TOUR CONSTRUCTION HEURISTICS FOR AN ORDER SEQUENCING PROBLEM
A.P. de Villiers', J. Matthews? & S.E. Visagie®*

.23 Department of Logistics
Stellenbosch University, South Africa
114812673@sun.ac.za, 2 14885054@sun.ac.za, ° svisagie@sun.ac.za

ABSTRACT

An order picking system that requires pickers to move in a clockwise direction around a
picking line with fixed locations is considered. The problem is divided into three tiers. The
tier in which orders must be sequenced is addressed. Eight tour construction heuristics are
developed and implemented for an order picking system operating in unidirectional picking
lines. Two classes of tour construction heuristics - the tour construction starting position
(TCS) and the tour construction ending position (TCE) - are developed to sequence orders in
a picking line. All algorithms are tested and compared using real life data sets. The best
solution quality was obtained by a TCE heuristic with adaptations.

OPSOMMING

’n Stelsel vir die opmaak van bestellings word ondersoek. Die stelsel vereis dat die werkers
in ’n kloksgewyse rigting om ’n uitsoeklyn beweeg. Die probleem is verdeel in drie vlakke
van besluite. Die besluit wat handel oor die volgorde waarin bestellings opgemaak word,
word ondersoek. Agt toer-konstruksie-heuristieke is ontwikkel en geimplementeer waarin
die bestellings in ’n eenrigting uitsoeklyn opgemaak word. Twee klasse toer-konstruksie-
heuristieke - die toer-konstruksie-beginposisie (TCS) en die toer-konstruksie-eindposisie
(TCE) - is ontwikkel om die volgorde van bestellings in ’n uitsoeklyn te bepaal. Al die
algoritmes word getoets en vergelyk vir werklike datastelle. Die beste oplossingskwaliteit is
verkry deur 'n TCE-heuristiek met aanpassings.

' The author is enrolled for a PhD (Operations Research) degree in the Department of
Logistics, Stellenbosch University.

2 The author is enrolled for a PhD (Operations Research) degree in the Department of
Logistics, Stellenbosch University.

* Corresponding author.

South African Journal of Industrial Engineering, November 2012, Vol 23 (2): pp 56 -67

mailto:14812673@sun.ac.za

1. BACKGROUND AND INTRODUCTION

Order picking is known to be the most important activity in distribution centres (DCs) [19].
It involves the process of retrieving products from storage (or buffer areas) in response to a
specific customer request [3]. Usually, more than one order picking system is used in a DC.
These order picking systems may be fully automated or operated by humans, but most
systems employ humans as order pickers. In a typical DC, about 65% of operating expenses
are consumed by order picking [15]. The organisation of order picking operations impacts
on the DC’s performance, and therefore also on that of the supply chain [3]. DC design,
storage assignment, and picker route planning may be used to enhance operating efficiency
and space utilisation to reduce order picking costs [9].

The order picking system in a DC owned by Pep Stores Ltd (‘Pep’), located in South Africa,
is considered in this paper. Pep is a chain store operating more than 1,500 branches. Pep
specialises in clothing but also sells other products, including home accessories and cellular
phones. Orders processed by the DC are requests for specific branches. An order for a retail
outlet is a set of products, together with the quantity of each product required by that
retail outlet. The size of the products has a direct impact on the picking system used by
Pep.

The DC uses an order picking system that is based on the concept of a wave. A wave may be
described as the set of stock keeping units (SKUs) in conjunction with the set of branches
requiring at least one of the SKUs. All the orders for that wave are picked as a single
operation. All the SKUs in a wave are therefore completely picked for all branches during
that wave.

To pick each wave, the DC uses a picking line. Figure 1 is a schematic representation of a
typical picking line used in the DC. An SKU is stored in a single location, and only SKUs
within the same wave may be stored on the same picking line. Pickers move in a clockwise
direction around the conveyor belt, picking the required SKUs for each order.

Locations

Locations

Figure 1: A schematic representation of the physical layout of a picking line containing
m locations

A voice-automated software system is used to communicate instructions to the pickers. This
system directs each picker to the required locations for a single order. Once a picker has
picked all the SKUs in an order, the voice-automated software system will direct the picker
to the closest required SKU for a new order. The system ensures that a picker will complete
all the picks for a single order before starting a new order. This system ensures that pickers
pick orders sequentially.

