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ABSTRACT 

Forecasting electricity consumption is one of the most important challenges in electricity 
system planning. This paper presents an improved semi-parametric regression model using 
the Student distribution function of residual to replace the nonparametric component of 
the traditional semi-parametric model, thus eliminating the effects of the residual 
disturbance term. Compared with general linear models, the models make statistical 
inferences and can automatically regulate the boundary effect, which gives the forecast 
result a higher accuracy. A case study using data from China is presented to demonstrate 
the effectiveness of the approach. 

OPSOMMING 

Die vooruitskatting van elektrisiteitverbruik is een van die belangrikste uitdagings in 
elektrisiteitstelselbeplanning. Dié artikel bevat ’n verbeterde, semi-parametriese regressie-
model, wat gebruik maak van die Studentverdelingsfunksie van residuee om die nie-para-
metriese komponent van die tradisionele semi-parametriese model te vervang, en sodoende 
die effekte van die residuversteuringsterm uit te skakel. In vergelyking met algemene 
lineêre modelle, kan die model statistiese afleidings maak en outomaties die grenseffek 
reguleer, wat lei tot groter akuraatheid van die vooruitskatting. ’n Gevallestudie wat 
gebruik maak van data van China demonstreer die effektiwiteit van die benadering. 
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Nomenclature 
The notations used throughout the paper are stated below: 
α̂   estimator of the parameter α  

TA   transpose of A  
( )x t   value of influence factors at time t  

y   electricity consumption function 
2( , )N µ σ  normal distribution function 

EC  electricity consumption 
GDP  gross domestic product 
TEIV  total import and export volume 
IFA  investment in fixed assets 
IAV  industrial added value 
DI  disposable income 

1. INTRODUCTION 

In recent decades, the total consumption of electricity in China has undergone a sustained 
and significant increase. According to official figures [1], during the period from 1980 to 
2009, the annual rates of variation ranged from 2.97% (1980/81) to 6.79% (2008/09), while 
the electricity consumption in 2009, at 123.6595 10× kwh, was 1117% higher than in 1980. 
After the United States, China has the second largest electricity consumption rate in the 
world. Despite the relationship between the growth of electricity demand and certain 
social, economic, and policy factors, the pace of change between them is sometimes not 
consistent. There have been widespread electricity shortages throughout the last 60 years 
of Chinese history. During the 1997 Asian financial crisis, China experienced an electricity 
surplus for the first time. However, electricity shortages again appeared in 2002 and 
worsened in 2004. In 2004, 24 provinces had power shortages, and the total gap in China 
was 31 GW. With the rapid growth of China’s economy since 2005, there has been an 
electricity shortage in China almost every year.  
 
The disharmony between electricity demand and these factors in China suggests an 
important task. According to the factors already obtained, the demand drivers and the 
fundamental pillars in building a forecasting model [2-4] both need to be determined. 
Furthermore, methods of predicting electricity consumption precisely, effectively, and 
practically also need to be created. A proper solution of these problems will help to 
accelerate the future development of China, and also help one to understand the power 
operating environment, since inaccurate consumption forecasting will increase the 
operating costs of utility companies.  
 
Since there is no consensus about the best approach to forecasting electricity consumption, 
various methods have been developed in recent years. Generally speaking, from the 
classification analysis of the predictive behaviour itself, the methodology for electricity 
consumption forecasting can be divided into three categories: numerical approximation 
class processing methods, statistical regression class processing methods, and intelligent 
optimisation class processing methods.  
 
First, numerical approximation class processing methods (NACPM) rely solely on the 
variation of the data itself to find the information supporting predictive behaviour; they do 
not consider the effects of the other factors. Based on this view, many scholars have drawn 
a number of useful results. Wang et al. [5] investigated a dynamic GM (1,1) model based on 
the cubic spline function interpolation principle to forecast the electricity consumption of 
China. The authors used piecewise polynomial interpolation thought processing electricity 
consumption data to analyse the electricity consumption trends to make predictions. In 
references [6]-[7], Wang et al. use Gauss orthogonalisation theory to improve the grey 
prediction model, and, in constructing the grey combinative interpolation model to forecast 
the electricity consumption of China, they achieved good prediction results. In addition, 



156 

Wang also introduced Markov Chain theory to the grey combinative interpolation model, 
and constructed the Markov grey orthogonalisation model for electricity consumption 
prediction [8]-[9], which also obtained good prediction accuracy. 
 
