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ABSTRACT

Service-Oriented Architecture (SOA) enables organisations to let their business drive their IT
strategy, and creates a technology strategy that is aligned with that of the business. SOA is
an architectural style that enables the integration of disparate systems, independent of the
implementation technology or physical location, through encapsulating and integrating
business processes as a collection of coarse grained, loosely-coupled services. This article
aims to examine the ability of SOA to satisfy the requirements and concerns posed by
financial trading systems, and to present a SOA framework for building an automated
trading application.

OPSOMMING

Diens-georiénteerde argitektuur (Service-Oriented Architecture (SOA)) stel organisasies in
staat om die IT-strategie vanuit die besigheid te bestuur, en skep ‘n tegnologiestrategie
wat belyn is met dié van die besigheid. SOA is ‘n argitektoniese styl wat die integrasie van
uiteenlopende stelsels moontlik maak, onafhanklik van die implementeringstegnologie of
fisiese ligging, deur besigheidsprosesse te enkapsuleer en te integreer as ‘n versameling van
losweg-gekoppelde dienste. Die doel van hierdie artikel is om SOA te ondersoek as ‘n
moontlikheid om te voldoen aan die vereistes en knelpunte wat finansiéle handelstelsels
stel, en om ‘n SOA-raamwerk vir die bou van ‘n outomatiese handelsapplikasie te bied.
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1. INTRODUCTION

To create a sustainable competitive advantage, organisations continuously need to re-
evaluate their position and quickly adapt to changes in the business environment (Moitra &
Ganesh [1]; Eisenhardt & Martin [2]; Harreld et al. [3]). This is especially true for the
financial industry. In fact, agility in the stock market is an absolute imperative.
Organisations in this industry need to adjust their trading strategies very quickly to exploit
new trading opportunities in a rapidly changing market. This kind of productivity is critical
to create new algorithms for pricing and trading, and to free up more capital through
timely and accurate risk management. Also, the demands imposed by regulatory and/or
legal compliance in the financial sector are becoming even stricter. So IT has to produce
more compliant and more flexible solutions, while also delivering business value.

The challenge is to integrate business and IT processes so that IT supports the business. The
emphasis is on the need for flexible IT systems that enable business agility (Mitchell [4];
Moitra & Ganesh [1]; IBM [5]). However, organisations are often burdened with
heterogeneous legacy systems. The financial indstury is plagued by these and by various
other architectural challenges that will be discussed shortly.

To meet these architectural challenges, Service-Oriented Architecture (SOA) is proposed as
an underlying architecture that aims to enhance the interoperability and data exchange
capabilities of applications (Xiaorong [6]). It allows for easy integration of heterogeneous
components to satisfy business requirements.

2. ARCHITECTURAL CHALLENGES IN THE FINANCIAL ENVIRONMENT

In a typical financial institution, large numbers of complex services - such as risk
management, trading, and portfolio management - are handled by a range of individual
applications (Pan & Vifa [7]). To optimise business processes and achieve a higher level of
business process integration, there is a need to integrate the existing functionality and
facilitate interoperability between them.

With this goes the need for efficiency (Birman [8]; Birman et al. [9]). Many of the
commercial vendors provide software to automate business process integration through web
service integration - e.g. IBM Websphere and Microsoft Biztalk. Current technologies, such
as web services, focus on providing interoperability using internet-based communication
standards such as SOAP. However, financial systems are usually based on propriety
protocols (Birman [8]; Birman et al. [9]). This means that, in order to facilitate
interoperability between these systems, messages have to be translated from their native
format to SOAP and vice versa. This results in inefficient solutions that work against the
requirements of (for example) trading applications, which require high levels of throughput
and low levels of latency (Birman [8]; Birman et al. [9]).

In addition, in order to enhance the organisation’s agility, there is a need for flexible
architectures (Mitchell [4]; Moitra & Ganesh [1]; IBM [5]). The legacy architectures
encountered in these organisations make it difficult to change, and complicate integration
with other enterprise systems. As a result, these organisations often perceive IT as a
constraint on business rather than an enabler (IBM [5]).

In the face of limited budgets, there is enormous pressure to preserve and leverage existing
IT assets. Little value is gained in rebuilding legacy systems in a new technology when it is
meant to meet the 80/20 rule (Jones [10]). In addition, when legacy systems are simply
ripped out and replaced, the knowledge and practices embedded in these systems are lost
(Bruner [11]; Smith & O’Neal [12]). The architecture must be flexible enough to support the
gradual replacement of legacy systems, if need be.

