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ABSTRACT 

This study delves into the often-overlooked factors influencing industrial 
productivity, focusing on labour and machine maintenance as key 
drivers. Extensive research was undertaken in a core shop producing 
automotive components to identify and assess these factors. Using multi-
criteria decision models (MCDM) such as analytic hierarchy process 
(AHP), fuzzy analytic hierarchy process  (FAHP), technique for order of 
preference by similarity to ideal solution (TOPSIS), viekriterijumsko 
kompromisno rangiranje  (VIKOR) method, enterprise distributed 
application service (EDAS), and Entropy TOPSIS, the study ranked various 
productivity criteria. Artificial neural networks were then employed to 
validate these rankings. The research emphasised the significance of 
manufacturing equipment and raw materials, following the prioritisation 
of the workforce. Implementing material handling systems aimed at 
reducing errors and enhancing productivity proved pivotal. As a result of 
these strategies, non-value-added activities (NVA) decreased by 65.56%, 
process time improved by 61.03%, waiting time reduced significantly by 
66.66%, manpower decreased by 35%, and costs decreased by 45%. These 
outcomes translated into a notable 23% increase in production levels in 
the core shop. The study underscores the efficacy of innovative work 
methods and standardised operating procedures in maximising 
productivity. 

 OPSOMMING  

Hierdie studie ondersoek die faktore wat dikwels oor die hoof gesien 
word wat industriële produktiwiteit beïnvloed, met die fokus op arbeid 
en masjienonderhoud as sleuteldrywers. Omvattende navorsing is 
onderneem in 'n werkswinkel wat motorkomponente vervaardig om 
hierdie faktore te identifiseer en te evalueer. Deur gebruik te maak van 
multi-kriteria besluitnemingsmodelle soos analitiese hiërargie proses, 
vae analitiese hiërargie proses, tegniek vir orde van voorkeur volgens 
ooreenkoms met ideale oplossing (TOPSIS), viekriterijumsko 
kompromisno rangiranje metode, onderneming verspreide 
toepassingsdiens, en entropie TOPSIS, het die studie verskeie 
produktiwiteitskriteria gerangskik. Kunsmatige neurale netwerke is toe 
aangewend om die rangorde te valideer. Die navorsing het die 
belangrikheid van vervaardigingstoerusting en rou materiaal 
beklemtoon, en ook die prioritisering van die arbeidsmag. Die 
implementering van materiaalhanteringstelsels wat daarop gemik is om 
foute te verminder en produktiwiteit te verbeter, was deurslaggewend. 
As gevolg van hierdie strategieë het nie-waardetoegevoegde aktiwiteite 
met 65,56% afgeneem, prosestyd het met 61,03% verbeter, wagtyd het 
beduidend met 66.66% verminder, mannekrag het met 35% afgeneem, 
en koste het met 45% afdaal. Hierdie uitkomste het gelei tot 'n 
noemenswaardige 23% toename in produksievlakke in die kernwinkel. 
Die studie beklemtoon die doeltreffendheid van innoverende 
werkmetodes en gestandaardiseerde bedryfsprosedures om 
produktiwiteit te maksimeer. 
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1. INTRODUCTION 

Despite extensive research on improving the process of productivity, manufacturing organisations have 
been encountering setbacks in achieving their expected outcomes. A foundry is a production organisation 
that produces and supplies metal casts to manufacturing organisations such as the automobile industry, 
pump industries, and the textile industry, where metallic support structures are of great importance. 
Productivity in a foundry plant could be enhanced by identifying the influential factors. These factors are 
grouped into two: internal and external. Product design, materials, and plants are examples of internal 
elements that can be controlled. External or uncontrollable factors include workforce, materials, 
environment, and work methods [1]. According to Aggarwal [2], productivity is a process that involves 
planning, thorough preparation, cautious execution, an extended gestation period, continuous 
measurement of responses or relations to advancement, and close control of the environments, based on 
feedback provided by the adaptive control servo systems. Many case studies have shown a partial 
improvement in productivity after identifying the influential factors [3]. Kabir et al. [4], showed that the 
performance of workers is an influential factor that in turn depends on workers’ commitment, motivation, 
and skills in improving productivity, and concluded that incentive programmes are important in enhancing 
workers’ performance and productivity [4-5]. Heanisch [6] identified the factors affecting the productivity 
of government workers, and recorded that government workers appreciate freedom and autonomy, 
teamwork, effective supervision, communication, rewards and recognition, and the elimination of 
bureaucracy as essential factors in improving overall productivity. According to the study by Saha and 
Mazumder [7] of organisational behaviour to enhance productivity, the working environment is the most 
influential factor that affects the performance of workers. The quality of comfort in the working 
environment is responsible for workers’ satisfaction and improved productivity. Based on an extensive 
literature review, we identified fifteen major factors that enhance productivity. Kumar et al. [4], used the 
analytic hierarchy process (AHP) tool to rank the factors, and found that the top five criteria were 
management’s positive attitude and involvement, proactive employees, good working conditions, suitable 
tools and equipment, and the availability of water, power, and other input supplies to improve productivity 
[8]. Piran et al. [9], categorised the factors into four perspectives, and concluded that the ‘top 
management’ perspective was the most important one. The total factor productivity index (TFPI) for 
improved product modularity was used in a bus manufacturing company. It was noted that product 
modularity helps companies to improve the TPFI [9]. To enhance safety and efficiency, it is necessary to 
adopt a strategic approach that consistently identifies and safeguards against hazardous conditions to 
ensure the well-being of workers [10]. Salminen et al. [11], found that productivity and safety could be 
integrated. Based on the assessment provided by personnel connected with serious accidents, they 
confirmed that it was possible to improve both productivity and safety by (i) improving machines and 
equipment, (ii) initiating better housekeeping, and (iii) creating more spacious work sites. 