Each day picking lines are identified that will become available for waves during that
specific day. SKUs are then identified and grouped in the waves scheduled for the available

57

picking lines. A first-in-first-out (FIFO) policy is used to determine the SKUs that have to be
scheduled. The set of SKUs in a wave are then assigned to the available picking lines. Once
all the SKUs to be placed in a picking line are known, they are assigned specific locations
based on in-house guidelines. When the picking line becomes available, each SKU is
retrieved from storage and placed in its designated location. Once all the SKUs have been
placed, order picking may begin.

The planning of picking lines may be divided into three tiers of decisions. The first tier
determines which SKUs should be allocated to which picking line. The problem of assigning
scheduled SKUs to available picking lines is referred to as the ‘SKU to Picking Line
Assignment Problem’ (SPLAP). The second tier, known as the ‘SKU to Location Problem’
(SLP), considers the positioning of the various SKUs in a picking line. The final tier considers
the sequencing of the orders for pickers within a picking line, and is referred to as the
‘Order Sequencing Problem’ (OSP). All of these subproblems aim to achieve the objective of
picking all the orders in the shortest possible time.

The decisions associated with each tier are made sequentially during the planning of a
picking line. First it has to be decided which SKUs are assigned to which picking lines; then
each SKU has to be assigned to a specific location in the picking line; and finally the
sequence in which the orders should be picked must be determined.

Each subproblem therefore relies on the information generated by its predecessor. Thus, to
solve a subproblem the solution to the successive subproblem must be known. For example,
to evaluate a candidate solution for an instance of the SLP, the optimum sequencing of
orders generated by the OSP is required. Due to this exchange of information between
subproblems, the first subproblem which needs to be solved is the OSP. Any alteration in
the SLP or the SPLAP will influence the OSP. Since the OSP must be tested repetitively for
various alterations to the SLP or SPLAP, the OSP has to be solved quickly to avoid incurring
significantly high overall computational times.

2. THE OSP

The OSP may be described as the sequencing of all the orders, for each picker, given a
wave of SKUs assigned to distinct locations in a picking line, such that the total picking time
is minimised.

Each order requires a number of distinct SKUs in various amounts. A picker must visit each
location containing the SKUs required by that order and collect for each SKU the requested
number of units of that SKU. A picker may only start a new order once all the SKUs have
been collected from the current order. Pickers are required to move in a clockwise
direction when collecting SKUs.

The following assumptions are derived from consultation with Pep’s DC management and
from the assumptions of Matthews & Visagie [11].

1. A picker must complete an entire order before starting another. The next order
may not start at the same location where the previous order ended.

2. The time taken physically to pick an SKU is constant with regard to all the orders.

3. A picker walks at a more-or-less constant speed.

4. An order may start at any location, and will finish at the last location where an
SKU is picked for that order.

5. The time required to switch to the next order is negligible.

Given these assumptions, the OSP may be viewed as an equality-generalised travelling
salesman problem (E-GTSP). The E-GTSP partitions nodes into clusters, and the problem
calls for a minimum cost cycle visiting exactly one node in each cluster [5]. The E-GTSP is
an NP-hard problem [8].

58

If a cluster is defined as all possible starting positions associated with an order, each order
(cluster) must be followed by another order (cluster). Additionally only a single starting
location (node) in each order (cluster) must be selected.

Let the duple (i, 1) represent order [starting at location i. Let N be a set of all duples (i, 1)
and LI, ..,I, a proper partition of the set N, where I, ={(1,0),(2,0),..,(mD}, if m
locations are present on a single picking line. The set N may be interpreted as the vertices
on a digraph, with edges representing the distance in number of locations between orders.

The time needed to pick a product from a location is considered to be constant. The time
needed to travel between orders and locations is considered to be variable. Thus the
objective is to sequence a set of orders in such a way as to minimise the total distance
travelled, and therefore the total travel time, to complete all the orders.

Following the formulation by De Villiers & Visagie [4], let

1, if order k starting at location i is followed by order [
fG) = .
0, otherwise

and
Pk be the position of order k within the order sequence.

