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ABSTRACT

In financial economics, forecasting volatility in stock indices and currency returns has
received considerable attention in the last two decades. Many traditional econometric
methods forecast asset returns by a point prediction of volatility. The central contribution
of this paper is to suggest an alternative approach for modelling and related analysis of
asset returns. In this approach, the volatility in stock returns is defined in terms of
categories depending on the mean of stock returns and its standard error. This classification
naturally allows the study of volatility in terms of a Markov model. The approach suggested
here will be of interest to academics, stock market investors, and analysts.

OPSOMMING

Op die terrein van die finansiéle ekonomie het die vooruitskatting van volatiliteit in die
aandeelindekse en wisselkoerse baie aandag getrek oor die afgelope twee dekades.
Verskeie tradisionele ekonometriese vooruitskattingsmodelle baseer die vooruitskatting van
opbrengste op ‘n puntvooruitskatting van die wisselvalligheid. Die bydrae van hierdie artikel
is om ‘n alternatiewe metode voor te stel vir die modellering. Volgens die model word die
volatiliteit van opbrengste gekategoriseer op grond van die gemiddelde opbrengste en die
standaardfout. Dit skep geleetheid vir die toepassing van ‘n Markov-model. Die model sal
akademici, beleggers en analiste interesseer.
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1. INTRODUCTION

The analysis of equity prices/indices has been a well-researched problem for business,
economics, and financial analysts in the last few decades. It has captured the fancy of
financial economists and ordinary trading persons alike. There have been several
approaches to analysing equity prices/indices data. Notable among these, from a statistical
point of view, were those based on the theories of multiple regression and time series
analysis.

It is well known that daily equity prices are subject to random shocks inherent in any
market environment. The effect of random shock is unpredictable, in that the equity price
may show an upward or downward trend on a day-to-day basis. Further, besides the
direction of movement, the magnitude of swing is also of considerable interest in stock
market analysis. In a stock market trade, typically there are two types of players: a buyer
and a seller, and they could be either an individual or an institution. The objectives of a
buyer or a seller operating in a stock market could be either short-term or long-term gain.
‘Short-term’ may mean a few weeks or months, while ‘long-term’ may refer to a year or
more. Needless to say, due to the volatility inherent in a vibrant market, the gain may
mean either a profit or a loss. A short-term gain objective, in general, is more speculative
than a long-term gain objective. A buyer may trade in the market either to build up his
portfolio for long-term management, or to make some ‘quick bucks’ by releasing his
holdings when the market picks up. On the other hand, a seller will primarily be looking for
opportunities to sell his holdings when there is an upswing in the market. In equity market
trading, a player can have the dual role of buyer and seller.

In this paper we assume that the key player in the market is the seller. As the buyer’s
interest is the opposite of that of a seller, the methodology developed for seller-oriented
market sentiments can be easily modified for buyer-oriented sentiments.

It is believed that equity prices often exhibit the phenomenon of volatility clustering - that
is, periods in which their prices show wide swings for an extended time lasting days, weeks,
or months. Knowledge of volatility is crucially important in many areas. Investors in equity
markets are obviously interested in the volatility of equity prices, for high volatility could
mean huge losses or gains, and so greater uncertainty. In a volatile market it is difficult for
companies to raise capital.

Forecasts of the distribution of asset returns are of great importance in the context of
financial risk management. While many methods have been suggested, the seminal work of
Engel [4] and Bollerslev [2], where the single-state Generalized AutoRegressive Conditional
Heteroscedasticity (GARCH) model was developed, may be worth mentioning. The GARCH
class of models, and subsequent extensions and generalisation of them, essentially dealt
with the problem of point prediction of volatility. The central contribution of this paper is
that it suggests an alternative approach for modelling and related analysis of asset returns.
In the new approach proposed here, we recognise the fact that the volatility in stock
returns can be classified into various states according to the predetermined perceptions of
the stock player. In this paper, we build a Markov model for volatility states of equity
indices. As an application of the proposed model, we analyse Botswana stock market data
from 1999-2005. The Markov models are based on weekly and monthly equity indices. The
different states of the Markov model are classified, and steady state probabilities are
worked out. It is hoped that the approach suggested here will be of interest to both
academics and stock market players. While forecasting of equity indices is quite difficult,
the reasonably accurate probability model approach suggested in this paper can provide a
credible alternative for fund managers and investors to align their policies and strategies.