2. LITERATURE REVIEW 

Multi-criteria decision making (MCDM) has emerged as a highly important approach for making decisions in 
complex situations inside the modern, technologically advanced engineering environment. MCDM is 
particularly valuable for conducting assessments in situations where the likelihood of conflict is minimal or 
non-existent. In the current socioeconomic landscape, where decision-making is influenced by multiple 
aspects, MCDM plays a vital role in these domains. Decisions are influenced by a multitude of circumstances, 
some of which may or may not have equal importance. The allocation of weights to the criteria is a primary 
concern in the MCDM problem. Cook [12] and Čančer [13] used the 5Ws and H techniques for this purpose. 
Several researchers used the cross-entropy method to determine the weighting of criteria when addressing 
MCDM problems [14-27]. 

Mihajlovi et al. [29] used two MCDM methodologies to select the location for a logistics facility in Serbia: 
the AHP approach and a hybrid AHP weighted aggregated sum product assessment (WASPAS) method. 
WASPAS was employed to rank alternatives based on weights derived from the AHP method, while the AHP 
method was used to determine criteria weights. The rating was almost the same between the two systems, 
and they concurred on the top and bottom choices. Adali and Tuş [30] used the TOPSIS, enterprise 
distributed application service (EDAS), and combinative distance-based assessment (CODAS) methodologies 
to evaluate the suitability of four prospective hospital site locations. The authors noted the simplicity of 
the TOPSIS and EDAS techniques, finding that all three methods produced identical ratings. Chen et al. [31] 
selected a teahouse site in Lithuania by employing the EDAS method and a modified version of WASPAS. 
The results indicated that using random weighting methods leads to inconsistent rankings in MCDM 
approaches [32,33]. Figure 1 shows various MCDM models.  
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Figure 1: MCDM models 

The integration of fuzzy theory with MCDM approaches was largely aimed at addressing the problem of 
handling linguistic variables in the majority of MCDM systems. Chauhan and Singh [34] employed fuzzy 
TOPSIS and fuzzy AHP methodologies to choose an appropriate site for the disposal of medical waste. Suman 
et al. [35] investigated the use of AHP and fuzzy AHP methodologies to select a suitable location for the 
Bangladeshi furniture industry. The ranking of possibilities was mutually agreed upon by the two 
approaches. The weights emphasised by the two approaches differed, nonetheless. Kieu et al. [36,37] 
employed the CoCoSo technique and hybrid spherical fuzzy AHP to select the location of a distribution 
facility in Vietnam. Figure 2  shows the proposed model.  

 

Figure 2: The proposed paradigm differs conceptually from standard techniques 

Discovering a suitable neural network architecture for making predictions in nonlinear models proved to be 
difficult. A genetic algorithm has discovered the optimal network architecture. Au et al. [38] conducted 
experiments on fundamental interconnected neural network models and multiple estimation methods. 
Chambers and Campbell [39] proposed the use of artificial neural network (ANN) models to represent system 
components. The ANN meta-models were used to establish connections and model the entire system. The 
simulation trained the ANNs to function as a unified and centralised processing unit. In 2011, 
Golmohammadi [40]  introduced a mechanism for MCDM using a feed-forward neural network and fuzzy 
logic. A link between inputs and outputs has been established using neural networks and weights to make 
assessments based on different criteria. Decision-makers evaluate alternatives to prioritise them. Ciurana 
et al. [41] developed a technique for selecting machine tools in contemporary manufacturing companies. 
Neural networks were employed to determine the most efficient organising tool. Gutierrez et al. [42] 
developed a demand forecasting model using a neural network that incorporated irregularities. A 
comparison was made between a neural network and standard time sequence outcomes. Neural networks 
were discovered to be more effective than traditional methods. Cavalieri et al. [43] employed both 
parametric and ANN techniques to forecast the production costs of a groundbreaking single-disc brake 
design. ANNs exhibit a superior ability to strike a balance between accuracy and development cost 
compared with other methodologies. Many academic articles have shown integrated frameworks to 
prioritise lean technologies in the field of MCDM. Fuzzy AHP, Fuzzy TOPSIS, and the fuzzy decision-making 
trial and evaluation laboratory (FDEMATEL) are MCDM techniques that are used in the framework model for 
lean tool selection [44,45]. Triangular fuzzy numbers (TFNs) are used in research because of their 
straightforwardness [46]. The manufacturing industry is undergoing a significant transformation as it 
incorporates and is influenced by the implementation of machine-learning techniques [47]. The process 
mining method presented in this research addresses the drawbacks of conventional mapping techniques 
[48]. 
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Researchers have long been concerned with how to improve efficiency and productivity. Many types of 
research in each country have typically used key factors to develop strategies to boost industrial efficiency. 
Although several studies have been conducted, and the factors that influence productivity have been 
identified, many productivity issues are still unknown and need to be studied further, even in developed 
organisations. Based on the previous research and on an extensive literature survey, 38 criteria were found 
to affect productivity. They were categorised into nine groups, based on their features: 1. workforce [WF] 
(four criteria); 2. manufacturing equipment [ME] (four criteria); 3. raw material [RW] (five criteria); 4. 
plant layout [PL] (four criteria); 5. manufacturing process [MP] (four criteria); 6. product design [PD] (four 
criteria); 7. work method [WM] (four criteria); 8. quality [QT] (four criteria); and 9. environment [EN] (five 
criteria) (Figure 3). The criteria found in previous research were used as the basis for developing a 
quantitative model to investigate their impact on core shops in the foundry. 
 