The following parameters are set in the model. Let

n be the total number of order,
m be the total number of locations,
dix be the number of locations which must be passed to complete
order k starting at location i and
Cijk =
{ 1, if orderk starting at location i is completed at location j
0, otherwise

The objective is then to

m n n
minimise Z Z Z dikxikl (1)

=1

I
fuy
&
Il
fay

subject to

n

inkl =1 l= 1, oy n, (2)
=1
n
in,d -1 k=1,..,n, 3)
k=1
m

X1 =0 l=1,..,n, 4)

m m n . 1
t=1,..,m
inkl - Z Z XpqlkCpqi = {k =1,..,n ®)

=1 p=1q=1

p=1 ®)

. k=1,..,n
Pk —Dit nz Xgg =n—1 {l = 2.‘ ,'n,' 7

i=1

i=1,..,m,
i € {0,1} {k =L..m ®

l=1,..,n,
P =0 k=1,..,n, ©)

59

The objective function (1) minimises the total distance travelled by a picker. Constraint
sets (2) and (3) ensure that each order is completed only once. Constraint sets (4) and (6)
ensure that the first order (which is a dummy order) is completed first and that it starts at
location 1. Constraint set (5) ensures that if order k starts at location i then the order that
precedes order k will end at location i. For example, if order k (starting at location i)
follows order g (starting at location p), then order g should end at location i. Therefore if
Xy €quals 1 then both ep,q; and x4, should also equal 1. Constraint set (7) follows from the
standard MTZ constraints [14]. It ensures that no subtours are generated. Subtours will
occur if at least two subsets of orders form their own closed pick sequences. One closed
pick sequence containing all the orders must be determined. The size of this formulation is
n?m +n variables (of which n?m are binary) and n? + 2n + nm constraints. For a typical
real life instance n ~ 1 200 and m =~ 56, yielding a number of variables in excess of 8 x 107
and a number of constraints in excess of 1,5 x 10°, which renders an exact approach
impossible.

Matthews & Visagie [11] suggested a maximal cut approach to solve this problem. This
approach always leads to a solution within one picking cycle of a lower bound to the
problem. However, the computational times for a typical real life instance of the model are
more than five minutes if solved on an Intel® Core™2 Duo 3GHz with 3.7 GB RAM running
Windows XP [18] using Lingo 11 [12]. The computational time for this approach is too long
for use in solving the SLP where many different SKU locations must be tested. Faster
approaches are therefore required to solve the OSP in less computational time. In the next
section, a short section on heuristic approaches in general is presented. However, this
paper focuses on tour construction heuristics to solve the OSP in much shorter times, while
maintaining reasonable solution quality.

3. HEURTISTICS FOR TSPs

TSP heuristics are typically classified into three types: tour construction heuristics, tour
improvement heuristics, and randomised improvement heuristics. Combinations of these
approaches are also found in the literature [6]. Typical tour construction heuristics include
the nearest neighbour heuristic, the family of insertion heuristic, Clark and Wright savings
heuristic, the minimal spanning tree heuristic, and Christofides’ heuristic [6,7]. Tour
improvement heuristics take a feasible solution to the TSP and improve on that solution by
locally changing the sequence in which nodes are visited. A well-known tour improvement
heuristic is the k-opt method, which replaces k arcs in the solution by another set of k arcs
that will result in a better solution [1]. Most randomised tour improvement heuristics arise
from the subject of metaheuristics, which includes algorithms like tabu search, simulated
annealing, genetic algorithms, and ant colony optimisation to solve TSPs [2].

The OSP presented here is not well suited to tour improvement or randomised improvement
heuristics, nor even to a combination of these methods. Both of these approaches start with
a current tour and attempt to improve on it by performing local changes to it. The
structure of the OSP limits the use of tour improvement heuristics, as a change in the
ending position of an order may effect all starting and ending positions (and thus pick
distances) of subsequent orders in the sequence. Therefore, by changing the sequence in
which a subset of orders is picked, the quality of the sequence of orders that follows this
changed subset also changes. This characteristic is illustrated by an example picking line
with ten locations and four orders. Figure 2 (a) illustrates the order sequence (A, B, C, D, E)
with a total pick length of 32 locations. The individual pick lengths of each order are also
given. If the sequence is changed by moving order D to the start of the sequence, as shown
in Figure 2 (b), both orders A and D will have shorter pick lengths, implying a local
improvement on orders A and D. The end location of order A is changed, however, and the
pick lengths for orders C and D have now increased, resulting in a longer total pick
distance. Although only one order was moved in the sequence (it is a local change) the pick
lengths for all the following orders changed. Therefore only tour construction heuristics
that add on orders at the end of the sequence are suitable for this variant of the TSP.