The rest of the paper is organised as follows. Section 2 will describe a Markov model for
equity indices. The rules for generating volatility states, the construction of a transition
probability matrix, the classification of states and steady state probabilities, among others,
are discussed in this section. Section 3 deals with the application of the proposed model
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and related analysis to Botswana Stock Exchange (BSE) weekly and monthly domestic
company indices. Section 4 offers concluding remarks and a few directions for future
research.

2. A MARKOV MODEL FOR EQUITY INDICES

The applications of Markov chains to a variety of fields, especially in business and the social
sciences, have been well established. Notable among these fields are financial economics,
agricultural economics, geography, and sociology. In financial economics, studies related to
equity price, index of stock and debt, asset returns, and price of option have incorporated
the Markov property. These applications have been published in various technical journals.
A good treatment of these applications can be found in Bhat [1], Isaacson and Madsen [6],
and others.

The study of volatility - the wide swings that are prevalent in daily, weekly, or monthly
equity indices - can be approached from the classical point of the discrete-time process.
Here we characterise the volatility of the equity indices as its movement from one state to
another in a random fashion.

2.1 Assumptions:

A.1: The equity index is available for all working days of the stock exchange.

A.2: The equity indices are subject to random shocks due to the market environment.

A.3: The variations in equity indices can be divided into a finite number of states on the
basis of some objective rules.

A.4: The equity indices are analysed from the perspective of a seller.

Assumptions A1-A4 are not restrictive, in the sense that they are typically found in every
stock market environment. For example, in every stock market the world over, data are
recorded not only on a daily basis, but often - more frequently in terms of what is usually
called ‘tick data’. Quite obviously, movements in equity indices are probabilistic. Next, the
variations in equity indices can be factored into various classes depending on the
perspectives of the market player. Finally, the two important players in every market are
the seller and the buyer.

Let the variable ‘T’ refer to the day and ‘ N’ be the total number of days in the study
period. Further, let‘ W’ denote the week so that * W ’ corresponds to the total number of

weeks. Suppose that we have a time series data of equity indices, P, ,t = L,...,N. Let

¢

n,’ be the number of trading days in the week ‘W’. (Usually n 6 = 5, the number of

trading days in a typical week during which transactions in equity indices take place in a
market.) For the weekly equity indices, a Markov model can be constructed by comparing

the average equity index of the current week (Pw+1) with the average equity index of the

previous week ( PW ). However, a two-state model is too simple, in that the volatility of

stock indices cannot be fully captured. A natural question then is, how best can we
formulate a classification rule so that different states of volatility can be reflected in time
series data of stock indices? Obviously the classification rule cannot be subjective, as it may
be devoid of any rational content. We formulate a few possible classification rules below,
keeping in mind the need for rationality and objectivity:
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2.2 A few possible classification rules:
a) A rule based on ‘Action and warning limits’:

Let the weekly average equity index for week W be given by

_ 1 n,
P=—> P, w=12.,W 1)

n, =1

and the variance of equity index for week W be given by

]| o %
s, =—Z(B—PWJ )

(nw - 1) =1

The market sentiments in a stock market, from the standpoint of a seller, can be generally
seen to belong to different categories. We shall assume that these sentiments can be
classified into seven distinct categories. Based on this assumption, we may classify the
volatility in equity indices for weekly data as follows.

S;. The depressed / fear sentiment. This is a state where the equity index witnesses a
sharp enough fall to cause a seller holding stocks to panic. This may lead to distress selling
and shatter investor confidence. This state of sentiment may also witness eventual
bankruptcy or consolidation or regulatory intervention. Further, raising funds from the
capital market may be adversely affected.

S,: The bearish sentiment. This is a state where the equity index witnesses a significant
enough fall to cause frustration for a seller holding stocks. This may lead to the offloading
of stocks and undermine investor confidence. Moreover, raising funds from the capital
market may be adversely affected.

