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ABSTRACT

In the generator maintenance scheduling (GMS) problem, a schedule is sought for the
planned maintenance outages of generating units in a power system. The GMS model
considered in this paper is formulated as a mixed-integer quadratic program assuming a
reliability objective, subject to certain constraints. A generic GMS solution methodology is
derived, capable of solving general GMS problem instances that conform to this model
structure, and implemented in a computerised decision support system. The decision
support system is then used to solve a real-life case study in the South African national
power system.

OPSOMMING

’

In die generator-instandhoudingskeduleringsprobleem (GISP) word daar gesoek na ’n
skedule vir die beplande instandhouding van kragopwekkingseenhede binne ’'n kragstelsel.
Die GISP-model wat in hierdie artikel beskou word, is ’n gemengde, heeltallige, kwadratiese
program, en bevat ’n betroubaarheidsdoel, onderhewig aan sekere beperkings. ’'n Generiese
GISP-oplossingsmetodiek is ontwikkel om enige GISP van die vorm soos in hierdie model te
kan oplos. Die oplossingsmetodiek word in ’n gerekenariseerde besluitsteunstelsel
geimplementeer, waarna ’n realistiese gevallestudie, binne die konteks van die Suid-
Afrikaanse nasionale kragstelsel, daarmee opgelos word.
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1. INTRODUCTION

The problem considered in this paper is known as the generator maintenance scheduling
(GMS) problem, and involves finding a schedule for the planned preventative maintenance
outages of generating units in a power system. Preventative maintenance of a generating
unit is necessary to ensure that its life-expectency is prolonged and its power generating
efficiency is maintained. Regular maintenance also ensures that the risk of an unplanned
outage (i.e. failure) is kept to a minimum. However, finding good maintenance schedules
for large modern power systems, especially when they are burdened by increasing
electricity demands, is a very difficult task. Electricity utilities face growing challenges to
ensure reliable electricity supply at cost-effective rates.

A number of different models and solutions for the GMS problem have been considered in
the literature. Typically, some form of economic or reliability objective is chosen as the
optimality criterion for the GMS problem. The most commonly chosen economic objective is
the minimisation of operating cost, examples of which may be found in Edwin & Curtius [1]
and in Kuzle et al. [2]. With some countries having deregulated their electricity market,
competetive market environments have started to emerge, shifting the economic objective
to maximise profit, as seen in Kim et al. [3]. Sueyoshi & Tadiparthi [4] developed a decision
support system that may be used to analyse the effectiveness of different trading strategies
in such a competitive market. The most commonly chosen objective for reliability is the
levelling of the reserve load over the planning horizon. This objective may be achieved in a
number of ways - most often by minimising the sum of the squares of the reserve loads, as
done by Dahal & Chakpitak [5]. The above-mentioned objective functions were all
formulated in a single objective environment. However, the GMS problem has also been
formulated in a multi-objective environment by Huang et al. [6] and by Moro & Ramos [7].

The constraints of the GMS problem depend on the power system under consideration, but
all GMS models require at least two sets of constraints. The first set is the so-called
maintenance window constraint set, which ensures that each generating unit is scheduled
for maintenance between a pre-specified earliest and latest time period. The second set is
the so-called load constraint set, which ensures that the power system load demand is met
during each time period over the planning horizon. Additional constraints, such as those
considered by Kralj & Petrovic [8], may also be added to a GMS model.

There has been much research into solution techniques for the GMS problem, since the
problem is typically a large combinatorial optimisation problem that is difficult to solve,
suffering from the ‘curse of dimensionality’. Suitable techniques should be able to obtain
good or optimal solutions for such large problem instances within reasonable computational
times. A review of the many solution techniques employed to solve the GMS problem may
be found in Ahmad & Kothari [9]. In an exact solution approach, solution techniques include
methods such as branch-and-bound algorithms, dynamic programming, and Benders’
decomposition method [10]. Approximate solution approaches include solution techniques
such as basic search heuristics, metaheuristics (including genetic algorithm [5], tabu
search, simulated annealing [11], ant colony optimisation, particle swarm optimisation
[12]), fuzzy logic modelling, and expert system approaches [13]. General purpose decision
support systems such as the spreadsheet-based optimisation tool developed by Savi¢ et al.
[14] may also be used to solve the GMS problem.

