (NULL)3, with [ 11, yx ]T = [
ss yx , ]T, and [ 22 , yx ]T = [ 11 , rr yx ]T, a boundary point 

of a RoC. 
3. A request to a higher-level manufacturing management service for access to an 

input/output port, followed by an outcome acknowledgement. 
4. A MPHO (Loading). 

                                                       
3 NULL specifies that no material payload is present. 
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5. A MPTO to the destination RoC, with [ 11, yx ]T = [
11 , pp yx ]T, and [ 22 , yx ]T = [ 22 , rr yx ]T. 

6. A request to a higher-level manufacturing management service for access to an 
input/output port, followed by an outcome acknowledgement. 

7. A MPHO (Off-loading). 

8. A MPTO, (NULL), with [ 11, yx ]T = [ 22 , pp yx ]T and [ 22 , yx ]T = [ arar yx , ]T. 

 
Creating a full task specification via a FMRP definition allows for structured and axiomatic 
design principles to be applied in the design of flexible process integration systems for 
MCM. An Implementation Architecture (IA) has been developed to align with fundamental 
requirements of FMRP task execution in MCM production environments (Section 3). 
 
3. A FMRP IMPLEMENTATION ARCHITECTURE 
 
A physical materials handling and routing robot platform requires certain basic core 
capabilities in order to execute a FMRP task instance. In a functional sense, hardware is 
required to facilitate materials handling as well as provide low-level motion primitives in 
order to transport a material payload between manufacturing infrastructure subsets. Active 
sensory infrastructures are required to provide the mobile robot platform with 
environmental perception and information about its local working environment. This allows 
the platform to sense both static and dynamic obstacles in order to perform local 
navigation and obstacle avoidance during material payload transportation. Due to the 
possibly heterogeneous4 materials handling and routing platforms that execute FMRPs in a 
MCM production plant, a software system is required to provide a Hardware Abstraction 
Layer (HAL) in order to provide scalability in control and management structures. 
Implementing such a software system allows generic communication standards with 
homogeneous semantics to be developed. A communication sub-system is required to allow 
for the passing of messages, such as FMRP task allocations, from higher-level manufacturing 
management services to the materials handling and routing robot platforms. At the highest 
level of abstraction, a materials handling and routing agent architecture is required to 
provide problem-solving and machine learning capabilities, to maintain optimal production 
rates.  
 
Over many years of system development, engineering architectures have been developed to 
encapsulate concepts and specifications required to implement internationally recognized 
and scalable systems. In this section, an IA is developed that encapsulates the core 
capabilities for FMRP task execution, referred to as the Autonomous Material Transportation 
Specification (AMTS) (Figure 4). 
 
The IA consists of four main layers, and provides specification from hardware levels through 
to task allocation and management. The Hardware Implementation Layer (HIL) is a 
specification on the physical configuration of the mobile payload routing platform. The HIL 
consists of three sub-systems, each of which enables a core capability required to 
implement a FMRP. The Mobility Hardware sub-system is a specification on the hardware 
configuration that provides required motions to transport a material payload between 
distributed manufacturing infrastructure subsets. The Mobility Hardware specification is 
based on providing the material payload with at least planar motions, i.e.    

                  TyxqOS ],,[:   2R X 1SO  

where OS represents the output specification, and states that the mobile payload routing 
platform must be able to achieve configurations on planar two-space and the special 

orthogonal. The Special Orthogonal 1SO is the mathematical manifold that represents all 
planar rotations of a rigid body between [0,   .radians (ߨ2
 

                                                       
4 In terms of hardware implementation. 
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is the most difficult for differential drive platforms, as it is in direct conflict with their 
differential constraints. 
 
6. DISCUSSION 
 
In the context of facilitating modern niche markets and establishing first mover market 
share, the successful implementation of MCM production structures relies on a 
manufacturing firm’s ability to integrate all available manufacturing resources 
constructively and concurrently. The control theoretic model and description of the 
production structure involved in MCM (recall Figure 1) provides semantic homogeneity for 
engineers across multiple disciplines. The authors consider this approach to be a way of 
establishing Common Model Development (CMD) in the modern research community. The 
standardisation of concepts brought on by CMD can provide the necessary infrastructure to 
establish international research partnerships, thus aiding the development of third world 
nations through constructive and relevant research and development practices. 
 
It has been established in Section 2 that plant layout, as a passive measure of decreasing 
required materials handling, is just as important as the development of highly engineered 
autonomous materials handling and routing robots, in facilitating the materials handling 
requirements of customer-induced variations in production requirements. The uncertain, 
yet bounded, nature of customer-induced variations in production requirements plays a 
crucial role in establishing insight into the concurrent design and application of plant layout 
structures and active flexible materials handling infrastructure. This aspect of production 
implementation once again highlights the need for concurrent engineering. Papers such as 
[14], describing methods of applying probabilistic models to develop metrics that describe 
customer preference in product choice, are evidence that there is a research community 
that is involved in the research required to achieve efficient MCM production operations.  
 
As this research was concerned with materials handling and routing in MCM production 
environments, the problem space associated with performing a materials handling and 
routing task between distributed, unconnected, manufacturing infrastructure required 
quantification in order to establish a well-defined problem space. The FMRP task definition 
provided in Section 2 takes into account the various forms of motion control required to 
provide robust material payload transfer to and from materials handling infrastructure via 
correct alignment, through posture stabilisation, of the mobile robot platform with the 
input/output port infrastructure of processing cells.  
 
A material transportation primitive of a FMRP task essentially decomposes into a global 
path planning and local navigation and real-time obstacle avoidance problem. There is 
much literature on this subject in the mobile robotics research community – although, in 
the majority of the literature, the application scope covers unstructured environments, 
unlike those utilising structured plant layouts for production implementation. There is a 
need to develop path planning algorithms for mobile materials handling and routing robot 
platforms that include optimisations based on the knowledge of scheduling outputs in the 
production plant. 
 
7. CONCLUSION 
 
In this paper, the problem of establishing reconfigurable control and execution systems for 
flexible payload routing in MCM production environments was addressed. Some core 
concepts of MCM production were encapsulated in a control theoretic construct. This 
allowed for the characterisation of the particular material payload routing environment in 
MCM. A definition was developed that encapsulates a flexible routing and materials 
handling task. This allowed for the structured and axiomatic development of an 
implementation architecture (IA). A mobile robot platform was introduced, whose design 
was based on a subset of the IA, to research reconfigurable routing systems. Multiple 
motion control experiments were performed on the mobile robot platform to characterise 
the nonlinear posture stabiliser implemented on the mobile robot. The nonlinear posture 



 189

stabiliser behaved well, and was able to stabilise the mobile robot’s pose on to a goal pose, 
including one that was in direct conflict with the mobile robot’s differential constraints.  
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