 

Figure 3: List of criteria and sub-criteria affecting productivity 

2.1. KNOWLEDGE GAPS IN THE LITERATURE 

While there are potential benefits to combining MCDM techniques with ANNs in analysing productivity 
factors in manufacturing organisations, there’s a notable lack of extensive research in this area. Previous 
studies have mainly focused on either MCDM or ANN separately, with limited exploration of their joint 
application in productivity analysis. Methodological difficulties in combining MCDM and ANN, such as 
selecting suitable approaches and frameworks, remain inadequately addressed. Moreover, issues 
surrounding data availability, accuracy, and model verification in diverse industrial settings are significant 
obstacles. In addition, there’s a dearth of research on implementing integrated MCDM-ANN techniques in 
real-world manufacturing environments, underscoring the need for more empirical investigations and 
practical guidelines. 

In this study, we propose that using quantitative analysis with MCDM, such as AHP and fuzzy AHP, could 
help to identify specific factors influencing production at various levels, which could then be managed 
through standard operating procedures to achieve the predicted productivity. We outline a strategy for 
enhancing productivity in an Indian foundry, having received approval from the foundry management to 
begin our research. Our initial focus in the core shop division of the foundry was to identify key productivity-
affecting factors with the aim of overcoming the problems that were hindering productivity. 

3. MATERIALS AND METHODS 

In this paper, the entire ranking of the identified criteria was carried out in a traditional and fuzzy 
environment following the method of Saaty [49]. The ranking of criteria was understood by using a fuzzy 
set, which is a more detailed analysis of the research problem [50-52]. All stated criteria were concurrently 
measured during the ranking process to improve the decision-making process. Figure 4 shows the 
methodology to rank the criteria and sub-criteria using different MCDM models and validation using ANN. 
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3.1. TECHNIQUE FOR ORDER OF PREFERENCE BY SIMILARITY TO IDEAL SOLUTION (TOPSIS) 

TOPSIS is based on how far the decision matrix’s constituent parts are from the ideal best and ideal worst 
elements for each criterion. First, the decision matrix is normalised to eliminate the impact of using 
different units of measurement for various criteria. For each criterion, the ideal best and ideal worst 
elements are determined. Then, using the ideal best and ideal worst values, Euclidian distances are 
determined between each element of each criterion. These distances are used in the end to calculate the 
closeness coefficient for each possibility. The closeness coefficients are used to rank the alternatives, with 
the alternative with the highest closeness coefficient being the most favoured option [53]. 

3.2. VIKOR (VISEKRITERIJUMSKA OPTIMIZACIJA I KOMPROMISNO RESENJE) method 

The optimal element for each criterion in the decision matrix is first determined in VIKOR. They are referred 
to as the f* and f indices. Then, for each possibility, S and R indices are determined. The aggregate weighted 
normalised departure from the f* values concerning the separation between the f* and f values is essentially 
what makes up the S index for each alternative. The highest weighted normalised divergence from the f* 
values relative to the separation between the f* and f values is essentially what makes up each alternative’s 
R index. Then, using these S and R indices and an assumed strategic weight of between 0 and 1, the VIKOR 
index for each alternative is produced. Strategic weight is essentially an assumed and modified percentage 
that is used to incorporate the S and R indices into the VIKOR index calculation. The VIKOR index for the 
alternatives serves as the basis for the final ranking of the alternatives [54]. 

3.3. ENTROPY WEIGHT 

The identified criteria for TOPSIS computation can be accurately weighted, based on their relative 
importance, using the entropy weight approach. The entropy weight method’s foundation is the amount of 
data needed to determine the index’s weight, which is similar to the fixed weight techniques’ primary goal. 
The TOPSIS approach was used in earlier studies to establish the criteria weight. The findings of this 
approach to calculating weight are quite subjective, with the result of the evaluation being more adversely 
affected by the subjective elements. Therefore, the effect of human subjective elements could be reduced 
by using the entropy approach to generate a real weight within the evaluation indicator system’s weighting 
procedure. This objective weighting approach, which is based purely on neutral data, could eliminate the 
lack of subjective weighting methods. As a result, the information entropy approach was used in this paper 
to calculate the weight of the criteria [55]. 