The solution techniques employed in the GMS literature are typically optimised (in respect
of parameter value specification) for a specific case study or theoretical benchmark test
system. This optimisation process is usually very time-consuming, problem-instance
specific, and user-dependent. In this paper we present a generic GMS solution methodology
that is capable of solving general GMS problem instances conforming to a GMS model in the
form of a mixed-integer quadratic program (MIQP). This methodology employs a hybridised
simulated annealing (SA) algorithm for solving the GMS problem approximately, and is
implemented in a computerised decision support system (DSS). The DSS is used to solve a

170



large real-life case study in the South African national power system. The results that are
obtained prove very promising.

2. MATHEMATICAL PROBLEM FORMULATION

The GMS model considered in this paper is formulated as a mixed-integer quadratic program
(MIQP). Levelling the reserve load over the planning horizon is chosen as reliability
objective, and is achieved practically by minimising the sum of the squares of the reserve
loads. The constraints in the GMS model consist of adherence to maintenance windows, the
system meeting the load demand together with a safety margin, adherence to maintenance
crew (manpower) availability, and respecting general exclusion constraints.

2.1 Notation

The following notation is used to facilitate the GMS problem formulation:

Indices

i index for generating units

j index for time periods

k index for generating unit subsets.

Sets

7 set of indices for generating units

J set of indices for time periods

X set of indices for generating unit subsets

Ty subset of indices for generating unit subset k.

Parameters

n number of generating units in the power system

m number of time periods in the planning horizon

e earliest time period during which maintenance of generating unit i may begin
?; latest time period during which maintenance of generating unit i may begin
d; maintenance duration of generating unit i

9ij power generating capacity of generating unit i during time period j

D; system load demand during time period j

S safety margin as a proportion of the system load demand

m] manpower required by generating unit i during its g-th period of maintenance
m;,,i']- manpower required by generating unit i when undergoing maintenance during time

period j, if maintenance is started during time period p

M; maximum available manpower during time period j

K number of generating unit subsets

Ky, maximum number of generating units within generating unit subset k that are
allowed to be in simultaneous maintenance during any time period.

Variables

Xij a binary decision variable of value 1, if maintenance of generating unit i starts
during time period j, or zero otherwise

Yij a binary auxiliary variable of value 1, if generating unit i is in maintenance during

time period j, or zero otherwise

7 the unused power during time period j, excluding the safety margin capacity.

Therefore, ie7={1,..,n},jeJ={1,..,m},andk e X ={1,...,K}.
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2.2 Mixed-integer quadratic program

The GMS problem formulation is the MIQP in which the objective is to minimise
m
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The objective function in (1) is simply the sum of the squares of the actual reserve loads.
Constraint set (2) is the maintenance window constraint set, while constraint sets (3) and
(4) are added to set the variables outside the maintenance windows to zero, to reduce the
number of dependent and independent variables. Constraint set (5) specifies that the
maintenance of each unit should occur for a given duration, while constraint sets (6) and
(7) ensure that the maintenance occurs contiguously. The load demand and safety margin
constraints are specified in constraint set (8). Constraint set (9) ensures adherence to the
maintenance crew constraints. The parameters m,,; ; are calculated as

Di.Jj
Jj—-p+1 i
m’..:{mi ifj—p<d;,
D .
0 otherwise.

The general exclusion constraints are specified in constraint set (10). Finally, constraint
sets (11) and (12) specify the nature of the variables.

3. SOLUTION APPROACH

As stated in the introductory section, we adopt a hybrid simulated annealing approach
towards solving GMS problem instances approximately. A brief description of the general SA
method is given below, before details of the hybridisation and our specific implementation
are presented. Descriptions of the generic GMS solution methodology and the resulting
computerised DSS then follow.

3.1 Simulated annealing

The SA method was first proposed by Kirkpatrick et al. [15]. It solves a combinatorial
optimisation problem approximately, in a manner analogous to the physical process of
annealing. Annealing may be used to strengthen metals by ensuring that their final physical
state corresponds to the lowest energy state in which the metal particles lie in an ordered,
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crystal-like packing. This is achieved by heating the metal to a high temperature, and then
slowly cooling it in stages, with sufficient time being spent at each temperature stage so
that the particles settle in a low energy state, reaching thermodynamic equilibrium. If this
controlled cooling strategy is performed correctly, the metal solidifies in a stable and
strong state, corresponding to its lowest energy state. The metal is then said to be frozen.