This article explores SOA as a possible solution to address both the business concerns of
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agility and the architectural challenges that hinder organisational agility in the context of
an investment banking environment. This is done by proposing a conceptual SOA framework
for building an automated financial trading platform that is capable of addressing both the
business and architectural challenges explained above. The layout of the rest of the paper
is as follows: Section 3 investigates the underlying concepts and principles of SOA, and
indicates the link with Enterprise Architecture. The research method is discussed in Section
4, after which the business context of the investment banking environment is explored. The
proposed SOA architectural framework is discussed in Section 6. Section 7 includes an
evaluative discussion of the framework, and section 8 offers some final remarks.

3. SERVICE-ORIENTED ARCHITECTURE

SOA is a distributed architecture style for building systems based on loosely coupled, coarse
grained independent components called services (Brown et al. [13]; Mehta et al. [14]). SOA
introduces a paradigm shift that views services as the building blocks of applications (Mehta
et al. [14]).

Services are seen as interfaces that provide a set of functions that can be invoked
irrespective of their location, without any knowledge of the implementation details or the
technology in which they have been developed (Perrey & Lycett [15]). A service
encapsulates complete business functions that are intended to be reused and engaged in
new transactions across enterprises. In the same way that an object in Object Oriented
development represents a real-world ‘thing’, a service represents a real-world ‘business
function’.

SOA promises interoperability regardless of the platform, service provider, or location of
the service. SOA provides an approach for how to describe, orchestrate, and publish
services to support their discovery and use (IBM [16]). Service-Oriented Architectures
consist of three main structural elements (or roles, according to IBM [16]): a service
provider, who publishes the availability of services; a service registry/repository - an entity
that serves as broker, registering and categorising the published services and providing
search capabilities; and a service consumer - a software agent that interacts with the
service by requesting execution of the service (Huhns & Singh [17]; IBM [16], Papazoglou

[18]).

Many financial institutions have deployed a SOA in order to create streamlined, simplified
and easy-to-manage technology infrastuctures (Sanchez [19]). Wachovia Bank transformed
its architecture into a Service-Oriented Architecture that can be leveraged by all business
units (Margulius [20]). Zimmermann et al. [21] used web services to breach the technology
differences between existing client components, to provide a unified interface and
integrate inter-organisational banking systems. These examples of SOA deployment all
introduce concepts and ideas, such as a unified point of access to ensure consistent access
to the systems, or technology neutral interface services to allow for the system to integrate
with other organisational systems. These concepts and principles provide a foundation on
which one can build. However, these solutions are examples of how SOA can be achieved by
means of web services. Web services are the most common implementation, since for most
organisations it is the simplest approach to implementing a loosely-coupled architecture
(Microsoft [22]). However, web services are not the only way in which to implement SOA
(Brown et al. [13]). Many issues remain to be resolved in building high performance
financial transaction systems using the existing technologies (Birman [8]; Birman et al. [9]).
Current technologies such as web services focus on providing interoperability using
internet-based communication standards like SOAP, while financial systems are usually
based on propriety protocols. The problems associated with this - such as the inefficiency
resulting from the translation of messages to SOAP and vice versa - have already been
discussed in section 2. The SOA framework proposed here was designed for the building of
financial trading applications with the above issues in mind.

From a business perspective, SOA must provide value to the organisation beyond just
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solving technical integration issues. In order to create value, the IT efforts need to be
aligned with the business strategy. Ross [23] explains that Enterprise Architecture is used to
place the technology standards in the context of the business requirements. Jones [10]
describes it as the process of understanding the business, IT, and vendor strategies, and
defining the practices for the organisation to align these strategies in order to achieve their
business goals and objectives. Let us look, therefore, at the relationship between SOA and
Enterprise Architecture.