60

Experiments with real life data confirm that the problem shown in the example above holds
in general. Tour improvement heuristics and randomised improvement heuristics yield
substantially inferior results to tour construction heuristics, and are thus not considered
further in this paper.

|A_.C_.D B,D | c | B.D | A | |A,C,D] B.D
—_ _ > P esresesnensans!

Order Line Pick length Order Line Pick length
A === 9 D - 8
B 7 A == T
& == 7 Bttt 9
D - 9 C - - 9
Total 32 Total 33
(a) (b)

Figure 2: An example of a picking line with ten locations and four orders. A letter in a
location indicates that a specific order require SKUs from that location.

4. TOUR CONSTRUCTION APPROACHES

The general framework of tour construction heuristics has been adapted to take the
structure of the problem into account. To explain the approaches presented here, a number
of definitions are required [11].

Let a span of an order be the smallest set of locations passed to pick the entire order, given
a starting location. A span for an order k starting at location i may be represented by
St = (i,et), where i is the starting location and el the closest ending location of order k.
Any starting location for an order has a unique span associated with it, since an order must
be completed once it is started.

Let the size of a span be the number of locations traversed to complete the order picked on
that span. Each order may be assigned a starting point from all the possible locations within
a picking line. The size of a span Si. for an order k may be represented by:

P e .
il =leepl = {7 IS
m+ep —i if i> e
where m is the total number of locations. Consider the example in Figure 3, where order k
requires SKUs from locations 9, 12 and 16. If a picker who is currently at location 6 is
assigned order k he will traverse a distance of |S,?| = |(6,16)| = 10 locations and end at
location 16. The locations traversed by the picker are indicated by the thick dashed line in
Figure 3. Furthermore, let P, be the number of different SKUs that are required by order k.
For the example in Figure 3, three SKUs are picked in order k, resulting in P, = 3.

Let the minimum span S of an order be a span of smallest size for an order. From the
example in Figure 3, [ST™"| = [(9,16)| = 7.

The tour construction heuristics presented here attempt to assign a desirable order to a

picker when he/she finishes his/her current order. The influence of this assignment on the
sequence of future orders is not considered.

61

Locations

Conveyor Belt

ENNNNANANANANANNANNNANNNNNNN

- ety

Locations
Figure 3: A schematic representation of the layout of a picking line containing 20
locations. The squares indicates the SKUs that are requested by an order k.

17 16

4.1 Tour construction starting heuristic

The tour construction starting heuristic (TCS) considers the starting location of preferable
orders. If any orders require an SKU from the current location of the picker, only these
orders are considered. The order with the shortest span is then selected for picking. When
the picker has completed the order, the current location of the picker is updated
accordingly.

If, however, no orders require an SKU at the current location, the current location is
incremented by one until an order is found that does require an SKU from the current
location. This process is repeated iteratively until all orders are picked. The general
framework of the TCS is given in Algorithm 1.

Algorithm 1: Tour construction starting heuristic (TCS).

Data: A set of orders, a set of SKU locations within a picking line and which SKUs must be picked by
which order.
Result: A sequence in which the orders may be picked and the total number of cycles traversed.
Set the current location to location 1;
while All orders have not been sequenced do
Determine all the orders requiring a SKU at the picker's current location;
if no such order exists then
Increment the current location by one;
Update the number of cycles traversed;

end
else
Determine the next order by means of equation (10) ;
Add this order to the sequence;
Update the current location;
Update the number of cycles traversed;
end

end

Algorithm 1: Tour construction starting heuristic (TCS)

The TCS therefore determines the next order, k, to be picked from location i as

k =arg kmEiRn|s,i|, (10)
where R; is the set of orders, not yet completed, that have to be picked from location i. If
R; = @, the current location i is increased by one. The nearest order may be interpreted as

the order that may be completed within the smallest number of locations from the current
location.

