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ABSTRACT 

In the generator maintenance scheduling (GMS) problem, a schedule is sought for the 
planned maintenance outages of generating units in a power system. The GMS model 
considered in this paper is formulated as a mixed-integer quadratic program assuming a 
reliability objective, subject to certain constraints. A generic GMS solution methodology is 
derived, capable of solving general GMS problem instances that conform to this model 
structure, and implemented in a computerised decision support system. The decision 
support system is then used to solve a real-life case study in the South African national 
power system. 

OPSOMMING 

In die generator-instandhoudingskeduleringsprobleem (GISP) word daar gesoek na ’n 
skedule vir die beplande instandhouding van kragopwekkingseenhede binne ’n kragstelsel. 
Die GISP-model wat in hierdie artikel beskou word, is ’n gemengde, heeltallige, kwadratiese 
program, en bevat ’n betroubaarheidsdoel, onderhewig aan sekere beperkings. ’n Generiese 
GISP-oplossingsmetodiek is ontwikkel om enige GISP van die vorm soos in hierdie model te 
kan oplos. Die oplossingsmetodiek word in ’n gerekenariseerde besluitsteunstelsel 
geïmplementeer, waarna ’n realistiese gevallestudie, binne die konteks van die Suid-
Afrikaanse nasionale kragstelsel, daarmee opgelos word. 
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1. INTRODUCTION 

The problem considered in this paper is known as the generator maintenance scheduling 
(GMS) problem, and involves finding a schedule for the planned preventative maintenance 
outages of generating units in a power system. Preventative maintenance of a generating 
unit is necessary to ensure that its life-expectency is prolonged and its power generating 
efficiency is maintained. Regular maintenance also ensures that the risk of an unplanned 
outage (i.e. failure) is kept to a minimum. However, finding good maintenance schedules 
for large modern power systems, especially when they are burdened by increasing 
electricity demands, is a very difficult task. Electricity utilities face growing challenges to 
ensure reliable electricity supply at cost-effective rates. 
 
A number of different models and solutions for the GMS problem have been considered in 
the literature. Typically, some form of economic or reliability objective is chosen as the 
optimality criterion for the GMS problem. The most commonly chosen economic objective is 
the minimisation of operating cost, examples of which may be found in Edwin & Curtius [1] 
and in Kuzle et al. [2]. With some countries having deregulated their electricity market, 
competetive market environments have started to emerge, shifting the economic objective 
to maximise profit, as seen in Kim et al. [3]. Sueyoshi & Tadiparthi [4] developed a decision 
support system that may be used to analyse the effectiveness of different trading strategies 
in such a competitive market. The most commonly chosen objective for reliability is the 
levelling of the reserve load over the planning horizon. This objective may be achieved in a 
number of ways – most often by minimising the sum of the squares of the reserve loads, as 
done by Dahal & Chakpitak [5]. The above-mentioned objective functions were all 
formulated in a single objective environment. However, the GMS problem has also been 
formulated in a multi-objective environment by Huang et al. [6] and by Moro & Ramos [7].  
 
The constraints of the GMS problem depend on the power system under consideration, but 
all GMS models require at least two sets of constraints. The first set is the so-called 
maintenance window constraint set, which ensures that each generating unit is scheduled 
for maintenance between a pre-specified earliest and latest time period. The second set is 
the so-called load constraint set, which ensures that the power system load demand is met 
during each time period over the planning horizon. Additional constraints, such as those 
considered by Kralj & Petrović [8], may also be added to a GMS model. 
 
There has been much research into solution techniques for the GMS problem, since the 
problem is typically a large combinatorial optimisation problem that is difficult to solve, 
suffering from the ‘curse of dimensionality’. Suitable techniques should be able to obtain 
good or optimal solutions for such large problem instances within reasonable computational 
times. A review of the many solution techniques employed to solve the GMS problem may 
be found in Ahmad & Kothari [9]. In an exact solution approach, solution techniques include 
methods such as branch-and-bound algorithms, dynamic programming, and Benders’ 
decomposition method [10]. Approximate solution approaches include solution techniques 
such as basic search heuristics, metaheuristics (including genetic algorithm [5], tabu 
search, simulated annealing [11], ant colony optimisation, particle swarm optimisation 
[12]), fuzzy logic modelling, and expert system approaches [13]. General purpose decision 
support systems such as the spreadsheet-based optimisation tool developed by Savić et al. 
[14] may also be used to solve the GMS problem. 
 