3.1 The relationship between SOA and Enterprise Architecture

Afshar [24] notes that SOA is a framework within Enterprise Architecture, and aims to
achieve the same business goals: minimising the total cost of ownership, and creating
flexible business solutions that improve business agility, reduce the time to market, and
provide support for global expansion. SOA substantially impacts all the key aspects of
Enterprise Architecture. The business services proposed by a SOA form the foundation of
the business architecture and process architecture (Afshar [24]). Marks & Bell [25] argue
that SOA forms a conceptual business architecture where business functionality is exposed
as shared, reusable services. The business processes, services, and events are converted to
appropriate application services that create and support the product/service architecture.
The services themselves form the application architecture, while the information
architecture is satisfied by ensuring data standardisation and availability through the
service interfaces.

Jones [10] notes that there are four steps to defining a service-based architecture. The
steps are about putting the technology perspective into the context of the business so that
the solutions are aligned with the business and support the business vision at all stages. The
first is to determine the what. This involves identifying and understanding the nature and
scope of the business services. The next step entails the identification of the entities that
will interact with the services, i.e. the who. The third step involves the understanding of
why the service is required by the entities that interact with it. Combined, these aspects
provide the direction to the fourth step: how the services should be implemented in order
to align the IT efforts with the business strategy. SOA does not replace the different
aspects of Enterprise Architecture, but instead provides a framework that builds on the
same aspects (as indicated above) to provide direction for how it should be implemented.
The architecture models created to address the different levels of concerns (Zachman[26])
should deal with the how and provide structure for strategy, implementation, and support
(Jones [10]).

The purpose of SOA is not to focus on the detail of the applications, but to ensure that the
business context is understood (Josuttis [27]). In order to understand where one needs to
focus as an IT organisation, it is critical to understand the context of the services and why
they interact. If this is understood, the different processes can be represented as services,
and combined to form the business process.

4. RESEARCH METHOD

The proposed SOA framework is a conceptual architecture - a structural model that
abstracts from the implementation and execution of the architecture, and thus provides a
useful starting point on which to base more detailed architectural work (Reekie & McAdam
[28, p 39)).

To create this framework the following activities were performed. A literature survey was
conducted to ensure a good understanding of SOA. The researchers also conducted
interviews and observed how people currently work in three different South African
financial institutions that provide a fair representation of the twelve investment banks in
South Africa. The interviews were held with individuals (including traders, brokers, and
portfolio managers from each organisation) in order to develop a full understanding of the
trading processes, the participants involved in them, and the business context in which the
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model will be expected to work. The identified processes, requirements, and concerns
served as the basis for the functional elements, and provided the forces to shape the
architecture. Although the framework has not yet been implemented, nor evaluated against
similar architectures because of the sensitivity around intellectual property and propriety
knowledge of the banks, it was evaluated through interviews with a practitioner.

5. UNDERSTANDING THE BUSINESS CONTEXT

In order to understand the business context, the trading processes of three different
financial institutions were investigated. The researchers conducted interviews and observed
how people currently work in these organisations. The list of questions (based on the four
steps suggested by Jones [10]) used to conduct the interviews are available from the
authors. The data were analysed by analytical induction (developing causal explanations)
and identifying critical incidents (Myers [29]), which translates in this context into
functional units of work. The ‘critical incidents’ involved in the trading process were
identified as:

e receiving an order (message containing the buy/sell instruction) from a variety of
sources

validating the order, and necessary checks such as available cash balance

executing the order

routing the orders to the appropriate destinations

matching the executions with the orders

reporting the executions.

Algorithmic trading systems provide a platform to analyse real-time market data quickly, to
uncover opportunities, and to respond immediately by placing and managing orders in the
market (Bates [30]). Each algorithm it executes represents a different strategy (e.g.
Volume Weighted Average Price, Time Weighted Average Price, Pairs, etc.) which defines
the logic for detecting the trading opportunities. The traders decide which strategy to use
for a given order based on the client’s instructions. They provide the input parameters for a
given algorithm, such as price limits and total number of shares to buy, which is then used
to determine the timing, the price, and the quantity of an order to trade. The orders can
also be received electronically via FIX (Financial Information eXchange) messages.

It was apparent that organisations in this industry need to adjust their trading strategies
very quickly to exploit new trading opportunities in the rapidly-changing market. This
means that once an opportunity has been identified, these organisations need to be able to
move forward immediately and adapt existing algorithms - or create new algorithms - with
the minimum effort. This emphasises the need for flexible architectures that enable
organisational agility.