3.4. EVALUATION BASED ON DISTANCE FROM AVERAGE SOLUTION (EDAS) 

In 2015, EDAS, an MCDM process, was proposed and applied to the inventory’s classification. An excavator 
was chosen for a company that builds roads using the EDAS compensation approach, which uses criteria 
that are independent of one another, and converts qualitative features into quantitative measurements for 
evaluation. EDAS is well-known because its solution is derived from the average solution, which eliminates 
the chance of experts treating an alternative unfairly. The EDAS method’s simplicity and the need for fewer 
computations are its most important features. Similar to this, the EDAS method’s application is very broad 
owing to its reliability and simplicity [56]. 

3.5. ARTIFICIAL NEURAL NETWORK (ANN) 

3.5.1. CREATION OF A CONCEPTUAL MODEL FOR NEURAL NETWORK-BASED RANKING 

To identify input and target values, historical data was employed. The network was created using MATLAB 
NNTOOL. Functions and layers tailored to the problem were chosen. The model’s weights that were learned 
from data were accurate. By modelling recent data, the network model was proven to be accurate. 

3.5.2. STRUCTURE OF ANN 

Based on the ANN’s capacity to recognise and maintain complex, non-linear patterns, the leanness index 
for this study was calculated. However, in the case of ANN, an appropriate conclusion may be reached by 
combining logic, historical data, and a well-designed neural network model. The NN toolbox in MATLAB was 
used in this study to train the network. The selection of input variables, network architecture, and volume 
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of training data are only a few design factors that have a big influence on how accurate neural network 
forecasts are. 

 

Figure 4: The methodology to rank the criteria using MCDM and ANN 

4. APPLICATION OF ANN FOR RANKING CRITERIA THAT AFFECT PRODUCTIVITY  

The application stages are presented in the paragraphs below. 

4.1. INPUT 

The input data for selecting a lean tool was derived from the values obtained by various MCDM models with 
input from decision-makers. Through trial-and-error or iterations, the optimal combination was 
determined. The training duration and accuracy depended on the input used. This study’s input data 
determined the ranking of criteria that affected productivity.  

4.2. TARGET VALUE 

The output was a collection of data that was combined similarly to the input data. The backpropagation 
algorithm employed both input and output for training. Based on this information, neuronal weights were 
derived. 

4.3. ANN ARCHITECTURE 

After determining the input and target values, a network was constructed, after which its parameters had 
to be provided. Figure 5 illustrates the generated data window, in which variables are specified. In this 
case, the significant figure variables were network type and layer count. In this situation, there were two 
strata. The computational effort required to discover the optimal weight combination increased 
considerably as the number of network parameters and network layers increased. Figure 6 depicts the first 
stratum of the multi-layered network. 
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Figure 5: Multi-layered artificial neural network 

The choice of the most appropriate learning technique was contingent on the data’s characteristics and 
the problem’s intricacy. In scenarios where MCDM and ANNs are integrated, supervised learning methods 
are commonly used owing to the availability of labelled data from MCDM. Techniques such as 
backpropagation and variations such as stochastic gradient descent and the Adam optimiser are frequently 
employed to train neural networks in these contexts. Their effectiveness lies in their ability to minimise 
the disparity between predicted and actual outcomes. 

The model used a feed-forward backpropagation learning approach, employing TRANSLIM as the training 
function and comprising two layers. The initial layer used TRANSIG to discern patterns, while the 
subsequent layer used PURELIN to refine the output. Figure 6 shows a comprehensive breakdown of the 
network parameters, including the allocation of 10 neurons to the hidden layer. This choice of neuron count 
aimed to strike a balance between model complexity and the mitigation of overfitting, which is particularly 
beneficial when dealing with limited datasets. This setup ensured the effective handling of tasks that 
involve multidimensional mapping by tailoring the neural network’s architecture to suit the problem’s 
complexity and data characteristics. 

 

Figure 6: Multi-layered network 

4.4. TRAINING AND TESTING 

Exploring the intricacies of evolving neural networks frequently involves identifying the ideal training 
threshold to attain the desired results. Neural networks that are trained to minimise errors on training data 
sometimes have difficulties in generalising their performance. To ensure efficient functioning, the data 
was divided into two categories: the training set, which was used to train the network, and the test set, 
which was used to assess the error rate. The network with the lowest test set error rate was retained. After 
organising, training continued by incorporating input from decision-makers to generate the linguistic 
components that formed the training data. Subsequent testing assessed the effectiveness of the network 
by comparing the results obtained from the data that was not used for training with the ratings awarded 
by the decision-makers. Validated data plays a crucial role in assessing the effectiveness of an organisation. 