The solution techniques employed in the GMS literature are typically optimised (in respect 
of parameter value specification) for a specific case study or theoretical benchmark test 
system. This optimisation process is usually very time-consuming, problem-instance 
specific, and user-dependent. In this paper we present a generic GMS solution methodology 
that is capable of solving general GMS problem instances conforming to a GMS model in the 
form of a mixed-integer quadratic program (MIQP). This methodology employs a hybridised 
simulated annealing (SA) algorithm for solving the GMS problem approximately, and is 
implemented in a computerised decision support system (DSS). The DSS is used to solve a 
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large real-life case study in the South African national power system. The results that are 
obtained prove very promising. 

2. MATHEMATICAL PROBLEM FORMULATION 

The GMS model considered in this paper is formulated as a mixed-integer quadratic program 
(MIQP). Levelling the reserve load over the planning horizon is chosen as reliability 
objective, and is achieved practically by minimising the sum of the squares of the reserve 
loads. The constraints in the GMS model consist of adherence to maintenance windows, the 
system meeting the load demand together with a safety margin, adherence to maintenance 
crew (manpower) availability, and respecting general exclusion constraints. 

2.1 Notation 

The following notation is used to facilitate the GMS problem formulation: 
 
Indices 
𝑖  index for generating units 
𝑗  index for time periods 
𝑘  index for generating unit subsets. 
 
Sets 
ℐ  set of indices for generating units 
𝒥  set of indices for time periods 
𝒦  set of indices for generating unit subsets 
ℐ𝑘  subset of indices for generating unit subset 𝑘. 
 
Parameters 
𝑛  number of generating units in the power system 
𝑚  number of time periods in the planning horizon 
𝑒𝑖  earliest time period during which maintenance of generating unit 𝑖 may begin 
ℓ𝑖  latest time period during which maintenance of generating unit 𝑖 may begin 
𝑑𝑖  maintenance duration of generating unit 𝑖 
𝑔𝑖,𝑗  power generating capacity of generating unit 𝑖 during time period 𝑗 
𝐷𝑖  system load demand during time period 𝑗 
𝑆  safety margin as a proportion of the system load demand 
𝑚𝑖
𝑞  manpower required by generating unit 𝑖 during its 𝑞-th period of maintenance 

𝑚𝑝,𝑖,𝑗
′   manpower required by generating unit 𝑖 when undergoing maintenance during time 

period 𝑗, if maintenance is started during time period 𝑝 
𝑀𝑗  maximum available manpower during time period 𝑗 
𝐾  number of generating unit subsets 
𝐾𝑘  maximum number of generating units within generating unit subset 𝑘 that are 

allowed to be in simultaneous maintenance during any time period. 
 
Variables 
𝑥𝑖,𝑗  a binary decision variable of value 1, if maintenance of generating unit 𝑖 starts 

during time period 𝑗, or zero otherwise 
𝑦𝑖,𝑗  a binary auxiliary variable of value 1, if generating unit 𝑖 is in maintenance during 

time period 𝑗, or zero otherwise 
𝑟𝑗  the unused power during time period 𝑗, excluding the safety margin capacity. 
 
Therefore, 𝑖 ∈ ℐ = {1, … , 𝑛}, 𝑗 ∈ 𝒥 = {1, … ,𝑚}, and 𝑘 ∈ 𝒦 = {1, … , 𝐾}. 
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2.2 Mixed-integer quadratic program 

The GMS problem formulation is the MIQP in which the objective is to minimise 

                           ��𝐷𝑗𝑆 + 𝑟𝑗�
2

𝑚

𝑗=1

                                                                                                                              (1) 

subject to the constraints  

�𝑥𝑖,𝑗 = 1, 𝑖 ∈ ℐ 
ℓ𝑖

𝑗=𝑒𝑖

                                                                                                                                           (2) 

𝑥𝑖,𝑗 = 0, 𝑗 < 𝑒𝑖 or 𝑗 > ℓ𝑖 , 𝑖 ∈ ℐ                                                                                                                     (3) 
𝑦𝑖,𝑗 = 0, 𝑗 < 𝑒𝑖 or 𝑗 > ℓ𝑖+𝑑𝑖 − 1, 𝑖 ∈ ℐ                                                                                                      (4) 