The SA method is initialised with an initial solution of the problem under consideration, as
well as a sufficiently high initial temperature T. A small modification is made to the
solution (i.e., a neighbouring solution is generated) and the energy difference AE (i.e., the
difference in objective function values between the original and modified solution) is
calculated. For a minimisation problem, if the objective function value improves (AE < 0),
the modified solution is accepted as the new solution. However, if AE > 0, the Metropolis
acceptance rule is followed, where the solution is only accepted with probability exp(—AE/
T). Repeated iterations of this modification process lead to the system approaching
equilibrium for a given temperature. If the system has reached equilibrium, a test is
performed to determine whether the system has reached its final, frozen state. If it has
not, the temperature is decreased according to a specific cooling schedule, and the process
repeats. Otherwise the method terminates, and the current solution is the final solution
provided by the method. A number of different approaches exist for choosing an initial
temperature, cooling schedule, neighbourhood move operator (how the modifications are
performed), and termination criteria (how to test for equilibrium and a frozen state). The
flow diagram in Figure 1 illustrates the basic working of the SA method.

Initial
solution
‘ Metropolis acceptance rule
Initial Small modification e if AE <0 — accept modification : d ~
g i 1o : ) . X 1ermodynamic
tEl])'[)i.El.atlllE Calc lElat:e eue[gy e if AE > (0 — accept modification ilibri 2
1 variation AE i e S 2auiIDrIIT {
with probability exp(—AFE/T)

System
frozen?

Cooling schedule

Solution

Figure 1: The general simulated annealing method
3.2 Solution methodology

In order to explore the solution space more effectively, and to make provision for highly
constrained problems that do not necessarily have feasible solutions, our implementation of
the SA algorithm allows a candidate solution of the GMS problem to violate any of the
constraints. For such constraint violations, corresponding penalty values are incurred, and
the total penalty value P, calculated as the weighted sum

P =w,P, + w,Pp +w.P. +Ww,P,, 13)

is added to the objective function value associated with the candidate solution. The values
P,, Py, P., and P, are the constraint violations associated with the maintenance window, load
demand, maintenance crew, and exclusion constraint sets, respectively; the values
wy,, Wp, W, and w, denote the corresponding weights, respectively.

A solution to the GMS problem is denoted by a vector x = (x4, ..., x,,) of length n where the
element x; is an integer value representing the time period during which the maintenance
of generating unit i starts. If a unit requires more than one maintenance outage, dummy
units are added to the system for each additional outage of that unit, and their capacities
are subtracted from the total system capacity.
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3.2.1 The neighbourhood move operators

We implement two neighbourhood move operators within the SA algorithm, used for
different purposes. The first move operator (found in the GMS literature [16,11]), hereafter
referred to as the ‘classical’ operator, generates a neighbouring solution by randomly
selecting one unit and randomly changing its maintenance starting time to a new value
within its allowed maintenance window.

The second move operator, hereafter referred to as the ‘ejection chain’ operator,
generates a neighbouring solution in the following way: an initial unit is randomly selected
and its maintenance starting time is randomly changed to a new value within its allowed
maintenance window; next, a unit whose maintenance starts during this newly selected
maintenance starting time is randomly chosen, and its maintenance starting time is
randomly changed to a new value within its allowed maintenance window. This procedure is
repeated until the newly selected maintenance starting time corresponds to the original
maintenance starting time of the first unit, or until no unit is found for which the
maintenance starts during the newly selected maintenance starting time. The ejection
chain operator acts more globally than the classical operator, exploring the solution space
more effectively.

Any reference to random selection in the descriptions above is assumed to be according to
a uniform distribution.

3.2.2 The local search heuristic

A hybridisation is achieved by introducing a local search heuristic into the SA algorithm. In
the heuristic, an initial solution is received as an input and its full classical neighbourhood
is explored. The best improving neighbour is then selected as the new solution. The process
is repeated until no further improvement is possible.

3.2.3 Implementation of the hybrid SA algorithm

The hybrid SA algorithm is initialised with a randomly generated initial solution. For each
unit i, a maintenance starting time period x; is chosen randomly, according to a uniform
distribution, between the unit’s earliest and latest maintenance starting time periods. Any
possible constraint violations are calculated, and the total penalty value is then calculated
according to (13). The local search heuristic may be applied to the random initial solution
to potentially obtain a ‘good’ initial solution for the algorithm. The initial temperature is
calculated according to a method presented by Dréo et al. [17] as

—(+)
Ty = —AE /In(0.5)

—(+) . . . .
where AE ~ is the average increase in energy, estimated by executing a random walk over
the solution space, using the random initial solution as the starting point.

