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ABSTRACT 

 
In financial economics, forecasting volatility in stock indices and currency returns has 
received considerable attention in the last two decades. Many traditional econometric 
methods forecast asset returns by a point prediction of volatility. The central contribution 
of this paper is to suggest an alternative approach for modelling and related analysis of 
asset returns. In this approach, the volatility in stock returns is defined in terms of 
categories depending on the mean of stock returns and its standard error. This classification 
naturally allows the study of volatility in terms of a Markov model. The approach suggested 
here will be of interest to academics, stock market investors, and analysts. 

 
OPSOMMING 

 
Op die terrein van die finansiële ekonomie het die vooruitskatting van volatiliteit in die 
aandeelindekse en wisselkoerse baie aandag getrek oor die afgelope twee dekades. 
Verskeie tradisionele ekonometriese vooruitskattingsmodelle baseer die vooruitskatting van 
opbrengste op ‘n puntvooruitskatting van die wisselvalligheid. Die bydrae van hierdie artikel 
is om ‘n alternatiewe metode voor te stel vir die modellering. Volgens die model word die 
volatiliteit van opbrengste gekategoriseer op grond van die gemiddelde opbrengste en die 
standaardfout. Dit skep geleetheid vir die toepassing van ‘n Markov-model. Die model sal 
akademici, beleggers en analiste interesseer. 
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1. INTRODUCTION 
 
The analysis of equity prices/indices has been a well-researched problem for business, 
economics, and financial analysts in the last few decades. It has captured the fancy of 
financial economists and ordinary trading persons alike. There have been several 
approaches to analysing equity prices/indices data. Notable among these, from a statistical 
point of view, were those based on the theories of multiple regression and time series 
analysis.  

 
It is well known that daily equity prices are subject to random shocks inherent in any 
market environment. The effect of random shock is unpredictable, in that the equity price 
may show an upward or downward trend on a day-to-day basis. Further, besides the 
direction of movement, the magnitude of swing is also of considerable interest in stock 
market analysis. In a stock market trade, typically there are two types of players: a buyer 
and a seller, and they could be either an individual or an institution. The objectives of a 
buyer or a seller operating in a stock market could be either short-term or long-term gain. 
‘Short-term’ may mean a few weeks or months, while ‘long-term’ may refer to a year or 
more. Needless to say, due to the volatility inherent in a vibrant market, the gain may 
mean either a profit or a loss. A short-term gain objective, in general, is more speculative 
than a long-term gain objective. A buyer may trade in the market either to build up his 
portfolio for long-term management, or to make some ‘quick bucks’ by releasing his 
holdings when the market picks up. On the other hand, a seller will primarily be looking for 
opportunities to sell his holdings when there is an upswing in the market. In equity market 
trading, a player can have the dual role of buyer and seller.  
 
In this paper we assume that the key player in the market is the seller. As the buyer’s 
interest is the opposite of that of a seller, the methodology developed for seller-oriented 
market sentiments can be easily modified for buyer-oriented sentiments.  
 
It is believed that equity prices often exhibit the phenomenon of volatility clustering – that 
is, periods in which their prices show wide swings for an extended time lasting days, weeks, 
or months. Knowledge of volatility is crucially important in many areas. Investors in equity 
markets are obviously interested in the volatility of equity prices, for high volatility could 
mean huge losses or gains, and so greater uncertainty. In a volatile market it is difficult for 
companies to raise capital. 
 
Forecasts of the distribution of asset returns are of great importance in the context of 
financial risk management. While many methods have been suggested, the seminal work of 
Engel [4] and Bollerslev [2], where the single-state Generalized AutoRegressive Conditional 
Heteroscedasticity (GARCH) model was developed, may be worth mentioning. The GARCH 
class of models, and subsequent extensions and generalisation of them, essentially dealt 
with the problem of point prediction of volatility. The central contribution of this paper is 
that it suggests an alternative approach for modelling and related analysis of asset returns. 
In the new approach proposed here, we recognise the fact that the volatility in stock 
returns can be classified into various states according to the predetermined perceptions of 
the stock player. In this paper, we build a Markov model for volatility states of equity 
indices. As an application of the proposed model, we analyse Botswana stock market data 
from 1999-2005. The Markov models are based on weekly and monthly equity indices. The 
different states of the Markov model are classified, and steady state probabilities are 
worked out. It is hoped that the approach suggested here will be of interest to both 
academics and stock market players. While forecasting of equity indices is quite difficult, 
the reasonably accurate probability model approach suggested in this paper can provide a 
credible alternative for fund managers and investors to align their policies and strategies. 
 