� 𝑦𝑖,𝑗 = 𝑑𝑖 , 𝑖 ∈ ℐ 
ℓ𝑖+𝑑𝑖−1

𝑗=𝑒𝑖

                                                                                                                                   (5) 

𝑦𝑖,𝑗 − 𝑦𝑖,𝑗−1 ≤ 𝑥𝑖,𝑗 , 𝑖 ∈ ℐ,   𝑗 ∈ 𝒥 ∖ {1}                                                                                                       (6) 
𝑦𝑖,1 ≤ 𝑥𝑖,1 , 𝑖 ∈ ℐ                                                                                                                                               (7) 

�𝑔𝑖,𝑗(1 − 𝑦𝑖,𝑗)
𝑛

𝑖=1

= 𝐷𝑗(1 + 𝑆) + 𝑟𝑗 , 𝑗 ∈ 𝒥                                                                                                 (8) 

��𝑚𝑝,𝑖,𝑗
′ 𝑥𝑖,𝑝

𝑗

𝑝=1

𝑛

𝑖=1

≤ 𝑀𝑗 , 𝑗 ∈ 𝒥                                                                                                                       (9) 

�𝑦𝑖,𝑗
𝑖∈ℐ𝑘

≤ 𝐾𝑘 , 𝑗 ∈ 𝒥,   𝑘 ∈ 𝒦                                                                                                                      (10) 

𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 ∈ {0,1}, 𝑖 ∈ ℐ,   𝑗 ∈ 𝒥                                                                                                                     (11) 
𝑟𝑗 ≥ 0, 𝑗 ∈ 𝒥.                                                                                                                                                   (12) 
 
The objective function in (1) is simply the sum of the squares of the actual reserve loads. 
Constraint set (2) is the maintenance window constraint set, while constraint sets (3) and 
(4) are added to set the variables outside the maintenance windows to zero, to reduce the 
number of dependent and independent variables. Constraint set (5) specifies that the 
maintenance of each unit should occur for a given duration, while constraint sets (6) and 
(7) ensure that the maintenance occurs contiguously. The load demand and safety margin 
constraints are specified in constraint set (8). Constraint set (9) ensures adherence to the 
maintenance crew constraints. The parameters 𝑚𝑝,𝑖,𝑗

′  are calculated as 
 

𝑚𝑝,𝑖,𝑗
′ = �𝑚𝑖

𝑗−𝑝+1        if 𝑗 − 𝑝 < 𝑑𝑖 ,

0               otherwise.
 

 
The general exclusion constraints are specified in constraint set (10). Finally, constraint 
sets (11) and (12) specify the nature of the variables. 

3. SOLUTION APPROACH 

As stated in the introductory section, we adopt a hybrid simulated annealing approach 
towards solving GMS problem instances approximately. A brief description of the general SA 
method is given below, before details of the hybridisation and our specific implementation 
are presented. Descriptions of the generic GMS solution methodology and the resulting 
computerised DSS then follow. 

3.1 Simulated annealing 

The SA method was first proposed by Kirkpatrick et al. [15]. It solves a combinatorial 
optimisation problem approximately, in a manner analogous to the physical process of 
annealing. Annealing may be used to strengthen metals by ensuring that their final physical 
state corresponds to the lowest energy state in which the metal particles lie in an ordered, 
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crystal-like packing. This is achieved by heating the metal to a high temperature, and then 
slowly cooling it in stages, with sufficient time being spent at each temperature stage so 
that the particles settle in a low energy state, reaching thermodynamic equilibrium. If this 
controlled cooling strategy is performed correctly, the metal solidifies in a stable and 
strong state, corresponding to its lowest energy state. The metal is then said to be frozen. 
 
The SA method is initialised with an initial solution of the problem under consideration, as 
well as a sufficiently high initial temperature 𝑇. A small modification is made to the 
solution (i.e., a neighbouring solution is generated) and the energy difference Δ𝐸 (i.e., the 
difference in objective function values between the original and modified solution) is 
calculated. For a minimisation problem, if the objective function value improves (Δ𝐸 ≤ 0), 
the modified solution is accepted as the new solution. However, if Δ𝐸 > 0, the Metropolis 
acceptance rule is followed, where the solution is only accepted with probability exp(−Δ𝐸/
𝑇). Repeated iterations of this modification process lead to the system approaching 
equilibrium for a given temperature. If the system has reached equilibrium, a test is 
performed to determine whether the system has reached its final, frozen state. If it has 
not, the temperature is decreased according to a specific cooling schedule, and the process 
repeats. Otherwise the method terminates, and the current solution is the final solution 
provided by the method. A number of different approaches exist for choosing an initial 
temperature, cooling schedule, neighbourhood move operator (how the modifications are 
performed), and termination criteria (how to test for equilibrium and a frozen state). The 
flow diagram in Figure 1 illustrates the basic working of the SA method. 
 