Candidate solutions are modified using the ejection chain neighbourhood move operator,
and the Metropolis acceptance rule is followed if the neighbouring solution does not yield
an improved objective function value. The modification iteration scheme during each
temperature stage (proposed by Dréo et al. [17]) is followed, where the system reaches
equilibrium when one of the following two conditions is satisfied: a maximum of 12n
solutions are accepted, or a maximum of 100n solutions are attempted (modified).

Two cooling schedules are implemented in the algorithm to add functionality to the DSS.
The ‘standard’ method uses the adaptive cooling schedule proposed by Van Laarhoven &
Aarts [18], with a decreasing temperature function of

1

In(1 + 0)
L+ =g T

Ts41=Ts
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where T is the temperature at stage s, o, is the standard deviation observed in the
changing objective function values when reaching stage s, and § is a ‘small’ nhumber. The
value is chosen as § = 0.15/0.25/0.35, depending on which constraint sets are present. The
standard method requires more computational time, but obtains a very high solution
quality.

The ‘quick’ method uses the adaptive cooling schedule proposed by Huang et al. [19], with
a decreasing temperature function of

AT
Ts41 =Tsexp <_ O'_>

s

where 1 € (0,1] is a constant, chosen here as 2 = 0.6. The quick method is about 10 times
faster than the standard method, but it results in a lower solution quality.

The incumbent solution is stored during the execution of the SA algorithm. On termination
of the SA algorithm, the incumbent solution, and not the current solution, is returned as
the final solution. The SA algorithm is hybridised by applying the local search heuristic to
each new incumbent solution found during the algorithm’s execution. The current solution
remains unaffected. This hybrid local search/SA algorithm achieves superior results to those
of the standard SA algorithm.

Finally, the hybridised SA algorithm terminates when the system is frozen - in this case
when one of the following two conditions is satisfied: (i) the temperature at the current
stage reaches a pre-specified minimum temperature T,,;, =1; or (ii) a pre-specified
number, such as Qg.o..n =3, Of successive temperature stages occurs without any
acceptance.

3.3 The decision support system

There are significant difficulties when attempting to solve different GMS problem instances
using a generic methodology. The unknown, unique penalty weight values for the different
constraint sets (dictated by different objective functions) have to be determined and,
unfortunately, there is no general rule-of-thumb for determining these values.
Furthermore, different GMS problem instances may perform differently for certain SA
algorithm parameter values, increasing the difficulty of designing a generic solution
methodology that performs well across the board.

The only way to determine the penalty weight values is to perform experiments during a
penalty weight analysis (which is typically very time-consuming). In the DSS, a trade-off
between penalty accuracy and computational time is achieved as follows. The penalty
weight of a constraint set is set as 10%, with k initially equal to zero. The remaining
constraint sets have penalty weights set to a significantly large value so that any incumbent
solution will not violate one of the remaining constraint sets. Ten problem instances are
solved using an unmodified SA algorithm with the classical neighbourhood move operator,
using the geometric cooling schedule as Ts,; = 0.7T;. If seven or more of the problem
instances result in feasible incumbent solutions, the penalty weight is chosen at its current
value; otherwise the value of k is incremented by one, and the process is repeated. Due to
the exponential increase in weight, the nature of the classical neighbourhood structure,
and the small parameter value in the geometric cooling schedule, this trade-off attempts to
keep the computational time for determining the penalty weights as short as possible.

The choices of initial temperature, neighbourhood move operator, cooling schedules,
hybridisation, and parameter settings presented in the section above are all based on
extensive experimentation done for three GMS benchmark test systems by Schliinz [20]. The
aim was to obtain a representative/most appropriate SA algorithm to use for a general GMS
problem instance, taking into account the solution quality and computational time of the
results.
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The generic solution methodology presented above was used for the development of a
computerised decision support system that was capable of solving general GMS problem
instances conforming to the MIQP presented in this paper. The DSS was implemented in the
MathWorks software suite MATLAB version R2009a. It consists of a collection of MATLAB
script files with a corresponding graphical user interface (GUI). The input and output files,
containing the power system data and solution results respectively, are Microsoft Excel
workbooks (version 2007 or later). The GUI of the DSS is shown in Figure 2. Some of the user
options include the selection of the objective function and constraint sets of the problem
instance, as well as which solution method to use.