4.2 Tour construction ending heuristic

The tour construction ending heuristic (TCE) considers the end location of pending orders if
started at the current location of picker i. The spans of all pending orders starting at
location i are used as a measure, and the order with the shortest span is selected. The
general framework of the TCE is given in Algorithm 2.

62

Algorithm 2: Tour construction ending heuristic (TCE).

Data: A set of orders, a set of SKU locations within a picking line and which SKUs must be picked by
which order.
Result: A sequence in which the orders may be picked and the total number of cycles traversed.
Set the current location to location 1
while All orders have not been sequenced do
Determine the next order by means of equation (11) ;
Add this order to the sequence;
Update the current location;
Update the number of cycles traversed;
end

Algorithm 2: Tour construction ending heuristic (TCE)

The next order in the TCE is determined as

k = arg min|s;|, (1)
where U is the set of uncompleted orders. The TCE heuristic essentially considers all
uncompleted orders, whereas the TCS considers only a subset of these for selection.

4.3 Results of the tour construction heuristic approaches

To evaluate the proposed tour construction heuristics, 22 real-life data sets were received
from Pep. The heuristics were compared with a lower bound obtained by the maximal cut
approach described by Matthews & Visagie [11]. All the algorithms were tested using an
Intel® Core™2Duo 3 GHz with 3.7 GB RAM running Linux Ubuntu 9.10 [17] using Java [16].
The average time for solving an instance by means of the maximal cut approach is about
five minutes. Both the heuristics were tested, and all computation times were significantly
less than one second, which is significantly lower than the maximal cut approach.

The data sets were divided into three groups: large, medium, and small. Large data sets
have more than 1,000 orders, medium data sets contain between 200 and 1,000 orders, and
small data sets less than 200 orders. Table 1 displays the results for the various heuristics,
as well as the lower bound.

The TCS outperformed the TCE for the large data sets. The TCE, however, outperforms the
TCS for the medium and small data sets.

Table 1: Results obtained from the TCS and TCE used to solve several OSP instances.
The solutions are displayed as the number of cycles traversed to pick all the orders. The best
performing heuristic for each data set is indicated in boldface. The size - that is, number of orders
(0) and locations (L) - is displayed for each data set.

Data Size Lower
set (O, L) bound TCS TCE
A (1262,49) 1232 1253 1248
B (1264,54) 1226 1243 1243
C (1265,51) 1161 1200 1230
D (1263,56) 1072 1120 1202
g E (1264,51) 1069 1132 1186
3 F (12:)8 55) 1025 1072 1199
= G (1258,53) 1005 1076 1196
H (1244,54) 992 1056 1128
I (1260,56) 955 1018 1122
J (1264,56) 947 999 1088
K (943,63) 259 367 393
- L (846,56) 232 322 305
2 M (728, 51) 152 260 225
g N (733,55) 125 209 187
s 0] (396 63) 90 200 184
P (574,48) 80 148 125
Q (242,64) 45 110 920
R (158,55) 14 28 24
= S (89,42) 9 12 14
£ T (82,51) 8 15 11
2 U (90,48) 7 14 10
A (80,56) 6 10 7

63

5. TOUR CONSTRUCTION HEURISTIC ADAPTATIONS

Focusing solely on spans as a way to distinguish between desirable orders may be
inadequate. This is illustrated by an example, shown in Figure 4, with a picking line
containing two orders: order k (indicated by squares) and order [(indicated by triangles).

Locations

6 10

19 18 16 15 14 13

IJIA

Locations

Figure 4: A schematic representation of the layout of a picking line containing 20
locations.
The squares indicate the SKUs that are requested by an order k, where triangles indicate the SKUs
that are required by an order 1.

Consider a picker currently positioned at location 4. Either order k or order [may be
picked. There is no preference between the two orders as |S¢| = |S}| = [(4,16)| = 12. The
minimum span of order k, however, is S¢. In this situation it may be more desirable to pick
order k, as the picker is able to pick it on its minimum span, leaving order [for a later
opportunity when the picker might pick order [on a shorter span too. In the next section,
adaptations of the TCS and TCE are introduced to address this situation.