It became clear that traders/portfolio managers need to trade quickly to respond to market
conditions. In the same way, the automated system is expected to be able to process the
data quickly and respond within milliseconds. In order to automate the trading process
fully, the orders need to be sent to the automated trading system automatically. It should
therefore be able to interoperate with the various applications used to receive the orders,
and send back the execution reports as the traders do. This highlights the need for
performance and interoperability with other systems.

6. THE PROPOSED ARCHITECTURE
In the section below, the authors give an outline of the proposed conceptual architecture.

The architecture has not yet been implemented, and is purely conceptual. A short
evaluation of the architecture is given in section 7.
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6.1 Architecture overview

To maximise both efficiency and interoperability, the researchers differentiate between
two sets of services: interface services and internal services. The internal services each
perform a business function. ‘Internal’ means that these services interact only with other
internal services or interface services. To maximise performance, the internal services
communicate using a predefined native message format.

The interface services provide a facade to the internal services. The interface services are
wrapped by different endpoints that deal with interoperability (the input/output adapters
in Figure 1). These services are responsible to interact with external client applications,
and translate the messages into the native format used by the internal services.
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Figure 1: High level architecture

Different bindings can be used between different services. The binding between the
interface services sending the order into the trading system can be configured to use a
Microsoft Message Queuing (MSMQ) binding, to ensure reliability and thus a guaranteed
delivery of an order; while the binding between the trading engine and the services
responsible for placing an order into the market can be TCP binding, to ensure speed.

Apart from the functional units of work listed in section 5, a number of additional
functional and non-functional requirements need to be addressed, as gathered from the
interviews and observations:

. The system should be able to process large volumes of incoming messages and
respond within milliseconds. In addition, the system should be able to maintain
dedicated, low latency FIX connections to multiple brokers.

. To support an increasing number of trades and algorithms/analytics, the system
must be scalable. This implies that one must be able to add new and configure
existing endpoints dynamically.

. The system must provide sufficient security measures such as authentication and
authorisation to ensure confidentiality, reliability, and integrity, to avoid or
minimise expensive misdeals.

. Last, the system must provide the ability to recover from a failure, provide a full
audit trail of events processed, and monitor capability.

The next section presents a more detailed discussion of the architecture that addresses
these requirements, along with the architectural challenges discussed in section 2.
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6.2 Detailed Architecture

Figure 2 below presents a detailed overview of the proposed system architecture:
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Figure 2: Detailed system architecture

The market data enrichment engine subscribes to real-time data sources, enriches the data
with value-added metrics such as VWAP (Volume-Weighted Average Price) and risk models
commonly used by algorithms, and publishes the enriched data to services/applications that
subscribe to it, in real-time. To persist, the processed data asynchronously and without
affecting performance, a service responsible to handle only the persistence also subscribes
to the output.
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To define a service-based architecture, each of the tasks and concerns is separated and
encapsulated in separate services. Orders are received from any external client application
that interacts with the system by passing messages (containing order details and the
execution algorithm) through the input adapters.

The message is sent to the analytic trading engine at the heart of the system after
validating it through the validation service. The trading engine then executes it. The
algorithm makes use of the enriched market data to determine how much of the total order
to trade at a given point in time. The algorithm conducts a ‘what-if?’ analysis by analysing
the market and trade data against the client mandates and restrictions.

The trading engine generates messages containing the resulting instruction (order) and
passes it to the order management service, which in turn updates the status of the order
and sends it to the routing service. The routing service then routes the order to the
appropriate destinations. The order status is updated according to the trade data
(execution reports) flowing back into the system. The orders are also electronically routed
to the trading desk, and allow portfolio managers to monitor the status of their orders
throughout the day and direct allocation of executed trades across their account base.

Each of the components will now be discussed in more detail in order to explain how the
functional and non-functional requirements and concerns specified in section 6.1 are
addressed.

6.2.1 Integration with heterogeneous applications: Adapters

The adapters are located between the coordination service and the external applications
that connect to the system. The adapters make it possible to integrate with different
systems using different transport protocols. Although the adapters are labelled ‘input’ and
‘output’, they are bidirectional. The input adapters/receiving endpoints represent the
interface services, which translate incoming messages into the native format used by the
internal services and back to the format expected by the external systems.

The output adapters translate the system responses and send them to the appropriate
destinations. The output adapters can also be used to route messages to risk management
systems so that compliance offers can maintain client and firm-wide guidelines, and
evaluate where portfolios and holdings stand versus restrictions.