S3: The downward sentiment. This is a state where the equity index witnesses a gradual
fall, causing a warning to an investor. This may lead to the offloading of stocks, and may
dent investor confidence. Further, raising funds from the capital market may be adversely
affected.

S4: The tranquil sentiment. This is a state where the equity index witnesses normal swings.
The investor continues to be an active player in the stock market. This state may also be
called ‘range bound’ or ‘uncertain’.

Ss: The upward sentiment. This is a state where the equity index witnesses a gradual
upward swing, causing an investor to feel encouraged. Sustained attempts may be needed
to raise funds from the capital market.

Se¢: The bullish sentiment. This is a state where the equity index witnesses a significant
upward swing, giving rise to speculation by a seller holding stocks. Further, raising funds
from the capital market may be easy.

S;7: The greed / bubble sentiment. This is a state where the equity index witnesses a sharp
rise, prompting a seller either to dispose off his load or to tend to hold on in the hope of
further appreciation, leading to a bubble-like condition. This state reassures the seller for
having waited until now to make massive gains. Further, raising funds from the capital
market may be easy.

In order to reflect the seven market sentiments above, we associate the following
classification rules with the states S5, j =1,2,3,4,5,6,7.
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For aweek (W+1), w =1, 2,..., W-1, the equity index is said to belong to

oy ~ S
(i) State Sy, if Pwu< P -3 —=
Vnw
> Sy = - S,
(i) StateS,, if P, -3 < Pwu< P, -2
o NI
> s, = - S,
(iii) State Ss, if P, -2 < Pwu< P, -

(iv) State S, if

N A = A

P,-— < Pwu< P, +—= (3)
nw nw
5 SW’ D 5 SW
(v) StateSs, if P +——<Pyu< P +2—
N NN
N SW D N SW
(vi) State S, if P +2 < Pwnus< P +3
VnW nw
— - SW
(vii) State S, if Pui>P, +3

Tn.

In classification rule (3) above, the multipliers + 3 and + 2 of 5 respectively correspond to

those used in action and warning limits of statistical process control (see, for example,
Grant and Leavenworth [4]). It should be observed that the class of states S = {S4, S;, Ss, S4,
Ss, Se, S7 3 suggested here is quite general in the sense that it is capable of reflecting most
of the market sentiments usually observed in a vibrant stock market economy. In a less
vibrant stock market economy, one may continue to work with smaller set of states - say,
for example, S'= {51,5; 53,5 , S7}, where the states S; ,S4,Ss in S are merged to form the
state S5 (P, - 2 Sw . Puyu< P, +2 Jw

,lnw ,lnw
state S5 may be appropriately named depending on the perception of the seller. For
example, state S'; may be called ‘range bound’ or ‘sideways movement’ or ‘uncertain’.
Alternatively one may merge the states (S;, S,), (S, S7) in S to form two new states (S, S's)
along with the states Ss3, S4, S5 in S. The new merged states may be respectively called
‘bearish sentiment’ and ‘bullish sentiment’.

) in S". The sentiment expressed by the

b) Rules based on ‘probability limits’

If the market sentiments appear to be uniform over, say, four categories, one may use the
states defined on the basis of quartiles. Here the multipliers of S, may correspond to the

three quartiles of the standard normal distribution (Q;= - 0.675, Q, = 0, Q3= + 0.675).
Accordingly, for a week (w+1), w =1, 2,..., W-1 | the equity index belongs to

oy - S
(i) State Sy, if Pw+< P, -0.675—=
an
_ g _ _
(i) State S, if P -0.675 —==< Pwu< P, (4)
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SW

(ifi) State S, if P, < Pyu< P, +0.675
n

w
. . N SW
(iv) State S, if P, +0.675
‘/nw
Here the sentiments expressed by the four states may be respectively called ‘deep
bearishness’, ‘mild pessimism’, ‘mild optimism’, and exuberant bullishness’.