5.1 Minimum span adaptations

In an effort to assign preference to picking orders on their minimum spans, the length of a
proposed span of an order is compared with the length of its minimum span. Both the TCS
and the TCE were adapted with this variation (TCS; and TCE;). Let the TCS; determine the
next order k to be picked, given a current location i, to be sequenced as

J = |kl

arg mm|5m‘“|

If [Sk|/|SE™| the pick-length of order k is at a minimum. Similarly, the next order k
sequenced in the TCE; given a current location i is determined as

[l

|5m1n|

k =arg mm

5.2 Pick density adaptations

A situation may arise where multiple orders have identical spans given a starting location,
but the number of picks may differ. This variation uses a similar approach to TCS; and
TCE,, but considers the number of picks in an order instead of the minimum span. Let the
TCS, heuristic determine the next order k to be picked to be

k = ar mmM

= g n Pk

where i is the current location and Py is the number of picks in order k. If |S£|/P, the pick-
length of order k is at a minimum and there is a pick at each location on the minimum
span. The next order in the TCE, heuristic is determined as

Ikl

k = arg m1n

64

5.3 Combined relative measures

A final approach is considered where the combined influences of the relative measures are
used. This variation combines the relative measures of considering the minimum span of an
order, as well as the number of picks in an order. Let the TCS; heuristic determine the next
order k to be picked as
15
k = arg min ————.
KR S P,
The next order in the TCE; heuristic is determined as
e are IS8
This variation considers both the minimum span and the number of possible starting
locations for each order. An adaptation, where the denominator in TCS; and TCE; may be
altered to the additive form, was also tested. This approach delivers similar results to the
multiplicative case.

5.4 Results of the adapted tour construction heuristic approaches

Table 2 displays the results obtained for all the variations of the TCS and TCE heuristics
used to solve the OSP. The TCE heuristic and its variations outperform the TCS heuristic and
its variations. This may be attributed to the fact that the TCE heuristics consider a wider
range of possible orders to be picked when selecting a following order.

Table 2: Results obtained from all the variations of the TCS and TCE heuristics used to
solve the OSP.
A total of 22 real-life data sets are considered where the number of orders (O) and locations (L)
are displayed for each data set. The solutions displayed in bold type indicate the best-performing
heuristic for each data set.

Data Size Lower
set, (O, L) bound TCS TCS, TCSa TCSy TCE TCE, TCE2 TCEs
A (1262,49) 1232 1253 1255 1254 1255 1248 1247 1252 1252
B (1264,54) 1226 1243 1247 1248 1247 1243 1232 1241 1241
C (1265,51) 1161 1200 1229 1226 1229 1230 1180 1184 1185
D (1263,56) 1072 1120 1203 1207 1203 1202 1108 1144 1133
Ery E (1264,51) 1069 1132 1209 1199 1209 1186 1123 1119 1111
3 F (1258,55) 1025 1072 1142 1141 1139 1199 1104 1068 1067
- G (1258,53) 1005 1076 1186 1185 1188 1196 1062 1055 1049
H (1244,54) 992 1056 1181 1178 1182 1128 1031 1042 1030
I (1260,56) 955 1018 1163 1161 1165 1122 1014 1017 1013
J (1264,56) 947 999 1163 1163 1165 1088 993 978 o977
K (943,63) 259 367 444 434 445 393 295 282 290
- L (846,56) 232 322 346 347 340 305 245 241 245
E M (728,51) 152 260 248 260 256 225 206 187 189
T N (733,55) 125 209 215 218 214 187 157 140 150
ﬁ O (396,63) 90 200 216 218 214 184 138 140 140
P (574,48) 80 148 139 150 143 125 115 103 109
Q (242,64) 45 110 109 101 111 90 65 58 58
R (158,55) 14 28 27 28 27 24 21 22 22
:1.‘.' S (89,42) 9 12 13 12 13 14 13 11 11
= T (82,51) 8 15 15 15 16 11 11 11 12
w U (90,48) 7 14 14 14 14 10 9 9 9
v (80,56) 6 10 9 10 11 7 8 8 8

Table 3 displays the computational times for all the tour construction heuristics considered
in this paper. The computational times are given in milliseconds.