Second, statistical regression class processing methods (SRCPM) often consider the synergy 
of multiple factors that affect predictor variables to measure predictive behaviour. 
Statistical regression class methods are widely used for the electricity consumption 
forecasting problem. For example, Ching Lai [10] investigated the impact of weather 
variables on monthly electricity demand in England and Wales. A multiple regression model 
was developed to forecast monthly electricity demand based on weather variables, gross 
domestic product, and population growth. Egelioglu et al. [11] studied the influence of 
economic variables on the annual electricity consumption in northern Cyprus between 1988 
and 1997. Through multiple regression analysis, it was found that the number of customers, 
the price of electricity, and the number of tourists correlated with the annual electricity 
consumption. Wei et al. [12] have estimated the long-term electricity load by applying 
system dynamics, which construct the model according to an analysis of historical 
electricity consumption. This method discovered the significant influence of uncertain 
factors such as economy and policy. Narayan and Prasad [13] studied any causal effects 
between electricity consumption and real GDP for 30 OECD countries, using the 
bootstrapped causality testing approach to show electricity consumption affecting the real 
GDP in Australia, Iceland, Italy, the Slovak Republic, the Czech Republic, Korea, Portugal, 
and the UK. They found that electricity conservation policies will negatively impact real 
GDP in the eight countries mentioned above and, for the remaining 22 countries of the 
OECD, the electricity conversation policies will not affect real GDP. Nikolopoulos et al. [14] 
compared multiple linear regression (MLR) with the artificial neural network, nearest 
neighbour analysis, and human judgment; the application results showed that the MLR was 
less accurate than other methods as a result of its inability to handle complex non-
linearities in the relationship between the dependent variable and the cues, as well as its 
tendency to misaddress the in-sample data. Abdel-Aal et al. [15] applied an abductory 
induction mechanism (AIM) model to the domestic consumption in the eastern province of 
Saudi Arabia in terms of key weather parameters, demographics, and economic indicators. 
It was found that an AIM model, which uses only the mean relative humidity and air 
temperature, gave an average forecasting error of about 5-6% over the year. Yan [16] also 
presented residential consumption models using climatic variables for Hong Kong.  
 
Third, intelligent optimisation class processing methods (IOCPM) simulate or reveal some 
natural phenomena to obtain optimisation methods that adapt to the environment, and 
thus solve the combination forecasting problems that are difficult for traditional forecasting 
techniques to address, by presenting a series of practical programmes. Research on this 
method (IOCPM) provides new and useful ideas for predicting behaviour itself. Nasr et al. 
[17] presented an Artificial Neural Networks (ANN) approach to electrical energy 
consumption forecasting in Lebanon. Four ANN models are presented and implemented in 
the research: a univariate model based on past consumption values; a multivariate model 
based on energy consumption forecasting time series and degree days; a multivariate model 
based on energy consumption forecasting total imports; and a model combining energy 
consumption forecasting, degree days, and total imports. Niu et al. [18] used a particle 
swarm optimisation (PSO) algorithm to predict the electricity load in China. The PSO 
algorithm was adopted to solve the disturbance vector α , as it has the virtue of optimum-
seeking. Metaxiotis [19] provides an overview of the studies examining Artificial Intelligence 
(AI) technologies, as well as their current use in the field of short-term electrical load 
forecasting. Santos [20] has also used the ANN algorithm to make load forecasts, and with 
this method, the possibility of including weather-related variables in the input vector has 
also been analysed. 
 
Based on the analysis of the literature above, one may refer to the researchers’ experience 
of how they chose the factors for electricity consumption forecasting in the correlation 
field. Considering the actual situation of China's national conditions, after comprehensive 
data analysis and filter processing of electricity consumption data, we chose the following 
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five factors that best reflect the truth of China's electricity consumption data during the 
period 1980 to 2009: 
 
(1) Gross domestic product (GDP) 
(2) Total import and export volume (TEIV) 
(3) Investment in fixed assets (IFA) 
(4) Industrial added value (IAV) 
(5) Disposable income (DI) 
 
The factors chosen above are the main reasons for complexity and periodic shape. They 
reflect the status of China’s current development in accordance with its national 
conditions.  
 
The remainder of the paper is organised as follows: Section 2 introduces an overview of 
electricity consumption in China. Section 3 discusses the methodology and the data of the 
study, and provides an accurate model for electricity consumption forecasting. Case 
analysis and results comparisons are used in Section 4, leading to the conclusion in Section 
5. 

2. OVERVIEW OF ELETRICITY CONSUMPTION IN CHINA 

With the rapid development of China’s economy, total electricity energy consumption 
increases sharply. The changes in electricity supply and demand in China since 1980 can be 
described in three stages. During the first stage, from 1978 to 1996, electricity consumption 
grew steadily by 7% per annum. Stage two stretched from 1997 to 2000 and, with the 
influence of the Asian financial crisis, electricity consumption grew slowly. However, from 
2001 electricity consumption increased rapidly by 15% per annum, keeping pace with 
China’s economic development.  
 