4.5. VALIDATION 

To evaluate the criterion, the network was simulated over the whole database. To achieve consistent 
values, the tiny datasets were replicated four times. A total of 180 random samples were selected from 
the datasets. Eighty per cent of these samples were allocated for training, while the other 20% were evenly 
divided between validation and testing, with each subset comprising 10% of the total samples. 
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5. CASE STUDY 

The research was carried out at a foundry in Coimbatore, South India. Grey iron and ductile iron casting 
are two separate casting facilities that are available at the foundry. The research was based on the grey 
iron foundry plant because it has a very high rejection rate (> 35 per cent). Almost all cast iron components 
needed for manufacturing are produced by the grey iron foundry, which includes commercial and passenger 
vehicles, tractors, motors, pumps, textiles, valves, railways, and general engineering. Almost all 
components require cores of different sizes and shapes to attain the highest design accuracy and to save 
metal. Therefore, core production is essential in the plant, where the core is shot by the shooter machines 
with high design accuracy.  

As a result, the management’s top priority is to preserve the optimal quality level. Management has taken 
steps to reduce defects in the most important casting in response to persistent customer concerns. In such 
cases, a team typically uses old techniques to determine the existence of defects and the mechanism of 
defect creation by manipulating key process variables. However, the foundry in question was under a lot 
of production pressure, so the planned experiment was not an option for them. Instead, they wanted to 
look at the best possible improvement based on online production. 

Blow holes, cuts and washes, hot tears, runouts, bleeders, misruns, cold shuts, core prints, surface gas 
defects, and a variety of other defects were found in the casting, resulting in high rejection and rework, 
lowering overall efficiency and quality by wasting time and money on scrap and rework. The identification 
of faulty castings happens in two steps. Until machining, the foundry performs a defect screening. After 
machining, the machine shop performs the second stage of defect detection. The casting had a cumulative 
defect rate of more than 30%, according to reports. In this case, the organisation intended to reduce the 
overall defect rate to less than 5% within six months. 

This research was solely concerned with the core making process of casting in a grey iron foundry, with a 
primary emphasis on defect detection and reduction. Other cast objects were not included in this research. 
Process mapping, which is a visual representation of the process, was the first step in the research. A 
process map (Figure 7) was created after a detailed examination of the entire core production process to 
identify the main factors influencing process success. The process map clearly showed that the manufacture 
of a single casting entailed five major stages: (i) core shooting; (ii) core cleaning and pasting; (iii) core 
painting; (iv) core baking; and (v) core storage. The process flow diagram of core-making is shown in Figure 
7. 

Core handling in a foundry is a tough task because human (workforce) handling causes damage to the cores 
owing to repetitive tasks. An increase in the intensity of work increases absenteeism or lateness in the work 
area – the result of a lack of diligence on the part of the supervisor. The workforces were not trained 
properly in a systematic manner, leading to defects in the core product. The cleaning and pasting of the 
core were done in a separate area, which involved more material handling by the workforce. because of 
poor work methods, improper cleaning and pasting led to cracks or blows at the time of metal pouring. In 
painting, the workforce used to dip the core in the paint mixture for 5 to 10 seconds only where the core 
was not properly coated, which led to core cracks while baking. The electric oven was used for baking the 
core. The total estimated time for baking was 150 to 180 minutes. The arrangement of the core inside the 
oven was random in size and shape, and the space was not used properly, and so the energy for baking the 
core was not properly used. Over-baking and under-baking of the core cause metal penetration during the 
metal pouring into the mould, and leads to the soft and weak surface of the casting, which in turn results 
in break-in castings. 

 

 

Figure 7: Process flow diagram of core shop 
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6. RESULTS AND DISCUSSION 

This work introduced a hybrid MCDM model that used entropy-weighted TOPSIS to determine suitable 
weights for factors that impact productivity. The entropy-weighted TOPSIS approach showed great 
potential and effectiveness in ranking the criteria processes. The TOPSIS technology was used to compare 
the outcomes of two MCDM methods, namely the analytic hierarchy process (AHP) and the fuzzy analytic 
hierarchy process (FAHP). Subsequently, the Shannon entropy method was used to ascertain the objective 
weight for each criterion. TOPSIS was used in conjunction with these weights to obtain an unbiased ranking 
of the alternatives [57]. 

The methodologies were successfully applied to rank the criteria that would improve efficiency in 
manufacturing and service organisations. Five experts from industry and academia were asked to rate the 
criteria, based on their experience. Two of the five experts were professors and each of the professors 
each had more than a decade in consultation and lecturing operations management. The other three 
experts were from the industry (one held a top management position and had more than twenty years of 
experience, and the other two were in the managerial category with experience ranging from nine to 13 
years). 