In an effort to compare algorithms over multiple data sets, the results of each algorithm
were normalised relative to the lower bound. The data were normalised by dividing the
number of cycles traversed by the lower bound. This normalisation establishes a relative
measure by which algorithms may be compared. The normalised results for each size of
data were then grouped as one sample of elements, and the testing was done to determine
whether there were significant differences in the mean between the different algorithms.

65

An overall level of significance in the form of a Bonferroni t-test was performed for the 22
instances considered, to determine if the mean solution of one instance differs significantly
between all possible pairs of instances. In the case where x instances are considered
(’2“) =x(x —1)/2 two sample t-tests may be performed to test for significant difference
between all possible pairs of instances.

Table 3: Computational times in milliseconds for all the variations of the TCS and TCE
heuristics used to solve the OSP.
A total of 22 real life data sets are considered where number of orders (O) and locations (L) are
displayed for each data set.

Data Size
set (0, L) TCS TC8; TCS; TCS; TCE TCE TCE; TCEs
A (1262,49) 712 693 771 7ol 213 256 492 H34
B (1264,54) 372 340 376 338 486 134 486 487
C (1265,51) 236 235 187 235 473 608 454 408
D (1263,56) 186 183 179 190 481 499 467 462
& E (1264,51) 183 175 180 179 687 392 636 644
2 F (1258 55) 161 134 137 136 379 661 374 384
— G (1258,53) 251 184 175 184 453 453 449 446
H [1244 54) 160 158 206 156 475 607 471 479
I (1260,56) 180 184 184 199 475 534 452 447
J (1264,56) 141 143 150 147 465 469 448 429
K (943,63) 52 53 90 a5 134 438 139 143
- L (8-16,56} 46 47 45 48 118 127 138 112
= M (728,51) 32 33 34 36 288 322 278 T4
35 N (733,55) 29 32 30 31 63 83 Tl 69
i O (396,63) 24 22 25 23 261 582 251 279
P (574,48) 21 37 23 23 62 74 61 34
Q (242,64) 26 10 13 31 73 it 63 37
R (158,55) 6 6 6 6 26 39 16 10
= S (89,42) 4 4 5 5 7 8 7 4
g T (,561) 5 5 5 8 13 20 9 10
o U (‘}(l 48) 4 7 5 6 10 11 11 4
Vv (80,56) 5 i 5 6 13 11 12 18

The Bonferroni method may overcome the problem of assigning an overall level of
significance when considering a large number of t-tests. The confidence level is modified
from a to 2a/x(x — 1) for each of the t-tests. The confidence level then pertains to each of
the x(x —1)/2 confidence intervals covering their respective differences of population
means [10]. The confidence level helps to determine if statistically significant differences
are large enough to be of practical importance.

Table 4 shows the results obtained when a Bonferroni t-test was conducted on the
performance of the average of the solution quality of each heuristic divided by the lower
bound for each data set [10]. The different classes indicate that the means of various
heuristics considered were significantly different for a Bonferroni multiple comparison test
with p < 0.05.

On average, the TCE; heuristic performs best for small data sets, while TCE, performs best
for medium and large data sets. The TCS heuristics and its variations are comprehensively
outperformed by the solutions of the TCE heuristic and its variations.

6. CONCLUSION

An order picking operation found in a DC owned by Pep Stores was investigated. Three tiers
of problems were identified: the SPLAP, SLP, and OSP. Quick tour construction heuristics
are required to solve the OSP, since the SLP and SPLAP can only be solved by repeatedly
solving the OSP. Initially two classes of tour construction heuristics were introduced,
followed by extensions of these heuristics. Computational results are presented that
illustrate the improved performance when extending the original heuristics. The best-
performing heuristic is the TCE with relative measures. In particular, the TCE, achieved the
best overall performance of the instances considered.

66

Table 4: Results obtained from the Bonferroni t-test for small, medium and large data sets.
The mean represents the average of the results obtained by the respective heuristics divided by
the lower bound. The value of N indicates the number of observations considered for each class.