Electricity consumption, economic growth, and environmental constraints interact in a 
dynamic way. Continued growth in electricity consumption and the enhancement of 
environmental factors have led the transformation of economic development in China by 
promoting industrial structure reforms and improving electricity availability. At present, 
China's power structure is mainly dominated by thermal power. Coal consumption for 
energy accounts for 50% of the total national coal consumption. The rapid growth of 
electricity consumption led to the rapid growth of coal consumption, which increased 
environmental pollution. It is therefore necessary to improve the accuracy with which 
electricity consumption is predicted to obtain a more accurate understanding of future 
environmental pollution. This predictive ability can provide policymakers with more 
accurate information for the development of relevant policies, and eventually achieve the 
goal of having reduced the 2020 carbon dioxide emissions per unit of GDP by about 40-45% 
when compared with 2005. 

3. METHODOLOGY AND DATA 

3.1 Data sets 

China is at a critical stage of its economic development, which is China's first priority. 
Therefore we select the mainly economic factors that affect electricity consumption 
because, in this context, indicators of economic performance can better reflect the trends 
and levels of electricity consumption. 
 
So, how can one discover suitable economic indicators? One knows that the volatility of GDP 
continuously influences the trend of electricity consumption; therefore, the GDP value can 
be seen as one indicator. At the same time, the ‘troika’ of total import and export volume 
(TEIV), investment in fixed assets (IFA), and disposable income (DI) can also accurately 
describe the trends of China’s economic growth. Thus these three indicators can be 
included in the indicator system, since they are representative and rational.  
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Furthermore, industrial production is an important component of economic production in 
China’s current industrial structure. Industrial electricity consumption accounts for a large 
proportion of total electricity consumption – generally 70% or more. On the one hand, 
industrial production creates huge economic benefits; but on the other, it consumes a large 
amount of electricity resources. Therefore the industrial added value (IAV) indicator, which 
reflects the growth trend of industrial production, can also be included in the indicator 
system. 
 
In summary, we use the indicators GDP, TEIV, IFA, IAV, and DI to construct the index 
system. Not only do these indicators reflect the true background of China's power 
consumption, but their inclusion also enhances the integrity of the index selection. 
 
For the period 1980-2009, the annual figures for electricity consumption were obtained by 
the National Bureau of Statistics of China in its survey called 60 Years of New China 
Statistical Data Compilation.  
 
The annual data for the GDP, TEIV, IFA, IAV, and DI for the same period were also taken by 
the 60 Years of New China Statistical Data Compilation.  
 
The historical data of electricity consumption are reported in Figure 1, and the 
independent variables (i.e., GDP, TEIV, IFA, IAV, and DI) are presented in Figure 2. 

 
 

 

 

 

 

 

 

Figure 1: Historical data for electricity consumption in China 

 
In Figure1, electricity consumption shows a trend of substantial linear growth. In 1997 a 
marked decrease in the electricity consumption was detected. The growth rate of 
electricity consumption at 2.79% (1997/98) was much lower than the average growth rate 
of 9.06%, probably due to the Asian financial crisis of that period.  
 
Generally, the trends of the other five factors are consistent with electricity consumption, 
but each of the factors also presents differing characteristics. From Figure 2 (a), the GDP 
trend of China maintains a sustained, significant increase; an inflection point only appears 
in 1997, and the period of inflection terminated in 2004, explained by the Asian financial 
crisis. Interestingly, the level of GDP growth has been slightly greater than the growth rate 
for electricity consumption, while the other four factors (TEIV, IFA, IAV, DI) are more 
closely associated with electricity consumption than with GDP. In Figure 2, the trend of 
TEIV, IFA, IAV, and DI only keeps pace with electricity consumption from 1993, after which 
their rates start a modest rise, slightly higher than consumption. It is worth noting that the 
TEIV value had a clear downward trend in 2008 (dropping by 16.27% on link relative ratio), 
owing to the global financial crisis; but it did not appear to impact electricity in China 
significantly. From Figure 2, one can garner information on two aspects. First, these 
characteristics show that since 1993, the growth rate of China’s economy has increased 
quickly, and the economic structure is increasingly diversified. Second, there was a strong 
relationship between the aforementioned factors and electricity consumption. The trend 
comparison chart of electricity consumption and the factors are presented in Figure 3. 
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Figure 2: Historical data for the variables: 
(a) GDP; (b) TEIV; (c) IFA; (d) IAV; (e) DI 

 
 

Figure 3: Trend comparison of electricity consumption and the five factors 

3.2 Data standardisation 

Many researchers have noted the importance of standardising variables for multivariate 
analysis. Otherwise variables measured at different scales do not contribute equally to the 
analysis. For example, in boundary detection, a variable that ranges between 0 and 100 will 
outweigh a variable that ranges between 0 and 1. In effect, using these variables without 
standardisation gives the variable with the larger range a weight of 100 in the analysis. 
Transforming the data to comparable scales can prevent this problem. Typical data 
standardisation procedures equalise the range and/or data variability. 
 