6.1. MULTICRITERIA DECISION ANALYSES  

The table 1 shows the details of decision makers, and Table 2 shows the ratings given by the decision 
makers. The random numbers for calculating consistency index are shown in Table 3. The six MCDM 
techniques considered in this paper (AHP, fuzzy AHP, TOPSIS, entropy TOPSIS, VIKOR, and EDAS) were 
applied to the decision matrix, the major calculations for these six MCDM techniques are shown in Tables  
4, 5, 6, 7, 8, and 9. The rankings obtained from the application of these six MCDM techniques are 
summarised in Table 10. All MCDM model analyses showed almost similar results for all factors (workforce, 
manufacturing equipment, raw materials, facilities, work method, methodology, product design, quality, 
and environment). From the pairwise comparison analysis on the aforementioned factors, we found that 
the workforce was the most influential factor, affecting productivity by 26.26%. Manufacturing equipment 
was found to be the second main criterion, affecting productivity by 18.60%. Raw material was the third 
criterion, contributing 17.09% to productivity loss. Plant layout next, affecting 14.12% of productivity. The 
manufacturing process scored 07.49% on the scale of influencing productivity. Product design was the next 
criterion, affecting productivity by 06.40%, while work method affected productivity by 04.40% and poor 
quality affected productivity by 02.75%. The environment was the last criterion, contributing 03.50% to 
productivity depletion. 

In this study, we used a decision-maker to find nine main criteria and 37 sub-criteria. In the initial findings 
of the main criteria, workforce (WF) ranked 1 as the most influential factor affecting productivity 
improvement). Our findings are consistent with the outcomes from previous studies [41-43]. Manufacturing 
equipment was the second one on the prioritised list of influential factors (ranked 2) followed by raw 
material (ranked 3), plant layout/facilities (ranked 4), manufacturing process (ranked 5), product design 
(ranked 6), work method (ranked 7), environment (ranked 8), and quality (ranked 9). The results were 
similar to all of the MCDM models, which were validated using an artificial neural network. 
 

Table 1: Details of decision-makers 

Decision-makers Designation Area of expertise Years of experience 

D1 Vice president  Manufacturing - Operations 20 

D2 Director Design and manufacturing 18 

D3 Senior manager Manufacturing and design 15 

D4 Professor Industrial engineering 22 

D5 Professor Manufacturing engineering 20 
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Table 2: Ratings of criteria given by decision makers 

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 1 3 1 3 3 5 7 5 7 

C2 0.33 1 2 2 3 2 5 5 7 

C3 1.00 0.50 1 1 3 4 5 7 3 

C4 0.33 0.50 1.00 1 3 3 4 5 5 

C5 0.33 0.33 0.33 0.33 1 2 3 3 2 

C6 0.20 0.50 0.25 0.33 0.50 1 3 3 2 

C7 0.14 0.20 0.20 0.25 0.33 0.33 1 3 3 

C8 0.20 0.20 0.14 0.20 0.33 0.33 0.33 1 1 

C9 0.14 0.14 0.33 0.20 0.50 0.50 0.33 1 1 

 

Table 3: Random numbers 

 1 2 3 4 5 6 7 8 9 10 11 

Random No 0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.51 1.54 

Table 4: Weight of criteria using AHP 

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 

Weight 0.2628 0.1860 0.1710 0.1412 0.07474 0.0624 0.0438 0.0274 0.030 

Rank 1 2 3 4 5 6 7 8 9 

Consistency index = 0.078693; Consistency ratio = 0.054271 

 

Table 5: Pairwise comparison of main criteria using fuzzy AHP 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 

C1 (1,1,1) (2,3,4) (1,1,1) (2,3,4) (2,3,4) (4,5,6) (6,7,8) (4,5,6) (6,7,8) 

C2 
(0.25,0.33
,0.50) 

(1,1,1) (1,2,3) (1,2,3) (2,3,4) (1,2,3) (4,5,6) (4,5,6) (6,7,8) 

C3 (1,1,1) 
(0.33,0.5,
1) 

(1,1,1) (1,1,1) (2,3,4) (3,4,5) (4,5,6) (6,7,8) (2,3,4) 

C4 
(0.25,0.33
,0.50) 

(0.33,0.5,
1) 

(1,1,1) (1,1,1) (2,3,4) (2,3,4) (3,4,5) (4,5,6) (4,5,6) 

C5 
(0.25,0.33
,0.50) 

(0.25,0.33
,0.5) 

(0.25,0.33
,0.50) 

(0.25,0.33
,0.50) 

(1,1,1) (1,2,3) (2,3,4) (1,2,3) (1,2,3) 

C6 
(0.17,0.20
,0.25) 

(0.33,0.5,
1) 

(0.20,0.25
,0.33) 

(0.25,0.33
,0.50) 

(0.33,0.50
,1) 

(1,1,1) (2,3,4) (2,3,4) (1,2,3) 

C7 
(0.13,0.14
,0.17) 

(0.2,0.2,0.
25) 

(0.17,0.20
,0.25) 

(0.20,0.25
,0.33) 

(0.25,0.33
,0.50) 

(0.25,0.33
,0.50) 

(1,1,1) (2,3,4) (2,3,4) 

C8 
(0.17,0.2,
0.25) 

(0.17,0.2,
0.25) 

(0.13,0.14
,0.17) 

(0.17,0.20
,0.25) 

(0.33,0.50
,1) 

(0.25,0.33
,0.50) 

(0.25,0.33
,0.50) 