Figure 1: The general simulated annealing method 

3.2 Solution methodology 

In order to explore the solution space more effectively, and to make provision for highly 
constrained problems that do not necessarily have feasible solutions, our implementation of 
the SA algorithm allows a candidate solution of the GMS problem to violate any of the 
constraints. For such constraint violations, corresponding penalty values are incurred, and 
the total penalty value 𝑃, calculated as the weighted sum 
 
𝑃 = 𝑤𝑤𝑃𝑤 + 𝑤ℓ𝑃ℓ + 𝑤𝑐𝑃𝑐 + 𝑤𝑒𝑃𝑒 ,                                                                                                                 (13) 
 
is added to the objective function value associated with the candidate solution. The values 
𝑃𝑤, 𝑃ℓ, 𝑃𝑐, and 𝑃𝑒 are the constraint violations associated with the maintenance window, load 
demand, maintenance crew, and exclusion constraint sets, respectively; the values 
𝑤𝑤,𝑤ℓ, 𝑤𝑐, and 𝑤𝑒 denote the corresponding weights, respectively. 
 
A solution to the GMS problem is denoted by a vector 𝒙 = (𝑥1, … , 𝑥𝑛) of length 𝑛 where the 
element 𝑥𝑖 is an integer value representing the time period during which the maintenance 
of generating unit 𝑖 starts. If a unit requires more than one maintenance outage, dummy 
units are added to the system for each additional outage of that unit, and their capacities 
are subtracted from the total system capacity. 
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3.2.1 The neighbourhood move operators 

We implement two neighbourhood move operators within the SA algorithm, used for 
different purposes. The first move operator (found in the GMS literature [16,11]), hereafter 
referred to as the ‘classical’ operator, generates a neighbouring solution by randomly 
selecting one unit and randomly changing its maintenance starting time to a new value 
within its allowed maintenance window.  
 
The second move operator, hereafter referred to as the ‘ejection chain’ operator, 
generates a neighbouring solution in the following way: an initial unit is randomly selected 
and its maintenance starting time is randomly changed to a new value within its allowed 
maintenance window; next, a unit whose maintenance starts during this newly selected 
maintenance starting time is randomly chosen, and its maintenance starting time is 
randomly changed to a new value within its allowed maintenance window. This procedure is 
repeated until the newly selected maintenance starting time corresponds to the original 
maintenance starting time of the first unit, or until no unit is found for which the 
maintenance starts during the newly selected maintenance starting time. The ejection 
chain operator acts more globally than the classical operator, exploring the solution space 
more effectively. 
 
Any reference to random selection in the descriptions above is assumed to be according to 
a uniform distribution. 
3.2.2 The local search heuristic 
A hybridisation is achieved by introducing a local search heuristic into the SA algorithm. In 
the heuristic, an initial solution is received as an input and its full classical neighbourhood 
is explored. The best improving neighbour is then selected as the new solution. The process 
is repeated until no further improvement is possible. 
3.2.3 Implementation of the hybrid SA algorithm 
The hybrid SA algorithm is initialised with a randomly generated initial solution. For each 
unit 𝑖, a maintenance starting time period 𝑥𝑖 is chosen randomly, according to a uniform 
distribution, between the unit’s earliest and latest maintenance starting time periods. Any 
possible constraint violations are calculated, and the total penalty value is then calculated 
according to (13). The local search heuristic may be applied to the random initial solution 
to potentially obtain a ‘good’ initial solution for the algorithm. The initial temperature is 
calculated according to a method presented by Dréo et al. [17] as 
 

𝑇0 = −Δ𝐸
(+)

/ ln(0.5)  
 

where Δ𝐸
(+)

 is the average increase in energy, estimated by executing a random walk over 
the solution space, using the random initial solution as the starting point. 
 