The methodology for data standardisation can be divided into three categories: extreme 
value methods, standardised methods, and mean value methods. In this paper, standardised 
methods for data standardisation are used for two reasons. Initially they eliminate the 
variation of the difference of each variable when making dimensionless processing. Second, 
they consider the distribution of original data, which is what is required to establish the 
semi-parametric forecasting model. The calculation method is as follows: 
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where x  is raw data to be standardised, [ ]E xµ = is the mean value, and ( )Var xσ =  is 
the standard deviation of the raw data. 
 
After standardisation, all variables will have the same weight during analysis. In addition, 
one may decide to weight the data based on knowledge of the relative importance of the 
variables. 

3.3 Build the semi-parametric prediction model 

In the course of electricity consumption data processing, one sees from the literature that 
many researchers use the parametric model, since its construction is simple and its 
processing convenient. Furthermore, for a majority of situations (for instance, kinds of 
static problems of conventional historical consumption data), the use of this model accords 
with objective facts, and it can satisfy practical needs because a majority of system errors 
are compensated, rectified, and can be expressed in the parameter model before data 
processing. However, under certain situations (for instance, some dynamic forecast issues 
of consumption), as observed values include system errors that cannot be rectified and 
parametric, there are non-ignored differences between the parametric model and objective 
practicality. 
 
In fact, the system errors contain considerable information that influences the observed 
values. Therefore, if they can be identified and withdrawn correctly, not only can the 
accuracy of the parameter estimate be increased, but data can be provided for the study of 
the other subjects.  
 
In addition, the factor of impacting observed values can be divided into two parts. The first 
is a linear relation; the second is a certain interference factor in which the relation to 
observation values is completely unknown, causing it to fall under the error item without 
any reason. In this case, too much information will be lost if the non-parametric model is 
used (though it has greater flexibility); thus, the imitated result is unacceptable if the 
linear model is adopted. 
 
Given the above problems, other data forecast processing models need to be considered, 
such as the semi-parametric model: 
 

( ) ( 1, 2, , )T
i i i iY X g i nβ ξ ε= + + =        (1) 

 
where 1( , , )i i idY y y=  are observations, or historical electricity consumption, 

and 1( , , )T
i pi iX x x=  are explanatory variables, or indicators. The errors 

1( , , )ii i dε εε=  are assumed to be independent and identically distributed (denoted as 

iid). 1( , ), dβ βΩ =  is the p d× matrix of unknown parameters, and 

1( ) ( ( ) ,, )( )dg g gξ ξ ξ=  is the 1 d× vector of unknown functions. In this paper, the 

distribution function of Student residuals replaces the unknown function ( )g ξ . For 
simplicity, let 

1 1( , ) ( ,, ),T T T
ndY y y Y Y= =   ； 1 1( , ) ( ), , , T

p nX x x X X= = 
 

1 1( , ) (, , (( ) , ))T
n

T T
dG g g gg ξ ξ= =   ； 1 1( , ) ( ,, ),T T T

ndε ε ε ε ε= =   
 

The matrix form of the model (1) is  
Y X G ε= Ω + +         (2) 
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This is an important type of statistical model developed in the 1980s (Engle [21]). Because 
it not only contains the parameter weight (which describes the known composition of 
function relation in observation values) but also contains the non-parameter weight (which 
exclusively shows the model deviation that is unknown in function relation), the model can 
generalise and describe numerous actual problems, bringing it closer to reality.  
 
In this sub-section, the prediction principle diagram based on the semi-parametric multiple 
regression model is provided to analyse the forecasting process, which has multiple impact 
factors. Subsequently the specific steps on how to build the improved semi-parametric 
prediction model are given.  
 