(1,1,1) (1,1,1) 

C9 
(0.13,0.14
,0.17) 

(0.13,0.14
,0.17) 

(0.25,0.33
,0.5) 

(0.17,0.2,
0.25) 

(0.33,0.5,
1) 

(0.33,0.5,
1) 

(0.25,0.33
,0.50) 

(1,1,1) (1.1,1) 
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Table 6: Ranking of criteria based on TOPSIS 

Criteria D+ D- CC Rank 

C1 0.062567 0.008759 0.73515 1 

C2 0.16206 0.007563 0.45167 2 

C3 0.005907 0.084384 0.37876 3 

C4 0.11981 0.007988 0.34622 4 

C5 0.0551 0.006061 0.31408 8 

C6 0.004936 0.074787 0.34401 5 

C7 0.059982 0.002828 0.33304 6 

C8 0.029394 0.004199 0.33031 7 

C9 0.04166 0.005951 0.31106 9 

 
Table 7: Ranking of criteria based on entropy TOPSIS 

 

Criteria D+ D- CC Rank 

C1 0.062567 0.008759 0.73515 1 

C2 0.16206 0.007563 0.45167 2 

C3 0.005907 0.084384 0.37876 3 

C4 0.11981 0.007988 0.34622 4 

C5 0.0551 0.006061 0.31408 8 

C6 0.004936 0.074787 0.34401 5 

C7 0.059982 0.002828 0.33304 6 

C8 0.029394 0.004199 0.33031 7 

C9 0.029224 0.004023 0.30210 9 

  
 

Table 8: Ranking of criteria based on VIKOR 
 

Criteria Si Ri Qi Rank 

C1 0.1855 0.1153 0.092 1 

C2 0.4598 0.1251 0.2048 3 

C3 0.4901 0.1563 0.1626 2 

C4 0.5495 0.1563 0.2048 3 

C5 0.685 0.1669 0.2048 3 

C6 0.6806 0.1563 0.2445 6 

C7 0.7158 0.1751 0.2629 8 

C8 0.7598 0.1751 0.2445 6 

C9 0.779 0.1788 0.2629 8 
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Table 9: Ranking of criteria based on EDAS 

 

Criteria EDAS Rank 

C1 1 1 

C2 0.74015 2 

C3 0.68351 3 

C4 0.58314 4 

C5 0.28262 5 

C6 0.2091 6 

C7 0.098135 7 

C8 0 9 

C9 0.016994 8 

 

6.2. COMPARISON OF RESULTS  

The final results of the AHP, fuzzy AHP, TOPSIS, entropy TOPSIS, EDAS, VIKOR, and ANN methods were 
compared, and they are shown in Table 10. It was noted that the ranking results for all these methods are 
the same for the weights derived by AHP and fuzzy AHP except for VIKOR. Graphical comparisons of the 
normalised ranking score values of the calculated MCDM methods are given in Figure 8, where the 
alternatives were ranked according to the decreasing score values. Table 11 shows the ranking of the local 
weights and the global weights of the sub-criteria using AHP and FAHP. Despite its distinctive inputs and 
outputs, the neural network has difficulties. Errors may impair training and testing. After nine samples of 
training and testing, the model’s inputs and outputs reduced the mean square error (MSE) values for the 
training and test outcomes. 

 Table 10: Ranking of criteria  by MCDM (AHP, FAHP, TOPSIS, EDAS, VIKOR, ENTROPY and TOPSIS) and 

ANN 

 

Criteria  AHP FAHP TOPSIS EDAS VIKOR 
Entropy 
TOPSIS 

ANN 

C1 0.262 (#1) 0.257 (#1) 0.798 (#1) 1.000 (#1) 0.092 (#1) 0.842 (#1) 1.627 (#1) 

C2 0.185 (#2) 0.185 (#2) 0.479 (#3) 0.740 (#2) 0.204 (#3) 0.516 (#2) 2.597 (#2) 

C3 0.170 (#3) 0.168 (#3) 0.492 (#2) 0.683 (#3) 0.162 (#2) 0.411 (#3) 2.683 (#3) 

C4 0.141 (#4) 0.146 (#4) 0.291 (#4) 0.583 (#4) 0.204 (#3) 0.350 (#4) 3.896 (#4) 

C5 0.074 (#5) 0.075 (#5) 0.146 (#5) 0.282 (#5) 0.204 (#3) 0.165 (#5) 5.321 (#5) 

C6 0.062 (#6) 0.065 (#6) 0.098 (#6) 0.209 (#6) 0.244 (#6) 0.138 (#6) 5.917 (#6) 

C7 0.043 (#7) 0.040 (#7) 0.032 (#9) 0.098 (#7) 0.262 (#8) 0.065 (#7) 7.387 (#7) 

C8 0.027 (#9) 0.029 (#9) 0.038 (#8) 0.000 (#9) 0.244 (#6) 0.020 (#9) 8.978 (#9) 

C9 0.030 (#8) 0.031 (#8) 0.043 (#7) 0.016 (#8) 0.262 (#8) 0.036 (#8) 7.634 (#8) 