< Pw+1

On the other hand, if in a market there are six sentiments defined, say, by the four equal
parts of the middle 40%, and the lower and upper tail consisting of 30% each of the total
variability, one may use the following six states. Here the multipliers of S,, correspond to
the five deciles, namely D; to D; of the standard normal distribution (D3 = - 0.525, D4 = -
0.255, D5 = 0, Dg = + 0.255, D; = + 0.525).The classification rule for these six states then
would be as follows:

For a week (w+1), w =1, 2,..., W-1 | the equity index belongs to
SW

.

(i) StatesS,, if Pus1< P, - 0.525

SW SW

(ii) State S, if P, -0.525 < Pya< P, -0.255
Jn, n,
_ g _ _
(iif) State Ss, if P, -0.255 \/W_ < Pwu< P, (5)
n,
- _ s
(iv) State S, if P, < Pwu< P, +0.255 —=
V nw
- S = - S
(v) State S, if P, +0.255 —2=< Pwu< P, +0.525—=
NI Jn,
_ s =
(vi) State S, if P +0.525 —2= < Pyu

w '
nW

In classification rule (5), the possible states may be suitably named depending on market
sentiments and investors’ perceptions. It may be mentioned that in the rules based on
probability limits stated above, we have used quartiles and deciles of standard normal
distribution to be multipliers of the standard errors. Alternatively, one may use other
standard distributions. Further, in the classification rules (3)-(5), the arithmetic mean and
standard deviations are used as measures of location and dispersion. However, one can use,
in general, alternative measures of location such as the median, mode, geometric mean,
etc, and alternative measures of dispersion like range, mean deviation, etc.

2.3 A stochastic model for market sentiments

Once the weekly/monthly equity prices have been classified into different states according
to the criteria discussed in the previous section, a natural question that arises is: How best
can the volatility movements be captured by a discrete-time process? We assume that the
volatility movements are best described by a Markov-like model. It may be pointed out that
this assumption in the context of our problem is not too restrictive, as the underlying
discrete time-process has the following features of a Markov model:

(i) Volatility states are well-defined by the classification rules (3)-(5) and are
therefore mutually exclusive and exhaustive for a given time point.
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(ii) Markov property is satisfied by the classification rules, since the immediate future
volatility state of the equity prices depends only on the current weekly/monthly
average, but not on its past averages. In fact, this is implied by the construction of

the classification rule, as the average P w+1is compared with P & a multiplier of

standard error of P .

(iii) Probability of belonging to a state does not change with time; the Markov chain

would be stationary.

Next, we proceed to construct the stochastic matrix giving the various transition
probabilities of moving from one state to another state. Suppose that we observe a finite

Markov chain with £k states <1, 2,...,k) until 7 transitions have taken place. Let n,; be

the number of transitions from %toj (Z,j =12,..

transition counts can be represented as

k
.,/{:). Lethij =n_. These
=1

1 2 L
1 n n n
11 12 1k
2
n21 n22 n2k
k nkl nk? nk:k

(6)

Let p;; ,1,j = 1,...k, be the probability of transition from the state i to state j and the
stationary transition probability matrix (TPM) of the Markov chain be P, given by

Once we estimate the TPM P by P =

pll
p21

pkl

plQ
p22

Ppy

A

(

by
Py,

pkk

D ij=1.2,.

A

Pj

,k, we can explore it further for

(i) classification of states, (ii) stationary distribution, (iii) recurrence time for state i. For
example, the following definition gives the stationary distribution of the Markov chain.
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Definition 2.1. For an irreducible ergodic chain, the limits T, = limpg?) exist and are
n—ow

independent of the initial state j.The limits 7, are such that 7, > O,Zni =1,and the

limits define a probability distribution. Furthermore, the limiting probability distribution
{Tci} is identical to the stationary distribution of the given chain, so that

T, ZZ“ijwZ“i =1.
J

Having found out the limiting distribution of an aperiodic, irreducible k-state Markov chain
whose transition probability matrix is P, one may proceed to find the first passage time of

the transition 1 <> j, in particular the recurrence time for state i, i=1,..k. It may be
recalled that the expected value of the recurrence time for state i is given by

T, :i’i =1,..k. (@)

We refer to Isaacson & Madsen [5] for a detailed discussion of the conceptual and
theoretical issues alluded to in this section.