3.3(a) Prediction principle diagram  
 
 

 
 
 
 

 
 

 

 

 

Figure4: Prediction principle diagram of semi-parametric model  
with multiple impact factors 

In Figure4, the tagging below the horizontal axis are the factors for each time period. 
Assuming that one has collected M kinds of factors associated with the predictive object y , 
one denotes 1 2[ , , , ]mX x x x=  . Supposing 1 2[ , , , ]t t t mtX x x x=   at the historical time 

period (1 )t t≤ ≤ ∆  that the amount of value to be predicted is ty , we need to predict the 

future at the time period [ , ]t a b∈ ∆ + ∆ +  under the law of historical development. In 
Figure 4, if the time axis is the horizontal axis, and if one considers the vertical line with 
the current time point as the vertical axis, then Figure 4 can be regarded as a two-
dimensional coordinate system with the time point ‘present’ as the coordinate origin. Thus 
Figure 4 can be divided into four quadrants, I to IV. Therefore, from Figure 4 one finds that 
the implication of semi-parametric regression forecasting is as follows. First, use the data 
of quadrants II and III to precede a historical fitting operation and derive the forecasting 
model. Next, use the data of quadrant IV as the input of the forecasting model, thus 
obtaining the forecasting result of quadrant I. 

 
3.3(b) Modelling steps 
 
Step 1: By establishing the multiple linear regression method and solving the parameter 
partY X= Ω , obtain Ŷ , the estimated value of Y ; 
 
Step 2: List the fitting residuals, calculate the standardised residuals and Student residual, 
make a distribution test on the Student residual, and draw the Q-Q plot, observing whether 
it satisfies the normal distribution. The specific process is as follows: 
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(1) Calculate the Student residual ir   

ˆ
, 1, 2, ,

(1 )
i

i
ii

r i n
MSE h

ε
= =

⋅ −


 
Where îε  is the residual vector and 2ˆ ~ (0, ( ))i N I Hε σ − , 1( )T TH X X X X−= , lever 

quantity iih is the i-th element on the leading diagonal of H , MSE is the mean-square 
error. 
 
(2) Normal Q-Q plot test for Student residual 
2.1 obtain the Student residual ir  in ascending order (1) (2) ( ), , , nr r r ; 
2.2 calculate  

1
( )

0.375[ ], 1, 2, ,
0.25i

iq i n
n

− −
= Φ =

+


 
Here, 1( )x−Φ  is the inverse function of the standard normal distribution function, 
constant 0.375 and 0.25 are corrections;  

2.3 use points ( ) ( )( , ) ( 1, 2, , )i iq r i n=   in the Cartesian coordinate system to draw a 

scatter diagram, observe the points ( ) ( )( , ) ( 1, 2, , )i iq r i n=  ; if they are roughly in a 
straight line, then the Student residual satisfies the normal distribution. If not, the 
means dissatisfy.  

 
Similarly, if the random variable ir satisfies the following probability distribution law, one 
can also conclude that the Student residual satisfies the normal distribution.  
 

Table 1: The frequency inspection of Student residual normality 

~ (0,1)ir N  (-1,1) (-1.5,1.5) (-2,2) 

P  0.68 0.87 0.95 
 
Step 3: If the Student residual satisfies the normal distribution, select the appropriate 
residual fitting function, replace the unknown function G , and eliminate the local 
disturbance caused by the residual. Generally, if the Student residual satisfies the normal 
distribution, we select the Gaussian function – that is 

2

2
( )

21( )
2

ir

ig e
µ

σξ
πσ

−
−

=         (3) 

where ir is the Student residual, µ  and σ  are, respectively, defined as sample mean and 

sample standard deviation operated by ir ; 
 
Step 4: Let ( )ig ξ  into system (1), make transposition processing, obtain improved semi-
parametric model 

2

2
( )

2 ( 1, 2, , )1
2

i
T

i

r

i iY X i ne
µ

σ β ε
πσ

−
−

− = + =       (4) 

Solving system (4), estimate the parameter ˆ
iβ ; 

 
Step 5: Build the semi-parametric forecasting model 

1 1 1 0,1, 2, ,t t tY X G t nε+ + += Ω + + =        (5) 
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4. CASE STUDY 

The main goal of this study is to predict electricity consumption in China using the semi-
parametric regression model. We first present an empirical illustration of China’s annual 
electricity consumption forecasting to examine the performance of the semi-parametric 
regression approach. Because the reforms of 1978 significantly altered the economic 
development mode of China, one usually takes 1980 as the time division point. Thus we use 
the annual electricity consumption data after 1980 in this paper, using the 1980-2005 data 
for model building and the 2006-2010 data as testing data.  
 
Improving the accuracy of prediction is one of the main tasks in establishing a prediction 
model. However, any type of forecasting method is essential to produce the prediction 
error; therefore, an important task is to work out how to control the prediction error and 
thus provide feedback to the forecasting technique. In this paper, we give three statistical 
measures to evaluate the prediction accuracy of the approach: mean absolute error (MAE), 
mean absolute deviation (MAD), and mean squared error (MSE). MAE was used to measure 
the forecasting accuracy of the method; it usually expresses accuracy as a percentage, and 
can also be written as mean absolute percentage error (MAPE). MAD and MSE are two 
measures of the average errors. The three measures are defined as follows: 

 

1

ˆ1 | ( ) ( ) |(%)
( )

n

i

y i y iMAPE
n y i=

−
= ∑        (6) 

1

1 ˆ| ( ) ( ) |
n

i
MAD y i y i

n =

= −∑        (7) 

2

1

1 ˆ( )
n

i i
i

MSE y y
n =

= −∑         (8) 

where ˆiy  and iy  represent the forecast and observed values, respectively. 
 