The services achieve maximum interoperability through the use of technology-neutral
standards. Just like Zimmermann’s [21] web service adapter layer, the adapters allow for
the integration with inter-organisational banking systems. However, the FIX protocol serves
as the de facto standard for securities trading around the world (Technical Analyst [31]). It
would be inefficient first to convert every FIX message into a SOAP message, and then into
the native format of the system and vice versa to facilitate interoperability. For this reason
the architecture allows for extending the system, and supports flexibility by adding
adapters to ease the integration into existing architectures, both contemporary and legacy.
Figure 2 illustrates four types of adapters (interface services): Web service endpoints,
message queue endpoints, FIX endpoints, and other endpoints. Together these services
expose an interoperable layer of interfaces that allow for integration with heterogeneous
applications.

6.2.2 Security and reliability: Adapters
Each protocol supported by the mentioned endpoints defines its own standards and offers
functionality for security (such as authentication and encryption), distributed transaction

coordination, and reliable communication.

Each adapter handles protocol specific requirements, and is responsible for translating a
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message into the internal format and delivering it to the coordination service. For example,
the FIX adapter is the only adapter that may contain any FIX communication, so there is a
complete separation between the adapter’s responsibilities and the internal services. This
follows a modularised approach, and abstracts the protocol specific requirements from the
rest of the system components. It promotes loose coupling, and also allows for extending
the system to integrate with other sources if required.

Thus, in addition to providing an interoperability layer, the function of the adapters is to
maintain a reliable and secure connection between the external environment and the
trading platform by implementing the protocol-specific standards.

6.2.3 Consistent access: Coordination service

The coordination service represents a facade that provides a simplified interface to the
system. It provides consistent access to the system, and enforces operational concerns such
as security, validation, and auditing.

Although each protocol defines its own security standards, the adapters are not responsible
for controlling the authentication to the system itself. Instead of having each adapter
implementing authentication, the security credentials and user context parameters are
passed to the coordination service, which then handles the authentication and authorisation
requests. In addition to the session authentication, the coordination service enforces
additional security measures, activity logging, and validation by passing the messages
through the security service layer and validation service prior to delegating the market
order request to the order management service.

This promotes a loosely-coupled architecture and adds flexibility, in that one can easily add
new adapters without having to care about implementing authentication and validation.
The service reduces the dependency of the adapters on the internal services of the system
by providing a single point of entry that abstracts all internal communication from the
‘outside world’.

6.2.4 Authentication and authorisation: Security service layer

The security service is used by the coordination service to perform authentication and
authorisation checks. Much like Zimmermann’s [21] architecture, the service requires
details such as the application and session identifiers, which are then validated against a
database of authorised logins. The login details include username, password, and the IP
address of the message’s origin. This is used for two purposes. First, in the case of adapters
that establish a dedicated connection with external applications, such as with FIX adapters,
the result of the verification determines whether to accept or reject the connection
request; and second, as mentioned above, the coordination service invokes the security
service prior to sending the order to the order management service. In this case, since the
message can be received from an adapter that does not maintain a dedicated session, the
source of the message (IP address of the sender) is used to validate whether the service
consumer is authorised to send an order.

6.2.5 Validation: Validation service

The validation service is a composite service consisting of a collection of validation objects.
It is used to ensure that the order is valid prior to sending it to be processed. The validation
can range from verifying an account number to checking the available cash balance.

6.2.6 Order management: Order management service

The order management service accepts new orders from any client application that

interfaces with the system using the input adapters. It creates messages to send new
orders, cancel pending orders, or replace existing orders based on the instructions from the
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trade engine. These messages are then routed via the order routing service to the output
adapters. The service maintains a memory map of all orders and associated executions to
maximise performance.

The service also persists the order and execution state to database for failover purposes. A
dedicated persistence service ensures that the persistence happens asynchronously and
does not affect performance. It also frees the people developing the analytic from the
responsibility of managing orders themselves, and allows them focus solely on implementing
a new trading strategy. This adds flexibility to the system and supports business agility.

6.2.7 Executing algorithms: Analytic trading engine

The analytic trading engine is the central nervous system of the trading platform. It is
responsible for hosting and executing the algorithms that decide how to slice a large order
into smaller trades and when to send the trades to the market.