Candidate solutions are modified using the ejection chain neighbourhood move operator, 
and the Metropolis acceptance rule is followed if the neighbouring solution does not yield 
an improved objective function value. The modification iteration scheme during each 
temperature stage (proposed by Dréo et al. [17]) is followed, where the system reaches 
equilibrium when one of the following two conditions is satisfied: a maximum of 12𝑛 
solutions are accepted, or a maximum of 100𝑛 solutions are attempted (modified). 
 
Two cooling schedules are implemented in the algorithm to add functionality to the DSS. 
The ‘standard’ method uses the adaptive cooling schedule proposed by Van Laarhoven & 
Aarts [18], with a decreasing temperature function of 
 

𝑇𝑠+1 = 𝑇𝑠  
1

1 + ln(1 + 𝛿)
3𝜎𝑠

 𝑇𝑠
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where 𝑇𝑠 is the temperature at stage 𝑠, 𝜎𝑠 is the standard deviation observed in the 
changing objective function values when reaching stage 𝑠, and 𝛿 is a ‘small’ number. The 
value is chosen as 𝛿 = 0.15/0.25/0.35, depending on which constraint sets are present. The 
standard method requires more computational time, but obtains a very high solution 
quality.  
 
The ‘quick’ method uses the adaptive cooling schedule proposed by Huang et al. [19], with 
a decreasing temperature function of 
 

𝑇𝑠+1 = 𝑇𝑠 exp �−
𝜆𝑇𝑠
𝜎𝑠
� 

 
where 𝜆 ∈ (0,1] is a constant, chosen here as 𝜆 = 0.6. The quick method is about 10 times 
faster than the standard method, but it results in a lower solution quality. 
 
The incumbent solution is stored during the execution of the SA algorithm. On termination 
of the SA algorithm, the incumbent solution, and not the current solution, is returned as 
the final solution. The SA algorithm is hybridised by applying the local search heuristic to 
each new incumbent solution found during the algorithm’s execution. The current solution 
remains unaffected. This hybrid local search/SA algorithm achieves superior results to those 
of the standard SA algorithm. 
 
Finally, the hybridised SA algorithm terminates when the system is frozen – in this case 
when one of the following two conditions is satisfied: (i) the temperature at the current 
stage reaches a pre-specified minimum temperature 𝑇𝑚𝑖𝑛 = 1; or (ii) a pre-specified 
number, such as Ω𝑓𝑟𝑜𝑧𝑒𝑛 = 3, of successive temperature stages occurs without any 
acceptance. 

3.3 The decision support system 

There are significant difficulties when attempting to solve different GMS problem instances 
using a generic methodology. The unknown, unique penalty weight values for the different 
constraint sets (dictated by different objective functions) have to be determined and, 
unfortunately, there is no general rule-of-thumb for determining these values. 
Furthermore, different GMS problem instances may perform differently for certain SA 
algorithm parameter values, increasing the difficulty of designing a generic solution 
methodology that performs well across the board. 
 
The only way to determine the penalty weight values is to perform experiments during a 
penalty weight analysis (which is typically very time-consuming). In the DSS, a trade-off 
between penalty accuracy and computational time is achieved as follows. The penalty 
weight of a constraint set is set as 10𝑘, with 𝑘 initially equal to zero. The remaining 
constraint sets have penalty weights set to a significantly large value so that any incumbent 
solution will not violate one of the remaining constraint sets. Ten problem instances are 
solved using an unmodified SA algorithm with the classical neighbourhood move operator, 
using the geometric cooling schedule as 𝑇𝑠+1 = 0.7𝑇𝑠. If seven or more of the problem 
instances result in feasible incumbent solutions, the penalty weight is chosen at its current 
value; otherwise the value of 𝑘 is incremented by one, and the process is repeated. Due to 
the exponential increase in weight, the nature of the classical neighbourhood structure, 
and the small parameter value in the geometric cooling schedule, this trade-off attempts to 
keep the computational time for determining the penalty weights as short as possible. 
 
The choices of initial temperature, neighbourhood move operator, cooling schedules, 
hybridisation, and parameter settings presented in the section above are all based on 
extensive experimentation done for three GMS benchmark test systems by Schlünz [20]. The 
aim was to obtain a representative/most appropriate SA algorithm to use for a general GMS 
problem instance, taking into account the solution quality and computational time of the 
results. 
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The generic solution methodology presented above was used for the development of a 
computerised decision support system that was capable of solving general GMS problem 
instances conforming to the MIQP presented in this paper. The DSS was implemented in the 
MathWorks software suite MATLAB version R2009a. It consists of a collection of MATLAB 
script files with a corresponding graphical user interface (GUI). The input and output files, 
containing the power system data and solution results respectively, are Microsoft Excel 
workbooks (version 2007 or later). The GUI of the DSS is shown in Figure 2. Some of the user 
options include the selection of the objective function and constraint sets of the problem 
instance, as well as which solution method to use. 
 