The rest of the paper is organised as follows. Section 2 will describe a Markov model for 
equity indices. The rules for generating volatility states, the construction of a transition 
probability matrix, the classification of states and steady state probabilities, among others, 
are discussed in this section. Section 3 deals with the application of the proposed model 
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and related analysis to Botswana Stock Exchange (BSE) weekly and monthly domestic 
company indices. Section 4 offers concluding remarks and a few directions for future 
research. 

 
2. A MARKOV MODEL FOR EQUITY INDICES  

 
The applications of Markov chains to a variety of fields, especially in business and the social 
sciences, have been well established. Notable among these fields are financial economics, 
agricultural economics, geography, and sociology. In financial economics, studies related to 
equity price, index of stock and debt, asset returns, and price of option have incorporated 
the Markov property. These applications have been published in various technical journals. 
A good treatment of these applications can be found in Bhat [1], Isaacson and Madsen [6], 
and others.  
 
The study of volatility – the wide swings that are prevalent in daily, weekly, or monthly 
equity indices – can be approached from the classical point of the discrete-time process. 
Here we characterise the volatility of the equity indices as its movement from one state to 
another in a random fashion.  

  
2.1 Assumptions:  

 
A.1: The equity index is available for all working days of the stock exchange. 
A.2: The equity indices are subject to random shocks due to the market environment. 
A.3: The variations in equity indices can be divided into a finite number of states on the 

basis of some objective rules. 
A.4: The equity indices are analysed from the perspective of a seller. 

 
Assumptions A1-A4 are not restrictive, in the sense that they are typically found in every 
stock market environment. For example, in every stock market the world over, data are 
recorded not only on a daily basis, but often – more frequently in terms of what is usually 
called ‘tick data’. Quite obviously, movements in equity indices are probabilistic. Next, the 
variations in equity indices can be factored into various classes depending on the 
perspectives of the market player. Finally, the two important players in every market are 
the seller and the buyer. 

 
Let the variable ‘ T ’ refer to the day and ‘ N ’ be the total number of days in the study 

period. Further, let‘w ’ denote the week so that ‘ W ’ corresponds to the total number of 

weeks. Suppose that we have a time series data of equity indices, tP , N,...,1t  . Let 

‘ wn ’ be the number of trading days in the week ‘w ’. (Usually wn  = 5, the number of 

trading days in a typical week during which transactions in equity indices take place in a 
market.) For the weekly equity indices, a Markov model can be constructed by comparing 

the average equity index of the current week ( 1wP  ) with the average equity index of the 

previous week ( 


wP ). However, a two-state model is too simple, in that the volatility of 

stock indices cannot be fully captured. A natural question then is, how best can we 
formulate a classification rule so that different states of volatility can be reflected in time 
series data of stock indices? Obviously the classification rule cannot be subjective, as it may 
be devoid of any rational content. We formulate a few possible classification rules below, 
keeping in mind the need for rationality and objectivity:  
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2.2  A few possible classification rules: 
 

a) A rule based on ‘Action and warning limits’: 
 

Let the weekly average equity index for week w  be given by  



wP = 


wn

t
t

w

P
n 1

1
, w  = 1, 2,…, W   (1) 

 
and the variance of equity index for week w  be given by 
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The market sentiments in a stock market, from the standpoint of a seller, can be generally 
seen to belong to different categories. We shall assume that these sentiments can be 
classified into seven distinct categories. Based on this assumption, we may classify the 
volatility in equity indices for weekly data as follows.  

 
S1: The depressed / fear sentiment. This is a state where the equity index witnesses a 
sharp enough fall to cause a seller holding stocks to panic. This may lead to distress selling 
and shatter investor confidence. This state of sentiment may also witness eventual 
bankruptcy or consolidation or regulatory intervention. Further, raising funds from the 
capital market may be adversely affected. 

 
S2: The bearish sentiment. This is a state where the equity index witnesses a significant 
enough fall to cause frustration for a seller holding stocks. This may lead to the offloading 
of stocks and undermine investor confidence. Moreover, raising funds from the capital 
market may be adversely affected. 

 
S3: The downward sentiment. This is a state where the equity index witnesses a gradual 
fall, causing a warning to an investor. This may lead to the offloading of stocks, and may 
dent investor confidence. Further, raising funds from the capital market may be adversely 
affected. 