Next, we shall consider the estimation and a related hypothesis testing problem as applied
to finite Markov chains with stationary (time-homogeneous) transition probability matrices.

We are interested in the estimates of the elements p,;; we shall denote their estimates by

o (Z,] =12, ,k) . For a given initial state 7and a number of trials 7, the sample of
transition counts (nﬂ, Mgyeeny Ty ) can be considered as a sample of size 7, from a

multinomial distribution with probabilities (pﬂ, Digse-s pik) , such that

k
Z P, = 1. Straightforward calculations (see Bhat [1] for details) yield the maximum
j=1

likelihood estimates given by

p;, =—=0,7=12,.k. )
T

Let pitj,t =1,...,T denote the weekly TPM corresponding to the yeart.Then one may

hypothesise that weekly market sentiments over the T years are stationary. In other words,
we wish to test the null hypothesis that H, :p:j =Dy (t = 1,...,T). In a typical market

sentiment analysis, there could be several choices for Pij - for instance, it is pertinent to

ask whether annual weekly/monthly transition probabilities reflect the same behaviour
during the entire study period. If so, the data can be pooled to give a single transition
count matrix and hence a single set of estimates. A likelihood ratio test statistic for testing

HO, - i.e. for testing the stationarity of the transition probability matrix - can be
constructed as below.
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Let p:] be the one-step transition probability of a time-dependent process X(t) , such that
Pl = P[X(t +1) = j[X() = 4 (10)

Let n; be the number of transition 7 — jduring the ¢ transition of a process. For a

given initial state ¢, the transition counts n[t/ (t =12 T) can be represented as

1 2 . . .
X !
1 1 1
1 il i2 iy
2 2 2
2 ntl ni? ntk
T T T
nbl niQ nbk
(11)
As before, the maximum likelihood estimates of p:j can be obtained as
) n'
p.=—=, (12)
] nlt—l

k
where n;"*l = Z n; . Clearly n;"*l is the number of processes in state ¢ at time? — 1.
j=1

Suppose we wish to test the hypothesis H  : p]t] =D, (t =12, ...,T) . Then the
maximum likelihood function is given by f(pfj) , and therefore the likelihood ratio criterion

(13)
Then it can be shown (see Bhat [1] for details) that, under the null hypothesis Ho ,

—2In A hasa ’ distribution with (T — 1)[16(]6 — 1)] degrees of freedom. In this case,
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nt

=2i§k:zk:n;jzn . (14)

=1 i=l j=1 n; pj

If some of the n; 's are zero, then It is assumed that summation in (14) is taken only over

(i, j) for which nlt] > (. Further, in this case, the degrees of freedom of X2 distribution
will be (T - 1)[k(k - 1)]— d, where d is obtained by taking into account the fact that

t
some of the n; 's are zero.

3. APPLICATION TO BOTSWANA DOMESTIC COMPANY INDICES

One can access the latest share pricess from the BSE Market report
(http://www.bse.co.bw). The “last” column on the BSE market report indicates the last
prevailing price of a particular share. Currently the following are the product offerings of
the BSE: equities (found in the domestic, foreign, and venture boards), commercial paper,
corporate bonds, and quasi-government bonds.

As before, let us suppose that we have (W-1) realisations of volatility states corresponding
to the given time series of stock prices, consisting of W weeks. Let n;; , i,j =1,2,3,4,5 be

k
the number of transitions from state ‘i’ to state ‘j’ and n; = Zni]. be the total number of
j=1
times the process visits the state ‘i, i = 1,...,k. Clearly,

k
Zni =W - 2. Then, the estimates of p;;, the transition probabilities from state ‘i’ to
i=1

oy e ) n; ..

state ‘j’ is givenby py=—, i,/ = 12,.... k.