 

Figure 2: Screenshot of the GUI of the DSS 

4. CASE STUDY 

The DSS was used to solve a large, real-life case study in the South African national power 
system, provided by Eskom (the South African electricity utility). The data do not represent 
the exact Eskom generation system, to maintain confidentiality. However, the case study 
does represent a realistic GMS scenario. Constraints in the scenario are restricted to the 
adherence to maintenance windows, the system meeting the load demand together with a 
safety margin, and respecting exclusion constraints. 
 
The Eskom case study consists of a GMS problem instance containing 157 generating units 
requiring maintenance over a 365-day planning horizon – dimensions that are considerably 
larger than test systems in the literature. Within the MIQP formulation, the problem 
instance has 114 975 variables and 164 258 constraints (or 279 233 if constraint sets (11) 
and (12) are included). A theoretical lower bound on the objective function value is 
10 501 819 298 MW2. The case study system specifications are available on request from 
the authors. 
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The best solution obtained by the DSS attained an objective function value of 
11 101 712 702 MW2 with zero penalty which is only 5.7% from the theoretical lower bound. 
A summary of the DSS results for the Eskom data set is provided in Table 1. The percentage 
by which each objective function value differs from the best solution found is listed. 
 

Table 1: Results obtained by the DSS on the Eskom case study 

Solution method Instances Time 
(minutes) 

% from 
best Feasible 

Quick (Random Initial) 1 8.49 0.07% No 

 10 105.06 0.04% Yes 

 50 517.54 0.02% Yes 

Quick (Good Initial) 1 8.58 0.01% Yes 

 10 100.57 0.03% Yes 

 50 516.37 0.02% Yes 

Standard (Random Initial) 1 56.40 0.10% No 

 10 551.98 0.01% Yes 

 50 2756.82 0.00% Yes 

Standard (Good Initial) 1 56.66 0.10% No 

 10 424.88 0.01% Yes 

  50 2762.33 0.00% Yes 

 
 
The best schedule obtained by the DSS is shown graphically in Figure 3. Notice that the 
schedule splits the maintenance into two parts over the year, corresponding to the times 
that have lower demand. 

Figure 3: Best schedule obtained by the DSS on the Eskom case study 

 
The load demand, safety margin, and available generating capacities over the planning 
horizon for the best schedule found are shown in Figure 4. Notice how constrained the 
problem instance becomes over the second half of the year, indicated by the close 
proximity of the safety margin and available capacity graphs. 
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Figure 4: The load demand, safety margin, and available capacities over the planning 
horizon for the schedule in Figure 3 

 
The actual reserve capacities over the planning horizon are shown in Figure 5 for the best 
schedule found. The graph indicates how the objective of levelling reserve loads was 
achieved approximately in two parts: the first part in the beginning of the year at a level 
close to the average reserve, and the second part in the latter half of the year at a lower 
level, since the problem was much more constrained during those time periods. The spikes 
in reserve are simply the result of short-term (weekly) fluctuations in the demand; the 
same capacity was available, but the demand was lower, creating a spike in reserve. 
 

Figure 5: The reserve capacities over the planning horizon for the schedule in Figure 3 
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5. CONCLUSION 

A general GMS model was presented in this paper, formulated as an MIQP. The model 
assumes a reliability objective that attempts to level the reserve loads over a planning 
horizon, subject to the constraints of respecting maintenance windows, meeting the load 
demand together with the safety margin, adhering to manpower limitations, and respecting 
exclusion constraints. A generic solution methodology was derived that is capable of solving 
general GMS problem instances conforming to this model, employing a hybridised SA 
algorithm. The methodology was implemented on a personal computer and presented in the 
form of a computerised DSS. The DSS was used to solve a large real-life GMS case study in 
the South African national power system. It proved to be highly effective by obtaining a 
best maintenance schedule for the problem instance, achieving an objective function value 
only 5.7% away from a theoretical lower bound. 
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