 
S4: The tranquil sentiment. This is a state where the equity index witnesses normal swings. 
The investor continues to be an active player in the stock market. This state may also be 
called ‘range bound’ or ‘uncertain’. 

 
S5: The upward sentiment. This is a state where the equity index witnesses a gradual 
upward swing, causing an investor to feel encouraged. Sustained attempts may be needed 
to raise funds from the capital market. 

 
S6: The bullish sentiment. This is a state where the equity index witnesses a significant 
upward swing, giving rise to speculation by a seller holding stocks. Further, raising funds 
from the capital market may be easy. 

 
S7: The greed / bubble sentiment. This is a state where the equity index witnesses a sharp 
rise, prompting a seller either to dispose off his load or to tend to hold on in the hope of 
further appreciation, leading to a bubble-like condition. This state reassures the seller for 
having waited until now to make massive gains. Further, raising funds from the capital 
market may be easy. 

 
In order to reflect the seven market sentiments above, we associate the following 
classification rules with the states Sj, j =1,2,3,4,5,6,7. 
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For a week (w +1), w  = 1, 2,…, W-1 , the equity index is said to belong to  

(i)   State S1, if    1wP  < 


wP - 3 

w

w

n

s
 

(ii)  State S2,
 if   
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wP - 3 
w

w
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s
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
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s
 

(iii)  State S3, if   

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s
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(v)   State S5, if  
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wP +
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(vi)   State S6, if   
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wP +2
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w
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(vii) State S7, if  1wP  >


wP + 3 

w

w

n

s
 

In classification rule (3) above, the multipliers  3 and  2 of ws  respectively correspond to 

those used in action and warning limits of statistical process control (see, for example, 
Grant and Leavenworth [4]). It should be observed that the class of states S = {S1, S2, S3, S4, 
S5, S6, S7 } suggested here is quite general in the sense that it is capable of reflecting most 
of the market sentiments usually observed in a vibrant stock market economy. In a less 
vibrant stock market economy, one may continue to work with smaller set of states – say, 
for example, S*= { S1,S2 ,S

*
3 ,S6 , S7}, where the states S3 ,S4 ,S5 in S are merged to form the 

state S*
3 (



wP - 2

w

w
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

wP + 2

w

w

n

s
) in S*. The sentiment expressed by the 

state S*
3 may be appropriately named depending on the perception of the seller. For 

example, state S*
3 may be called ‘range bound’ or ‘sideways movement’ or ‘uncertain’. 

Alternatively one may merge the states (S1, S2), (S6, S7) in S to form two new states (S*
1, S

*
6) 

along with the states S3, S4, S5 in S. The new merged states may be respectively called 
‘bearish sentiment’ and ‘bullish sentiment’. 
 
b) Rules based on ‘probability limits’ 

 
If the market sentiments appear to be uniform over, say, four categories, one may use the 

states defined on the basis of quartiles. Here the multipliers of ws  may correspond to the 

three quartiles of the standard normal distribution (Q1= - 0.675, Q2 = 0, Q3= + 0.675). 
Accordingly, for a week (w+1), w = 1, 2,…, W-1 , the equity index belongs to  

(i)   State S1, if    1wP  < 


wP - 0.675 w

w

s

n
 

(ii)  State S2,
 if  



wP - 0.675 w

w

s

n
 1wP  < 



wP                (4) 
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(iii)  State S3, if   


wP   1wP  < 


wP + 0.675 w

w

s

n
 

(iv)  State S4, if   


wP + 0.675 w

w

s

n
< 1wP   

Here the sentiments expressed by the four states may be respectively called ‘deep 
bearishness’, ‘mild pessimism’, ‘mild optimism’, and exuberant bullishness’. 
 
On the other hand, if in a market there are six sentiments defined, say, by the four equal 
parts of the middle 40%, and the lower and upper tail consisting of 30% each of the total 
variability, one may use the following six states. Here the multipliers of Sw correspond to 
the five deciles, namely D3 to D7 of the standard normal distribution (D3 = - 0.525, D4 = -
0.255, D5 = 0, D6 = + 0.255, D7 = + 0.525).The classification rule for these six states then 
would be as follows:  
 

For a week (w+1), w = 1, 2,…, W-1 , the equity index belongs to  

(i)   State S1, if    1wP  <
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(vi) State S6, if   


wP +0.525 w

w

s

n
< 1wP   

In classification rule (5), the possible states may be suitably named depending on market 
sentiments and investors’ perceptions. It may be mentioned that in the rules based on 
probability limits stated above, we have used quartiles and deciles of standard normal 
distribution to be multipliers of the standard errors. Alternatively, one may use other 
standard distributions. Further, in the classification rules (3)-(5), the arithmetic mean and 
standard deviations are used as measures of location and dispersion. However, one can use, 
in general, alternative measures of location such as the median, mode, geometric mean, 
etc, and alternative measures of dispersion like range, mean deviation, etc.  
 