ni

3.1 Analysis of weekly DCI data

The basic data to be considered here refer to the daily domestic company indices (DCI) of
the Botswana Stock Exchange for the period 11 January 1999 to 1 December 2005. These
data were obtained from Botswana stockbrokers. For the purpose of weekly analysis, the
data are clustered into 364 weeks, where each week consists of 5 working days, Monday
through Friday. The movements in the DCI are classified into the seven states Sq, S,,..., S7
based on the ‘action and warning limits’ described by (3). The sequence of states generated
by the classification rule (3) for the weekly data can be tabulated, and so the transition
probabilities can be constructed in a routine manner. For instance, for the sequence of
states generated using the classification rule (3), it can be shown that

n, =68,n, =21Ln, =169,n,, =26,n,;, =0,n,, =16 so that estimates of the
ding transiti babiliti ;9 26 1; 0 _o ]; 10
corresponding transition probabilities are =—, =—=0, =—— and so
68’ 21 169

on. The details are omitted, and can be obtained from the authors. Thus we have for the
weekly data the estimated transition probability matrix, given by
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26/68 7/68 8/68 8/68  2/68 1/68 16/68
4/15  2/15 0 1/15 3/15 1/15 4/15
K i 9/21 2/21 0 1/21 3/21 2/21 4/21
P:(puj: 7/30 3/30 4/30 2/30  2/30 1/30 11/30
6/36 1/36 1/36 2/36 5/2 2/36 19/36
3/24 0 2/24 3/24 0 1/24 15/24

11/169 0  6/169 13/169 23/169 16/169 100/169
(15)

Then, following the standard computations (see, for example, Isaacson & Madsen [5]), it
can be seen that the transition probability matrix given by (15) is (i) irreducible, (ii)
persistently non-null, and (iii) aperiodic. Thus, using the definition of ergodicity, it follows

A

that the Markov chain with the transition probability matrix P is ergodic. Further, using
the definition 2.1, we can construct the stationary probability distribution {Tf:i 1= 1,...,7}

A

corresponding to the Markov chain P, and using the routine algebraic method, it can be
shown that

7, = 0.1795, m, = 0.0405, 7, = 0.0572, &, = 0.0822, 75 =0.1054, 7T, = 0.0665,

7T, =0.4686.

These probabilities essentially refer to the long-term behaviour of the market sentiments,
provided that the market is operated under the same conditions. For example, 77, =0.1795
implies that the market sentiment is going to be ‘depressed’ in about 18% of the total of 52
weeks (that is, in 9 weeks), 77, =0.0405 implies that the market sentiment is going to be
‘bearish’ in about 4% of the total of 52 weeks (2 weeks), and so on.

Alternatively, using the result (8), the expected recurrence time T, ,i=1,..7, in weeks for

the seven states S,,...,S, is respectively given by T,, =5.57, T,, =24.67, T, =17.48,

Ty =12.17, Ts5 =9.49, T, =15.04, T4, =2.13. For example, it may be interpreted
that during the period 11 January 1999 to 1 December 2005, the DCI bounced back to state
S7 once in every 2.13 weeks, to state S1 once in every 5.57 weeks, and so on.

Next, to see if the weekly TPMs are the same over the seven years under consideration, we
use the test statistic given by (14). The sequence of states generated by the classification
rule (3) for the weekly data leads to the following transition counts matrices for the years
1999-2005, while the pooled transition count matrix is obtained by adding the
corresponding elements of the transition counts matrices of the years 1999-2005.
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Year 2000
6 2 0 2 0 0 3

Year 1999

2
2200

0 000 01

2 00
2 0 3

1

1
1

0 00

0

0 0

4

0 0 0 01

0 0 2

3 4 4

1

0 0 4

1

1

0 00 0O

2 20

1 0 0
1 0 0 2

0 0

0 00 0 O0 4
0 0 3 437

Year 2002

Year 2001

1 0 0 4
1

1

3

0 00

1

0

1

1

200 00

1 0 0 0

0

0 0 01

1

1

0 00 200

2 11

1

1

0

0

1

2 000

000 0O0O O

1

0 00 0O O

1

0 00 0 O0O

1

0 00 0 O0 4

000 0O0O O

2 00

4 0 30

1

Year 2004

Year 2003
8 02 2 0
0 0 0 0 O

1

3 2 0

2

000 O0O0O0 2

0

1

5
1
11

0

0 0

0 00O

3000

0

1

0 00 0O

0 0

6 2

1

1
1

0

1
1

0 2

0 0 0

2
2

0

0 0 0O

1
0
0

0 0 0 3
1

1
1

2 2 6

(16)