Bon. class Mean N Algorithm
A 1.0361 10 TCE;
A 1.0401 10 TCE,
A 1.0402 10 TCE2
& A B 1.0470 10 TCE
3 A B C 11137 10 TCS
B C 1.1263 10 TCSs
B C 11278 10 TCS,
(o] 1.1283 10 TCSs
A 1.2300 7 TCE.
A 1.26089 7 TCE;
B A 1.3174 7 TCE,
2 A B 1.6307 7 TCE
T A B C 18149 7 TCS
= B C 1.8739 7 TCS,
C 1.8811 7
C 1.8874 7
A 1.3575 5
A B 1.3825 5
A B 1.3877 5
= A B 1.4480 5
E A B 1.7496 5
A B 1.775 5
A B 1.7750 5
B 1.8413 5

REFERENCES

(1]
(2]
(3]
(4]
(3]
(6]
(7]

(8]
(9]

(10]
(1]
[12]
[13]

[14]

[15]

[16]
[17]
[18]
[19]

Barun, C., Karloff, H. & Tovey, C. 1999. New results on the old k-opt algorithm for the traveling
salesman problem, Operations Research, 28(6), pp. 1998-2029.

Cheng, C.B. & Mao, C.P. 2007. A modified ant colony system for solving the travelling salesman
problem with time windows, Mathematical and Computer Modelling, 46(9-10), pp. 1225-1235.

De Koster, R., Le-Duc, T. & Roodbergen, K.J. 2007. Design and control of warehouse order
picking: A literature review, European Journal of Operational Research, 182(2), pp. 481-501.

De Villiers, A.P. & Visagie, S.E. 2011. Toewysingsheuristieke om die volgorde van bestellings vir
’n uitsoeklyn te bepaal, Litnet Akademies, 9(1) pp. 1-22.

Fischetti, M., Gonzalez, J.J.S. & Toth P. 1997. A branch-and-cut algorithm for the symmetric
generalized traveling salesman problem, Operations Research, 45(3), pp. 378-394.

Gendreau, M., Hertz, A. & Laporte, G. 1992. New insertion and postoptimisation procedures for
the traveling salesman problem, SIAM Journal on Computing, 40(6), pp. 1086-1094.

Johnson, D.S. & McGeoch, L.A. 2007. Experimental analysis of heuristics for the STSP, in Gutin,
G. & Punnen, A.P. (eds), The traveling salesman problem and its variations, Springer, New York,
pp. 369-443.

Gutin, G. & Yeo, A. 2003. Assignment problem based algorithms are impractical for the
generalized TSP, Australasian Journal of Combinatorics, 27, pp. 149-153.

Hsieh, L. & Tsai, L. 2006. The optimum design of a warehouse system on order picking
efficiency, The International Journal of Advanced Manufacturing Technology, 28(5-6), pp. 626-
637.

Johnson, R.A. 2005. Miller & Freund’s probability and statistics for engineers, 7" ed., Pearson
Prentice Hall.

Matthews, J. & Visagie, S.E. 2011. Order sequencing on a unidirectional cyclical picking line,
[Submitted].

Lindo Systems. 2011. Lingo 11. Retrieved March 2011 from www.lindo.com.

Litvak, N. & Vlasiou, M. 2009. A survey on performance analysis of warehouse carousel systems,
(Unpublished) Technical Report, Department of Applied Mathematics, University of Twente,
Twente.

Punnen, A.P. 2007. The traveling salesman problem: Applications, formulations and variations,
in Gutin, G. & Punnen, A.P. (eds), The traveling salesman problem and its variations, Springer,
New York, pp. 1-28.

Ruben, R.A. & Jacobs, F.R. 1999. Batch construction heuristics and storage assignment
strategies for walk/ride and pick systems, Management Science, 45(4), pp. 575-596.

Sun Microsystems. 2011. Java. Retrieved June 2011 from http://java.sun.com.

Ubuntu. 2011. Retrieved March 2011 from www.ubuntu.com.

Microsoft. 2011. Windows XP. Retrieved March 2011 from www.microsoft.com.

Yu, M. & de Koster, R.B.M. 2009. The impact of order batching and picking area zoning on order
picking system performance, European Journal of Operational Research, 198(2), pp. 480-490.

67

	TOUR CONSTRUCTION HEURISTICS FOR AN ORDER SEQUENCING PROBLEM
	1. BACKGROUND AND INTRODUCTION