2.3 A stochastic model for market sentiments  

 
Once the weekly/monthly equity prices have been classified into different states according 
to the criteria discussed in the previous section, a natural question that arises is: How best 
can the volatility movements be captured by a discrete-time process? We assume that the 
volatility movements are best described by a Markov-like model. It may be pointed out that 
this assumption in the context of our problem is not too restrictive, as the underlying 
discrete time-process has the following features of a Markov model: 
 
(i) Volatility states are well-defined by the classification rules (3)-(5) and are 

therefore mutually exclusive and exhaustive for a given time point. 
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(ii) Markov property is satisfied by the classification rules, since the immediate future 
volatility state of the equity prices depends only on the current weekly/monthly 
average, but not on its past averages. In fact, this is implied by the construction of 

the classification rule, as the average 1wP  is compared with wP  a multiplier of 

standard error of wP .  
(iii) Probability of belonging to a state does not change with time; the Markov chain 

would be stationary. 
 
Next, we proceed to construct the stochastic matrix giving the various transition 
probabilities of moving from one state to another state. Suppose that we observe a finite 

Markov chain with k states ( )1,2,...,k  until n transitions have taken place. Let 
ij
n be 

the number of transitions from i to j ( ), 1,2,...,i j k= . Let
1

k

ij i
j

n n
=

=å . These 

transition counts can be represented as  
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Let ,k,...1j,i,pij  be the probability of transition from the state i to state j and the 

stationary transition probability matrix (TPM) of the Markov chain be P, given by  
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Once we estimate the TPM P by 















^

ij

^

pP , i,j = 1,2,…,k, we can explore it further for 

(i) classification of states, (ii) stationary distribution, (iii) recurrence time for state i. For 
example, the following definition gives the stationary distribution of the Markov chain.  
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Definition 2.1. For an irreducible ergodic chain, the limits 
)n(

ji
n

i plim


 exist and are 

independent of the initial state .j The limits i are such that   ,1,0 ii and the 

limits define a probability distribution. Furthermore, the limiting probability distribution 

 i  is identical to the stationary distribution of the given chain, so that 

 

   
j

ijiji .1,p  

 
Having found out the limiting distribution of an aperiodic, irreducible k-state Markov chain 
whose transition probability matrix is P, one may proceed to find the first passage time of 
the transition ,ji   in particular the recurrence time for state i, i=1,…k. It may be 

recalled that the expected value of the recurrence time for state i is given by 
 

 .k,...1i,
1

i
ii 


       (8) 

 
We refer to Isaacson & Madsen [5] for a detailed discussion of the conceptual and 
theoretical issues alluded to in this section.  
 
Next, we shall consider the estimation and a related hypothesis testing problem as applied 
to finite Markov chains with stationary (time-homogeneous) transition probability matrices.
  

We are interested in the estimates of the elements ijp ; we shall denote their estimates by 

^

ijp ( ), 1,2,...,i j k= . For a given initial state i and a number of trials 
i
n , the sample of 

transition counts ( )1 2
, ,...,
i i ik
n n n can be considered as a sample of size 

i
n from a 

multinomial distribution with probabilities( )1 2
, ,...,
i i ik
p p p , such that  
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p
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=å . Straightforward calculations (see Bhat [1] for details) yield the maximum 

likelihood estimates given by         

                        
^

, , 1,2,...ij
ij

i

n
p i j k

n
= = .   (9) 

Let T,...,1t,p t
ij  denote the weekly TPM corresponding to the year t .Then one may 

hypothesise that weekly market sentiments over the T years are stationary. In other words, 

we wish to test the null hypothesis that  .T,...,1tpp:H ij
t
ij0   In a typical market 

sentiment analysis, there could be several choices for ,Pij – for instance, it is pertinent to 

ask whether annual weekly/monthly transition probabilities reflect the same behaviour 
during the entire study period. If so, the data can be pooled to give a single transition 
count matrix and hence a single set of estimates. A likelihood ratio test statistic for testing 

0H , – i.e. for testing the stationarity of the transition probability matrix – can be 

constructed as below. 
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Let 
t

ij
p be the one-step transition probability of a time-dependent process ( )X t , such that 
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As before, the maximum likelihood estimates of 
t

ij
p can be obtained as  
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 is the number of processes in state i  at time 1t - . 