Pooled transition counts

Year 2005
0 0 0O0OO0OO0 O

16

2
3
3

1

25 7 8 8
4 20

8

3

2 0

11

0

7 3 4 2

18
15

12 23 15 97

10 0 5

0 000O0O0O O
0 00 0 OO

1

000 0O0O0 5

000 0O0TO0O 3

0 00

0 0 2

1

4 3 2 28

1

0

(17)
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The estimate of the pooled TPM is given by

[25/67 7/67 8/67 8/67 2/67 1/67 16/67]
4/17 2/17 0  3/17 3/17 1/17  4/17
o 8/20 2/20 0  1/20 3/20 2/20 4/20
PZ(pijj= 7/28 3/28 4/28 2/28 1/28 0 11/28

7/35 1/35 1/35 2/35 4/35 2/35 18/35
4/24 0 1/24 3/24 0 1/24 15/24
110/97 0 5/97 12/97 23/97 15/97 97/97

(18)
Finally, the application of the likelihood ratio test statistic (14) leads to

—2/nA =216.095 (19)

which, under the null hypothesis of stationarity, has a deistribution with 69 d.f. The

degrees of freedom is obtained by noting that, under the alternative hypothesis, the
number of parameters to be estimated is 105, while under the null hypothesis, the

parameter to be estimated is 36. From the table of X2 distribution, we get

P(x* 2216.095) < 0.005. (20)

This shows that we cannot accept the hypothesis of stationarity of the market sentiments
over the seven years, even with 0.5 % significance level. Going back to the problem, we
may conclude that the pattern of weekly market sentiments over the seven years 1999-2005
does not remain the same. The practical significance of this finding is that the monthly
movements in market sentiments appear to be volatile.

3.2 Analysis of monthly DCI data

In this section, we analyse the monthly DCI. As in the case of weekly data, we construct the
estimated transition probability matrix for the seven states Markov model. The basic data
to be considered continue to be the same - i.e., the DCI for the period 11 January 1999 to 1
December 2005. The data are clustered into 84 months, each month consisting of 20-22
trading days. The monthly averages and variances are computed using (1) and (2) The
movements in DCI are classified into the seven states S4, S,,...,57 based on the ‘action and
warning limits’ described by (3). The sequence of states generated by the classification rule
(3) can be constructed as noted earlier, and the corresponding transition probability matrix
is given by

8/17 3/17 117 1/17 0 0  4/17

/4 0 0 0 14 0 2/4
o o o o o 0 0 1 21
P:(pujz 10 0 0 0 0 0

/2 0 0 1/2 0 0 0

o 0o o0 0 0 0 I

5/53 2/53 0 0 1/53 1/53 44/53
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Once again, using definition 2.1 and straightforward computations yield
7, =0.2202, r, =0.0629, 7, = 0.0130, 7, =0.0268, 7, =0.0278, 7, =0.0120 and

7T, =0.6374.

The expected recurrence time in months for the seven states, Sl,...,S7 is given by
T, =454, T, =15.90, T, =76.93, T, =37.31, T, =35.97, T, =83.33, and
T,, =1.57. For example, it may be interpreted that during the period 11 January 1999 to 1
December 2005, the DCI, while in State S7, bounced back to itself once in every 1.57

months, and while in state S1 bounced back to itself once in every 4.54 months, and so on.

Next, to check whether the monthly TPMs are the same for the seven years under
consideration, we use the test statistic given by (14). The monthly transition counts
matrices for the years 1999-2005, the pooled transition count matrix, and the estimated
pooled TPM are given below:

~ Year 1999 ~ -~ Year 2000 .
1 100001 300000 1
000 0O0O 01 1 00 0O0O0O
000 0O0O0O 000 0O0U OO0
000 0O0O 0O 000 0O0UO0OO0
000 0O0O 0O 000 0O0U OO0
000 0O0O0O 000 O0O0O0 1
2 0 000 0 4 1100 0 1 2]
Year 2001 Year 2002
000000 0] [21 0000 1]
000 00O O 0000100
000 0O0O0 O 000 0O0O0O0
000 0O0TO0 O 000 0O0O0O0
000 00O O 1 000100
000 00O O 000 0O0O0O O
000 0O0O0TI1l] |1 0O0O0O0O0 3]
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Year 2003 Year 2004