When the semi-parametric regression forecasting approach is used to model and predict 
China’s annual electricity consumption, we first standardise the electricity consumption 
data and the impact factors data from 1980 to 2009. Using the method mentioned in 
section 2, we give the following standardised data in Table 2. 

Table 2:  Standardised data, 1980-2009 

Year EC GDP TEIV IFA IAV DI 

1980 -0.9557 -0.8622 -0.7518 -0.6867 -0.8405 -0.9568 

1981 -0.9467 -0.8585 -0.7488 -0.6858 -0.8392 -0.9483 

1982 -0.9283 -0.8539 -0.7482 -0.6809 -0.8363 -0.9400 
1983 -0.9043 -0.847 -0.7466 -0.6773 -0.8309 -0.9304 

1984 -0.8784 -0.8337 -0.7404 -0.6701 -0.8204 -0.9155 
1985 -0.8443 -0.8143 -0.7247 -0.6573 -0.8036 -0.8878 

1986 -0.8131 -0.7643 -0.7212 -0.6211 -0.7727 -0.8852 
1987 -0.7656 -0.7475 -0.7118 -0.6106 -0.7516 -0.8729 

1988 -0.7200 -0.7192 -0.7061 -0.6042 -0.7416 -0.8462 

1989 -0.6795 -0.7008 -0.6907 -0.6092 -0.7255 -0.8007 
1990 -0.6431 -0.6849 -0.6778 -0.6076 -0.7071 -0.7836 

1991 -0.5858 -0.6777 -0.6309 -0.6024 -0.6857 -0.7110 
1992 -0.5098 -0.6226 -0.5965 -0.5577 -0.6299 -0.6445 

1993 -0.4351 -0.5326 -0.5575 -0.4679 -0.5307 -0.5446 

1994 -0.3504 -0.3948 -0.3920 -0.3965 -0.3962 -0.3857 
1995 -0.2662 -0.2600 -0.3353 -0.343 -0.2571 -0.1949 

1996 -0.1976 -0.1488 -0.3238 -0.2909 -0.1428 -0.0316 
1997 -0.1507 -0.0653 -0.2723 -0.2544 -0.0545 0.0551 
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Year EC GDP TEIV IFA IAV DI 

1998 -0.1198 -0.0072 -0.2745 -0.1921 -0.0267 0.1220 
1999 -0.0451 0.0493 -0.2191 -0.1661 0.0202 0.1999 

2000 0.0926 0.1514 -0.0488 -0.1110 0.1262 0.3147 
2001 0.2145 0.2632 0.0041 -0.0337 0.2164 0.4188 

2002 0.3852 0.3775 0.1711 0.0794 0.3143 0.5242 

2003 0.6363 0.5433 0.5181 0.2964 0.5052 0.6581 
2004 0.9239 0.7876 0.9732 0.5646 0.7661 0.8787 

2005 1.2173 1.0507 1.3616 0.8937 1.0717 1.0959 
2006 1.6862 1.4051 1.7985 1.2754 1.4295 1.3711 

2007 1.9959 1.9350 2.2666 1.7669 2.0325 1.7650 

2008 2.1773 2.3082 2.5060 2.4056 2.4195 2.2021 
2009 2.4105 2.6796 1.9743 3.3367 2.5461 2.5094 

 
Next, we establish the multiple linear regression model, which uses the standardised data 
from Table 2 to calculate the fitted values ˆiy , residual îε  and Student residual ir .  