Suppose we wish to test the hypothesis ( )0
: 1,2,...,t

ij ij
H p p t T= = . Then the 

maximum likelihood function is given by

^
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f p , and therefore the likelihood ratio criterion  

 

 

^

( )

( )

t

ij

ij

f p

f p
L = .  

  (13) 

Then it can be shown (see Bhat [1] for details) that, under the null hypothesis
0
H , 

2 ln- L  has a 
2c distribution with ( )1 ( 1)T k ké ù- -ê úë û  degrees of freedom. In this case, 
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If some of the 'tijn s are zero, then It is assumed that summation in (14) is taken only over 

(i, j) for which 0.t
ijn   Further, in this case, the degrees of freedom of 

2c distribution 

will be      d1kk1T  , where d is obtained by taking into account the fact that 

some of the 'tijn s are zero. 

 
3. APPLICATION TO BOTSWANA DOMESTIC COMPANY INDICES 
 
One can access the latest share prices from the BSE Market report 
(http://www.bse.co.bw). The “last” column on the BSE market report indicates the last 
prevailing price of a particular share. Currently the following are the product offerings of 
the BSE: equities (found in the domestic, foreign, and venture boards), commercial paper, 
corporate bonds, and quasi-government bonds. 
 
As before, let us suppose that we have (W-1) realisations of volatility states corresponding 
to the given time series of stock prices, consisting of W weeks. Let ni,j , i ,j = 1,2,3,4,5 be 

the number of transitions from state ‘i’ to state ‘j’ and ni = 


k

j
ijn

1

be the total number of 

times the process visits the state ‘i, i = 1,…,k. Clearly, 
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= W – 2. Then, the estimates of pij , the transition probabilities from state ‘i’ to 

state ‘j’ is given by ij
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3.1 Analysis of weekly DCI data 
 
The basic data to be considered here refer to the daily domestic company indices (DCI) of 
the Botswana Stock Exchange for the period 11 January 1999 to 1 December 2005. These 
data were obtained from Botswana stockbrokers. For the purpose of weekly analysis, the 
data are clustered into 364 weeks, where each week consists of 5 working days, Monday 
through Friday. The movements in the DCI are classified into the seven states S1, S2,…, S7 
based on the ‘action and warning limits’ described by (3). The sequence of states generated 
by the classification rule (3) for the weekly data can be tabulated, and so the transition 
probabilities can be constructed in a routine manner. For instance, for the sequence of 
states generated using the classification rule (3), it can be shown that 

16n,0n,26n,169n,21n,68n 763311731   so that estimates of the 

corresponding transition probabilities are 
^ ^ ^

11 33 76

26 0 16
, 0,

68 21 169
p p p     and so 

on. The details are omitted, and can be obtained from the authors. Thus we have for the 
weekly data the estimated transition probability matrix, given by 
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



































169/100169/16169/23169/13169/60169/11

24/1524/1024/324/2024/3

36/1936/22/536/236/136/136/6

30/1130/130/230/230/430/330/7

21/421/221/321/1021/221/9

15/415/115/315/1015/215/4

68/1668/168/268/868/868/768/26

pP
^

ij

^

 (15) 
 
Then, following the standard computations (see, for example, Isaacson & Madsen [5]), it 
can be seen that the transition probability matrix given by (15) is (i) irreducible, (ii) 
persistently non-null, and (iii) aperiodic. Thus, using the definition of ergodicity, it follows 

that the Markov chain with the transition probability matrix 
^

P  is ergodic. Further, using 

the definition 2.1, we can construct the stationary probability distribution  7,...,1i,i   

corresponding to the Markov chain 
^

P , and using the routine algebraic method, it can be 
shown that  

1  0.1795, 2  0.0405, 3  0.0572, 4  0.0822, 5 0.1054, 6  0.0665, 

7 0.4686.  