It receives the message (order) containing the algorithm to use through the order
management service. The trading engine creates and loads a new instance of the algorithm
and runs it each time it receives an update from the price feed service, or a notification of
execution from the order management service, until the order is completely filled. When
the conditions specified in an algorithm are met - for example, the lowest offer is below
the VWAP - the trading engine sends a message (containing the order details) to the order
management service, requesting that an order be sent into the market.

Each of the trading algorithms is developed and compiled into a separate module such as a
.NET library (in the Microsoft world this would be a DLL). The modules are handled like add-
ins that can be dynamically loaded at runtime, and run as a separate thread in the trade
engine service. Each algorithm must implement a common interface that defines the
mechanisms to receive input parameters and send output data - the messages sent as a
response. The analytic trading engine executes and interacts with the algorithms by
invoking the operations defined in the interface.

Based on the algorithm name specified in the message, the analytical trading engine finds
the physical address information, invokes the operation, and runs the algorithm (see figure
3). The algorithm represents the actual trading strategy, which is identified by its name
(such as VWAP, TWAP, Switch, etc).

ReceiveMessage(Message message)

{

1. mapping = find mapping by message.AlgorithmName

2. assemblylnstance = load assembly from mapping.Path and mapping.AssemblyName

3. algorithm = create instance of mapping.ClassName and initialise with
message.Parameters

4. add algorithm to pool of running algorithms

5. run algorithm

3

Figure 3: Load and execute algorithm from message

The modular design allows for agility and flexibility in enhancing an existing algorithm or
adding new algorithms.

6.2.8 Real-time prices: Price feed service

As illustrated in Figure 2, the price feed service simply subscribes to the output of the
market data enrichment engine, and feeds the prices to the trading engine for processing.
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6.2.9 Message routing: Order routing service

The order routing service is responsible for sending the orders received from the trading
engine through the order management service to the relevant output adapters, to place the
order into the market, send it to an order management/execution system, or notify the risk
management or trader applications. Since the system may trade in both local and foreign
equities and possibly different instrument types, the routing service is responsible for
sending the messages to the appropriate trade venue through the relevant adapter. The
routing service is also responsible for sending the executions report received through the
outgoing adapters back to the order management service.

For each message received (see Figure 4), the routing service finds all the rules where the
message type and the message source match the type field and the target field in the
message respectively. There can be multiple rules for a message type coming from the
same source, allowing one to multicast the message to different destinations. It evaluates
the predicate, and only continues if the function returns a positive result. For each
matching rule, a copy of the message is created. The target field of the copy is updated to
the destination specified by the rule, and the source address is updated to the original
message’s target. The message is then routed to the destination.

RouteMessage(Message message)
{
1. rules = find rules where rule.MessageType = message.Type and rule.MessageSource =
message.Target

2. if predicate = true

a. for each matching rule:

i. messageCopy = create copy of message

ii. messageCopy.Source = message.Target

iii. messageCopy.Target = rule.MessageDestination

iv. Send messageCopy to destination

}

Figure 4: Message routing
6.2.10 Endpoint management: Configuration service

The system can be divided into three distinct parts: the input adapters and coordination
service, the trading platform itself, and the routing service with the output adapters. To
support greater flexibility in possible deployment strategies and to allow for scalability, a
best-practice design is to ensure that the different parts of the system remain ‘black-
boxes’, completely autonomous from one another and any other services that may use
them. The key is to abandon any assumptions about where or how the services are being
hosted. They may be co-located on the same machine, or distributed across a network.

To ensure that each service remains autonomous, each service is responsible for
maintaining its own configuration. All configuration information is stored in a database
rather than a configuration file. Each service has its own repository. Since the services can
be distributed across a network, and possibly separated by a firewall, only the service itself
is allowed to query or update its repository. So the only information stored in the service’s
configuration file is a connection string pointing to the configuration database. From a
manageability perspective, it should be possible to view, manage, and configure the overall
system configuration in an integrated way. This is where the configuration service comes
into play.