Table 3: Residual value, 1980-2009 

Year iy  ˆiy  
îε  

ir  

1980 -0.9557 -0.8705 -0.0852 -1.5463 

1981 -0.9467 -0.8621 -0.0846 -1.5323 

1982 -0.9283 -0.8566 -0.0717 -1.2968 
1983 -0.9043 -0.8495 -0.0548 -0.9901 

1984 -0.8784 -0.8341 -0.0443 -0.7999 
1985 -0.8443 -0.8106 -0.0337 -0.6058 

1986 -0.8131 -0.7984 -0.0147 -0.2639 

1987 -0.7656 -0.7776 0.0120 0.2146 
1988 -0.7200 -0.7508 0.0308 0.5510 

1989 -0.6795 -0.7286 0.0491 0.8747 
1990 -0.6431 -0.6875 0.0444 0.7945 

1991 -0.5858 -0.6495 0.0637 1.1400 
1992 -0.5098 -0.6063 0.0965 1.7152 

1993 -0.4351 -0.5637 0.1286 2.2790 

1994 -0.3504 -0.3915 0.0411 0.7251 
1995 -0.2662 -0.2966 0.0304 0.5450 

1996 -0.1976 -0.2401 0.0425 0.8075 
1997 -0.1507 -0.1771 0.0264 0.5095 

1998 -0.1198 -0.0982 -0.0216 -0.4034 

1999 -0.0451 -0.0185 -0.0266 -0.4956 
2000 0.0926 0.1255 -0.0329 -0.6100 

2001 0.2145 0.2486 -0.0341 -0.6554 
2002 0.3852 0.4261 -0.0409 -0.8103 

2003 0.6363 0.6449 -0.0086 -0.1611 
2004 0.9239 0.9810 -0.0571 -1.1653 

2005 1.2173 1.2283 -0.0110 -0.2329 

2006 1.6862 1.6205 0.0657 1.3746 
2007 1.9959 1.9798 0.0161 0.8203 

2008 2.1773 2.2063 -0.0290 -0.9220 
2009 2.4105 2.4071 0.0034 0.3676 

 
Next, we test the distribution of the Student residuals by means of the normal Q-Q plot 
test. If the Student residuals satisfy the normal distribution, we select an appropriate 
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function to replace the unknown function G  and eliminate the local disturbance of the 
forecast process. 
 
Using the method given in section 2.3 (b) for data normality inspection, one can draw a Q-Q 
scatter diagram for Figure 5. One can see from Figure 5 that the scatter points are 
approximately in a straight line, which means that the Student residuals satisfy the normal 
distribution.  
 
Similarly, we can also verify the above result by using the frequency inspection in Table 1. 
By frequency analysis of the Student residuals in Table 3, we can see that 73.3% 
( 22 30 0.733 0.68= ≈ ) of the ( 1, 2, ,30)ir i =   falls within the interval (-1, 1), 86.6%  

( 26 30 0.867 0.87= ≈ ) falls within the interval (-1.5, 1.5), and 96.6%  

( 29 30 0.967 0.95= ≈ ) falls within the interval (-2, 2). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: Q-Q scatter diagram 

After verifying the distribution of the Student residuals, the non-parametric part G  of the 
forecasting model is calculated. From system (3), it follows that  
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Here, with a sample mean of 0.007583µ =  and 0.986877σ = . 
 
Let µ  and σ  into system (9). Next, one obtains the value  
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And, taking the results of system (10) into system (4), we can estimate the parameters 

1 5
ˆˆ( , , )β βΩ =   of the linear part of the semi-parametric prediction model (4). 

1 5
ˆˆ( , , ) (0.3191, 0.4758, 0.5478, 0.3885,2.0488)β βΩ = = − − −  

and 0 0.0518β = . 
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Therefore, the semi-parametric prediction model is 
 

0.0518 0.3191 0.4758 0.5478 0.3885 2.0488t t t t t tY GDP TEIV IFA IAV DI ε= + − − − + +    (11) 
Here  

2

2
( )

21
2

ir

t tY eY
µ

σ

πσ

−
−

−=  

Thus, we can use system (11) to make an electricity consumption forecasting study. We also 
apply the GM (1, 1) and ANN models for comparison purposes. In the case of the GM (1, 1) 
model, the resulting model is 0.099067( 1) 18882.9496 15876.6496, 1,2,3, .tx t e t−+ = + =  Table 
4 shows the forecast values as well as the relative errors (RE) for the three methods. 

Table 4: Observed and forecast electricity consumptiona in China, 1980-2010, for 
three different approaches 

Year 

Observed 
value 

iy  

Observed 
value 

iy  

GM(1,1) ANN  SPRMb 

FV RE(%)  FV RE(%)  FV RE(%) 

Model building Stage: 1980-2005 
1980 -0.9557 -1.0938 -0.9557 0.00 -1.0549 -15.61 -1.1222 -2.59 
1981 -0.9467 -1.0867 -1.0184 -7.57 -1.0333 -21.06 -1.1073 -1.89 

1982 -0.9283 -1.1006 -0.9968 -7.38 -1.0059 -24.81 -1.0939 0.61 
1983 -0.9043 -1.1194 -0.9731 -7.61 -0.9811 -25.24 -1.0780 3.69 

1984 -0.8784 -1.1185 -0.9468 -7.79 -0.9427 -29.47 -1.0557 5.61 
1985 -0.8443 -1.1072 -0.9178 -8.71 -0.9063 -29.92 -1.0163 8.21 