These probabilities essentially refer to the long-term behaviour of the market sentiments, 

provided that the market is operated under the same conditions. For example, 1 0.1795  

implies that the market sentiment is going to be ‘depressed’ in about 18% of the total of 52 

weeks (that is, in 9 weeks), 2 0.0405 implies that the market sentiment is going to be 

‘bearish’ in about 4% of the total of 52 weeks (2 weeks), and so on.  

Alternatively, using the result (8), the expected recurrence time ii ,i=1,…7, in weeks for 

the seven states 71 S,...,S  is respectively given by 11 5.57, 22 24.67, 33 17.48, 

44 12.17, 55 9.49, 66 15.04, 77 2.13. For example, it may be interpreted 

that during the period 11 January 1999 to 1 December 2005, the DCI bounced back to state 

7S once in every 2.13 weeks, to state 1S once in every 5.57 weeks, and so on.  

 
Next, to see if the weekly TPMs are the same over the seven years under consideration, we 
use the test statistic given by (14). The sequence of states generated by the classification 
rule (3) for the weekly data leads to the following transition counts matrices for the years 
1999–2005, while the pooled transition count matrix is obtained by adding the 
corresponding elements of the transition counts matrices of the years 1999-2005. 
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Year 1999    Year 2000  





























7343001

4000001

2001001

1001022

0000011

0110022

4001211

  





























4431200

4100001

1101001

0001302

1011002

1000001

3002026

  

 
Year 2001    Year 2002 

 





























30041002

0000000

4000001

1000000

0000001

0000000

0010002

  





























11211103

1002000

1010001

1000102

0100002

1010001

4001136

  

        
 

Year 2003    Year 2004 





























6221103

3000101

2120110

2010000

2110001

0100000

1102208

  





























11261001

1000001

5010003

1000011

0010011

2000000

1012312

   

 (16) 
Year 2005         Pooled transition counts   





























28234100

2001000

3000000

5000000

1000000

0000000

0000000

  





























971523125010

15103104

18242117

11012437

4231028

4133024

161288725

 

 (17) 
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The estimate of the pooled TPM is given by  
 





































97/9797/1597/2397/1297/5097/10

24/1524/1024/324/1024/4

35/1835/235/435/235/135/135/7

28/11028/128/228/428/328/7

20/420/220/320/1020/220/8

17/417/117/317/3017/217/4

67/1667/167/267/867/867/767/25

pP
^

ij

^

 
 (18)
  
Finally, the application of the likelihood ratio test statistic (14) leads to 
 

095.216n2    (19) 
 

which, under the null hypothesis of stationarity, has a 
2 distribution with 69 d.f. The 

degrees of freedom is obtained by noting that, under the alternative hypothesis, the 
number of parameters to be estimated is 105, while under the null hypothesis, the 

parameter to be estimated is 36. From the table of 
2 distribution, we get 

 

 2 216.095 0.005.P     (20) 

 
This shows that we cannot accept the hypothesis of stationarity of the market sentiments 
over the seven years, even with 0.5 % significance level. Going back to the problem, we 
may conclude that the pattern of weekly market sentiments over the seven years 1999-2005 
does not remain the same. The practical significance of this finding is that the monthly 
movements in market sentiments appear to be volatile. 
 
3.2 Analysis of monthly DCI data 
 
In this section, we analyse the monthly DCI. As in the case of weekly data, we construct the 
estimated transition probability matrix for the seven states Markov model. The basic data 
to be considered continue to be the same – i.e., the DCI for the period 11 January 1999 to 1 
December 2005. The data are clustered into 84 months, each month consisting of 20-22 
trading days. The monthly averages and variances are computed using (1) and (2) The 
movements in DCI are classified into the seven states S1, S2,…,S7 based on the ‘action and 
warning limits’ described by (3). The sequence of states generated by the classification rule 
(3) can be constructed as noted earlier, and the corresponding transition probability matrix 
is given by 





































53/4453/153/10053/253/5

1000000

0002/1002/1

0000001

1000000

4/204/10004/1

17/40017/117/117/317/8

pP
^

ij

^

 (21) 
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Once again, using definition 2.1 and straightforward computations yield  

1 0.2202, 2 0.0629, 3  0.0130, 4 0.0268, 5 0.0278, 6 0.0120 and 

7 0.6374. 