) GMSDSS EoX
— Options — Penatty weight
— Objective funct Arethe penatty weiohts known? | VES b
() Sum of squares ) Sum of absolte differences
Maintenancs windows [ 10
— Constraint sets Col Load demard I 1 1
Mirtenance windows Choose the ‘ A [ i |
number of : z
o Exclusions 10
Losd demand and safely margin e =
in vertical steps
af efection chain
[[] Maintenance crew Read penalty weights... Done
1 v
Exelusians
— Solution methad - Number of instances
(&) Standerd . ’ ’
I =3 (This may take seversl minutes for
each constraint sst)
) Quick
— Inital solution

Process options... Done

Use good inttial ‘

4. Solve

— System dat
(This may take several minutes)

- Read data from Excel... Done
| Close

Type the full path and filename (with
extension) and press ‘Erter’

The_22unit_system.xlsx

Figure 2: Screenshot of the GUI of the DSS
4. CASE STUDY

The DSS was used to solve a large, real-life case study in the South African national power
system, provided by Eskom (the South African electricity utility). The data do not represent
the exact Eskom generation system, to maintain confidentiality. However, the case study
does represent a realistic GMS scenario. Constraints in the scenario are restricted to the
adherence to maintenance windows, the system meeting the load demand together with a
safety margin, and respecting exclusion constraints.

The Eskom case study consists of a GMS problem instance containing 157 generating units
requiring maintenance over a 365-day planning horizon - dimensions that are considerably
larger than test systems in the literature. Within the MIQP formulation, the problem
instance has 114 975 variables and 164 258 constraints (or 279 233 if constraint sets (11)
and (12) are included). A theoretical lower bound on the objective function value is
10 501 819 298 MW?2. The case study system specifications are available on request from
the authors.
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The best solution obtained by the DSS attained an objective function value of
11 101 712 702 MW? with zero penalty which is only 5.7% from the theoretical lower bound.
A summary of the DSS results for the Eskom data set is provided in Table 1. The percentage
by which each objective function value differs from the best solution found is listed.

Table 1: Results obtained by the DSS on the Eskom case study

Solution method Instances (m-:'—rinTtee 5) %bfggp Feasible
Quick (Random Initial) 1 8.49 0.07% No
10 105.06 0.04% Yes
50 517.54 0.02% Yes
Quick (Good Initial) 1 8.58 0.01% Yes
10 100.57 0.03% Yes
50 516.37 0.02% Yes
Standard (Random Initial) 1 56.40 0.10% No
10 551.98 0.01% Yes
50 2756.82 0.00% Yes
Standard (Good Initial) 1 56.66 0.10% No
10 424.88 0.01% Yes
50 2762.33 0.00% Yes

The best schedule obtained by the DSS is shown graphically in Figure 3. Notice that the
schedule splits the maintenance into two parts over the year, corresponding to the times

that have lower demand.
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40
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10 |- f—
A i
1l

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 309 323 337 351 365

Day

Figure 3: Best schedule obtained by the DSS on the Eskom case study

The load demand, safety margin, and available generating capacities over the planning
horizon for the best schedule found are shown in Figure 4. Notice how constrained the
problem instance becomes over the second half of the year, indicated by the close

proximity of the safety margin and available capacity graphs.
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Figure 4: The load demand, safety margin, and available capacities over the planning
horizon for the schedule in Figure 3

The actual reserve capacities over the planning horizon are shown in Figure 5 for the best
schedule found. The graph indicates how the objective of levelling reserve loads was
achieved approximately in two parts: the first part in the beginning of the year at a level
close to the average reserve, and the second part in the latter half of the year at a lower
level, since the problem was much more constrained during those time periods. The spikes
in reserve are simply the result of short-term (weekly) fluctuations in the demand; the
same capacity was available, but the demand was lower, creating a spike in reserve.
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Figure 5: The reserve capacities over the planning horizon for the schedule in Figure 3
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5.  CONCLUSION

A general GMS model was presented in this paper, formulated as an MIQP. The model
assumes a reliability objective that attempts to level the reserve loads over a planning
horizon, subject to the constraints of respecting maintenance windows, meeting the load
demand together with the safety margin, adhering to manpower limitations, and respecting
exclusion constraints. A generic solution methodology was derived that is capable of solving
general GMS problem instances conforming to this model, employing a hybridised SA
algorithm. The methodology was implemented on a personal computer and presented in the
form of a computerised DSS. The DSS was used to solve a large real-life GMS case study in
the South African national power system. It proved to be highly effective by obtaining a
best maintenance schedule for the problem instance, achieving an objective function value
only 5.7% away from a theoretical lower bound.
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