1986 -0.8131 -1.1056 -0.8858 -8.94 -0.8729 -30.31 -1.0221 7.55 

1987 -0.7656 -1.0685 -0.8505 -11.08 -0.8435 -25.28 -1.0099 5.48 
1988 -0.7200 -1.0067 -0.8115 -12.71 -0.7972 -25.51 -0.9563 5.00 

1989 -0.6795 -0.9350 -0.7684 -13.08 -0.7365 -30.02 -0.8680 7.16 
1990 -0.6431 -0.9076 -0.7208 -12.08 -0.6767 -34.61 -0.8421 7.21 

1991 -0.5858 -0.8081 -0.6684 -14.12 -0.6091 -35.88 -0.7506 7.11 

1992 -0.5098 -0.6525 -0.6104 -19.73 -0.5423 -33.35 -0.6640 -1.77 
1993 -0.4351 -0.5117 -0.5464 -25.58 -0.4880 -29.58 -0.5412 -5.76 

1994 -0.3504 -0.6219 -0.4760 -35.84 -0.4502 -28.48 -0.5526 11.14 
1995 -0.2662 -0.5533 -0.3981 -49.54 -0.4253 -59.76 -0.5058 8.591 

1996 -0.1976 -0.4606 -0.3121 -57.94 -0.3666 -85.52 -0.4351 5.54 
1997 -0.1507 -0.4404 -0.2171 -44.06 -0.2587 -71.66 -0.4612 -4.73 

1998 -0.1198 -0.4021 -0.1122 6.34 -0.1633 -36.31 -0.3638 9.52 

1999 -0.0451 -0.3192 0.0036 107.98 -0.0300 33.48 -0.2871 10.05 
2000 0.0926 -0.1699 0.1315 -42.01 0.1672 -80.56 -0.1621 4.59 

2001 0.2145 -0.0429 0.2726 -27.08 0.3932 -83.31 -0.0428 0.27 
2002 0.3852 0.1463 0.4285 -11.24 0.6253 -62.33 0.1372 6.22 

2003 0.6363 0.3382 0.6006 5.61 0.9947 -56.32 0.2995 11.44 

2004 0.9239 0.7331 0.7907 14.41 1.2448 -34.73 0.7631 -4.09 
2005 1.2173 0.9229 1.0005 17.80 1.3831 -13.62 1.0229 -10.84 

Testing Stage: 2006-2010 
2006 1.6862 1.4963 1.2323 26.92 1.3314 24.54 1.5525 -3.75 

2007 1.9959 1.7342 1.4879 25.45 1.7004 29.81 1.6409 5.37 

2008 2.1773 1.9529 1.7701 18.70 1.8656 -6.07 1.8434 5.61 
2009 2.4105 2.1126 2.0817 13.64 2.1001 -8.42 2.2896 -8.37 

2010 2.5456 2.2477 2.4257 4.71 2.5276 4.97 2.1771 3.14 
Remarks: aThe electricity consumption values are standardised data; 
  bThe proposed semi-parametric regression model in this paper. 

   FV: forecasted value. 
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Percentage errors(%)
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Measures of the corresponding forecasting errors are shown in Table 5. Both in the model 
building stage and in the testing stage for this particular case, the SPRM prediction 
approach outperforms the GM (1,1) and ANN models. Figure 6 shows the model percentage 
error distributions for the SPRM prediction approach. In this figure, calibrations 1 to 26 
correspond to the model building stage, and calibrations 27 to 31 correspond to the testing 
stage. 

Table 5: Comparative analysis of forecasting errors 

Models MAPE(%) MAD MSE 

Model building Stage: 1980-2005 

GM(1,1) -13.07 0.0801 0.0083 

ANN -3.84 0.1082 0.0189 

SPRM -3.52 0.0421 0.0025 
Testing Stage: 2006-2010 

GM(1,1) 17.88 0.3636 0.1505 

ANN 12.75 0.2581 0.0814 

SPRM 5.25 0.1013 0.0120 

 
 
 

Figure 6: Percentage errors for the SPRM approach 

5. CONCLUSION  
The major contribution of this paper is to propose a new statistical methodology to forecast 
electricity consumption. The proposed semi-parametric regression models, which are an 
integration of parametric and nonparametric regression models, capture the complex 
cooperative relationship between electricity consumption and its drivers. By analysing the 
distribution characteristics of the Student residuals, we introduce a corresponding 
distribution function, and use it as the non-parametric part of this semi-parametric 
regression model, thereby eliminating the local disturbance of the forecast process and 
effectively reducing the prediction error or other system errors. The forecast results 
demonstrate that the model performs remarkably well, and also demonstrate the 
effectiveness and reliability of the approach. 
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