 

The expected recurrence time in months for the seven states, 71 S,...,S  is given by 

11 4.54, 22 15.90, 33 76.93, 44 37.31, 55 35.97, 66 83.33, and 

77 1.57. For example, it may be interpreted that during the period 11 January 1999 to 1 

December 2005, the DCI, while in State 7S , bounced back to itself once in every 1.57 

months, and while in state 1S  bounced back to itself once in every 4.54 months, and so on.  

 
Next, to check whether the monthly TPMs are the same for the seven years under 
consideration, we use the test statistic given by (14). The monthly transition counts 
matrices for the years 1999-2005, the pooled transition count matrix, and the estimated 
pooled TPM are given below:  
 

Year 1999   Year 2000    





























4000002

0000000

0000000

0000000

0000000

1000000

1000011

     





























2100011

1000000

0000000

0000000

0000000

0000001

1000003

  

 
Year 2001   Year 2002 

 





























11000000

0000000

0000000

0000000

0000000

0000000

0000000

   





























3000001

0000000

0010001

0000000

0000000

0010000

1000012

 

 (22) 
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Year 2003   Year 2004   





























4000000

0000000

0000001

0000001

1000000

0000000

0001102

 





























7000011

0000000

0000000

0000000

0000000

1000000

0000010

   

          
Year 2005      Pooled transition counts  





























9000000

0000000

0000000

0000000

1000000

0000000

0000000

 





























40100025

1000000

0010002

0000001

2000000

2010001

3001138

              (23) 

 
Estimated pooled TPM 

           





































48/4048/100048/248/5

1000000

003/10003/21

0000001

1000000

4/204/10004/1

16/30016/116/116/316/8

pP
^

ij

^             (24) 

 
The likelihood ratio test statistic (14) leads to 
 
    43.80n2                 (25) 
 

which, under the null hypothesis of stationarity, has a 
2 distribution with 28 -13= 15 d.f. 

From 
2 tables, we find  

      .005.080.43P 2               (26) 

 
Once again this suggests that the pattern of monthly market sentiments over the seven 
years under consideration does not remain the same. Interestingly, this finding is similar to 
the conclusion obtained about the stationarity of weekly market sentiments. 
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4. DISCUSSION AND CONCLUSIONS 
 
It is well-known that in an equity market the equity indices are continuously subject to 
variations. There are players in the equity market who want to profit-trade with equity 
indices. A judicious profit-trade requires a fair understanding of the volatility present in the 
movement of equity indices. While the volatility can been seen in daily, weekly, monthly, 
or quarterly historical equity indices, its study becomes quite challenging from the point of 
view of an investor in the stock market. It is imperative to accept that any investment 
decision based on the daily movement of equity indices is highly speculative; decisions 
based on the analysis of weekly, monthly, or quarterly movements may help the investor, 
as it could be argued that some degree of predictable regularity may be witnessed in such 
equity indices. Our focus in this paper is thus to analyse weekly and monthly equity indices. 
 
In this paper we have proposed a relatively new method by which equity indices can be 
analysed by constructing some simple classification rules and further assuming a Markov 
chain model based on these classification rules. The classification rules are so framed that 
the variations inherent in any financial data can be identified in terms of perceptible states 
suitability defined. The Markov chain summarises the movement of the variations in the 
equity indices from one state to another in terms of estimated probability. The 
methodology developed in this paper has been applied to weekly and monthly Botswana 
domestic company indices.  
 
We can now summarise our general findings: 
 
(1) Based on one of the rules of classification of states of volatility sentiments discussed in 

this paper, it is seen that the market environment vis-à-vis the weekly DCI is investor–
friendly, as the long-term probability related to the ‘greedy’ volatility sentiment is 
quite high and is close to 0.5. Further, the market environment vis-à-vis the monthly 
DCI is even more investor–friendly, as the long-term probability related to the ‘greedy’ 
volatility sentiment is close to 0.64. Therfore, it may be suggested that monthly 
trading in the DCI is a better option than weekly trading.  

(2) Among the seven market sentiments proposed in this paper, the ‘greedy’ market 
sentiment has the smallest estimated recurrence time across weekly and monthly DCI 
analysis.  

(3) Finally, the analysis based on both weekly and monthly DCI reveals that the history of 
transition from one sentiment to another varies from year to year.  

 
The approach suggested here will be of interest to a variety of disciplines in which a 
phenomenon of interest is observed on a daily basis, and in which one is interested in 
different states of perceptible variability, measured on the basis of a week, fortnight, 
month, and so on. Interest rates, currency returns, assembly line production, and so on, 
readily lend themselves to a similar type of analysis.  
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