2011000 [0100O0O0 O]
000 O0O0O0TO O 00 0 0 O0 01
000 0O0O01 0 000 0 O0TO O
1 000 0 OO 0 000 O0O0TP O
1 000 0O0O 0 000 0 O0O O
000 0O0TO0TO O 0 000 0 O0TO O
0000004 |1 10000 7]
B Year 2005 ~ _ Pooled transition counts
0 000 O0O0OTPO 8 311 0 0 3
0 000 0 O0O 1 0001 0 2
00 0 0 0 01 000 0O0O0O 2
0 000 0 O0O 1 0000 O0 O (23)
0 000 O0O0TP O 200010 O
0 000 O0O0TP O 0 00 0 O0 O0 1
0000009 52000 1 40]
Estimated pooled TPM
8/16 3/16 1/16 1/16 0 0 3/16
1/4 0 0 0 1/4 0 2/4
0 0 0 0 0 0 1
lgz(pAijJ= 1 0 0 0 0 0 0 4
21/3 0 0 0 1/3 0 0
0 0 0 0 0 1
5/48 2/48 0 0 0 1/48 40/48
The likelihood ratio test statistic (14) leads to
—2/nA =43.80 (25)

which, under the null hypothesis of stationarity, has a xz distribution with 28 -13= 15 d.f.

From Xz tables, we find

P(y> > 43.80)< 0.005. (26)

Once again this suggests that the pattern of monthly market sentiments over the seven
years under consideration does not remain the same. Interestingly, this finding is similar to
the conclusion obtained about the stationarity of weekly market sentiments.
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4. DISCUSSION AND CONCLUSIONS

It is well-known that in an equity market the equity indices are continuously subject to
variations. There are players in the equity market who want to profit-trade with equity
indices. A judicious profit-trade requires a fair understanding of the volatility present in the
movement of equity indices. While the volatility can been seen in daily, weekly, monthly,
or quarterly historical equity indices, its study becomes quite challenging from the point of
view of an investor in the stock market. It is imperative to accept that any investment
decision based on the daily movement of equity indices is highly speculative; decisions
based on the analysis of weekly, monthly, or quarterly movements may help the investor,
as it could be argued that some degree of predictable regularity may be witnessed in such
equity indices. Our focus in this paper is thus to analyse weekly and monthly equity indices.

In this paper we have proposed a relatively new method by which equity indices can be
analysed by constructing some simple classification rules and further assuming a Markov
chain model based on these classification rules. The classification rules are so framed that
the variations inherent in any financial data can be identified in terms of perceptible states
suitability defined. The Markov chain summarises the movement of the variations in the
equity indices from one state to another in terms of estimated probability. The
methodology developed in this paper has been applied to weekly and monthly Botswana
domestic company indices.

We can now summarise our general findings:

(1) Based on one of the rules of classification of states of volatility sentiments discussed in
this paper, it is seen that the market environment vis-a-vis the weekly DCl is investor-
friendly, as the long-term probability related to the ‘greedy’ volatility sentiment is
quite high and is close to 0.5. Further, the market environment vis-a-vis the monthly
DCI is even more investor-friendly, as the long-term probability related to the ‘greedy’
volatility sentiment is close to 0.64. Therfore, it may be suggested that monthly
trading in the DCl is a better option than weekly trading.

(2) Among the seven market sentiments proposed in this paper, the ‘greedy’ market
sentiment has the smallest estimated recurrence time across weekly and monthly DCI
analysis.

(3) Finally, the analysis based on both weekly and monthly DCI reveals that the history of
transition from one sentiment to another varies from year to year.

The approach suggested here will be of interest to a variety of disciplines in which a
phenomenon of interest is observed on a daily basis, and in which one is interested in
different states of perceptible variability, measured on the basis of a week, fortnight,
month, and so on. Interest rates, currency returns, assembly line production, and so on,
readily lend themselves to a similar type of analysis.
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