When the services start up, they load the configuration settings from their individual
configuration repositories. New clustered nodes of the same service can easily be set up by
simply copying the service to another server, without modifying the configuration file. This
implies that we can dynamically expose new endpoints of the same service (see clustering

119




below). Using a single repository per service, we thus centralise the configuration
management of each service. The repository is used to store any type of configuration
setting. Since this information is not hard-coded into the service itself or stored in a XML-
based configuration file, configuration changes can be made to the overall system without
manually editing files and restarting the services. The configuration service defines a
contract that is implemented by each component/service of the system. The configuration
service is used to query and push updates to the various services. To support the dynamic
configuration, any update to the individual services results in a notification being sent to
the configuration service. The configuration service then notifies each of the individual
services to update its binding information, keeping all the servers in a synchronised state.

6.2.11 Monitoring: Configuration service

The configuration service does failure detection against the services in the system, and
receives notifications when new service instances are brought online. This not only allows it
to notify other services in the system, but also allows an administrator to query the
configuration service, view the various services participating in a cluster, and see which
services are online or offline.

6.2.12 Load balancing / clustering: Order placement service

The architecture’s support for dynamic configuration gives rise to another concept:
virtualising service endpoints across clustered nodes. The centralised service repository
enables one to create new clustered nodes for load balancing purposes by simply starting
up a copy of the service on different machines, while pointing the connection string to the
same repository.

The order management service and trading engine can be coupled together as a service set
and clustered across a number of machines. Once the services have been started, the
configuration service will notify the other services of the new instances. The order
placement service will register the new instances and immediately perform load balancing
against them. The order placement service is therefore a proxy service for the order
management service. It is responsible for routing the orders received from the coordination
service to an instance of the order management service, using a load balancing algorithm.

6.2.13 Auditing: Audit log service

The audit log service logs a complete history of all the transactions and events that occur
on the system. To ensure guaranteed delivery, the system services do not interact directly
with the audit log service. Instead, the services interact with a proxy that posts all
messages to a transactional message queue. The audit log service binds to the transactional
message queue from which it receives the messages. As a result, the messages are
inherently asynchronous and disconnected. If the audit service is offline, the messages
simply remain in the queue. The messages will be delivered and processed the next time
the service starts up. This approach enables the system to offer guaranteed traceability of
the history of all the messages, and to be compliant with the financial industry’s strict
auditing regulations.

7. DISCUSSION

To evaluate the feasibility of the proposed framework and its possible contribution towards
organisational agility, the application of the proposed framework was demonstrated to a
systems architect from one of the three organisations, by conceptually mapping it to their
existing architecture. (Only a high level overview of this mapping is available from the
authors in order to protect the organisation’s core business architecture.) The researchers
subsequently interviewed this system architect. Here are some of his remarks on the
feasibility of the framework:
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“ ... the use of standards aimed at interoperability - web services and the like
- along with the focus on ensuring that adaptors for various domain-specific
protocols, makes the architecture well-suited to the existing environment it
has to fit in to”.

On its contribution to business agility, he said the following:

“The architecture promotes the creation of loosely-coupled components. This
in itself should result in lowering the barrier of entry to introducing new
components or re-using existing components in new and novel ways. Because
of the abstraction and modular design, we will be able to quickly introduce
new trading strategies, or enhance existing algorithms without affecting the
system itself.” (Interview questions and results available from authors)

Although the above remarks reflect the opinion of only one system architect, they do give
an indication of the general viability of the framework. However, this is a model
representing a conceptual architecture framework that is abstracted from implementation.
The focus is not on implementation, but on understanding the problem domain and how it
influences and shapes the design of the services. It is recognised that further research is
needed to determine the viability of this framework. One such study could be the creation
of the detailed architectures, and then evaluating which technologies are most suitable for
implementing the proposed model.

8. CONCLUSION

There is a growing body of literature on the potential value of a service-oriented approach.
However, most research uses web services to explain SOA and how it can be used to build
flexible business processes. The contribution of this research is that the focus of the
proposed SOA framework is on the technical implementation issues, and it therefore drives
the adoption of SOA from a technology perspective. By understanding the business context
and the flow of information between the processes, the different activities were used to
identify the functional elements and how they relate to each other, and not how they will
be implemented. This will allow one to select the technology that will best realise the
proposed architecture, and thus placing the technology in a business context so that it
supports the business vision.

The framework supports interoperability and integration with other trading, risk
management, or other financial applications; and it supports flexibility in terms of adding
and configuring existing functionality, as well as the dynamic addition of new and
modification of existing trading algorithms. It also addresses concerns such as reliability,
scalability, security, and high performance.
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