Ranks are indicated within the  brackets (#) 
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Figure 8: Comparison of other MCDM models with ANN 

 

Table 11: Ranking of local weight and global weight of sub-criteria using AHP and FAHP 

AHP FAHP AHP FAHP 

CR LW Rank CR LW Rank CR GW Rank CR GW Rank 

MP1 0.58618 1 MP1 0.60400751 1 WF1 0.13499 1 WF1 0.13645 1 

WF1 0.51401 2 WF1 0.53071602 2 ME1 0.0829 2 ME1 0.0816 2 

PL1 0.49093 3 QT1 0.49938378 3 PL1 0.06932 3 PL1 0.07209 3 

Q1 0.47868 4 PL1 0.49229458 4 WF2 0.0684 4 WF2 0.06488 4 

ME1 0.4458 5 EN1 0.44154218 5 ME2 0.05686 5 ME2 0.0566 5 

WM1 0.43 6 ME1 0.44079553 6 RW2 0.05327 6 RW2 0.05367 6 

E1 0.42215 7 PD1 0.42972091 7 RW3 0.04498 7 RW3 0.0459 7 

PD1 0.4076 8 WM1 0.41838978 8 MP1 0.04392 8 MP1 0.04537 8 

RW2 0.31178 9 PD2 0.33376198 9 PL2 0.04114 9 PL2 0.04247 9 

ME2 0.30574 10 RW2 0.31808469 10 WF3 0.03685 10 WF3 0.03589 10 

PD2 0.303 11 QT2 0.31065691 11 RW1 0.03231 11 RW1 0.03125 11 

Q2 0.29623 12 ME2 0.30572305 12 RW4 0.03033 12 RW4 0.03007 12 

PL2 0.29135 13 PL2 0.29003491 13 ME3 0.02873 13 PD1 0.02829 13 

RW3 0.26328 14 RW3 0.27202238 14 PD1 0.02545 14 ME3 0.02749 14 

WF2 0.26047 15 WF2 0.25236375 15 WF4 0.02238 15 PL3 0.02212 15 

WM2 0.25 16 WM2 0.24657031 16 PL3 0.02128 16 PD2 0.02197 16 

MP2 0.24607 17 MP2 0.23691781 17 WM1 0.01908 17 WF4 0.01988 17 

WM3 0.22 18 WM3 0.22508367 18 PD2 0.01892 18 ME4 0.01943 18 

E2 0.22091 19 EN2 0.21864405 19 MP2 0.01844 19 MP2 0.0178 19 

RW1 0.18909 20 RW1 0.18518688 20 ME4 0.01748 20 WM1 0.01708 20 

RW4 0.17749 21 RW4 0.17817284 21 Q1 0.01318 21 QT1 0.01455 21 

E3 0.17267 22 EN3 0.16774408 22 E1 0.01286 22 EN1 0.01399 22 

Q3 0.16828 23 PL3 0.15105733 23 WM2 0.01115 23 WM2 0.01007 23 



14 

AHP FAHP AHP FAHP 

CR LW Rank CR LW Rank CR GW Rank CR GW Rank 

PD3 0.16561 24 ME3 0.14849987 24 PD3 0.01034 24 PL4 0.00976 24 

ME3 0.15448 25 QT3 0.13998826 25 WM3 0.00977 25 WM3 0.00919 25 

PL3 0.15069 26 WF3 0.13958124 26 PL4 0.00947 26 QT2 0.00905 26 

WF3 0.1403 27 PD3 0.12229292 27 RW5 0.00855 27 PD3 0.00805 27 

PD4 0.12379 28 PD4 0.1142242 28 MP3 0.00848 28 MP3 0.00793 28 

E4 0.11506 29 WM4 0.10995624 29 Q2 0.00816 29 RW5 0.00785 29 

MP3 0.11317 30 EN4 0.10558351 30 PD4 0.00773 30 PD4 0.00752 30 

ME4 0.09398 31 MP3 0.10555133 31 E2 0.00673 31 EN2 0.00693 31 

WM4 0.09 32 ME4 0.10498155 32 E3 0.00526 32 EN3 0.00531 32 

WF4 0.08522 33 WF4 0.07733898 33 Q3 0.00463 33 WM4 0.00449 33 

E5 0.06921 34 PL4 0.06661318 34 MP4 0.00409 34 QT3 0.00408 34 

PL4 0.06704 35 EN5 0.06648617 35 WM4 0.00397 35 MP4 0.00402 35 

Q4 0.05681 36 MP4 0.05352336 36 E4 0.00351 36 EN4 0.00334 36 

MP4 0.05459 37 QT4 0.04997105 37 E5 0.00211 37 EN5 0.00211 37 

RW5 0.05003 38 RW5 0.04653321 38 Q4 0.00156 38 QT4 0.00146 38 

CR – Criteria, LW – Local weight, GW – Global weight 

The collected data were divided into a training dataset and a validation dataset. The training dataset was 
used to calculate the gradient and to update the connection weights, while the validation dataset was used 
to assess errors. The training was concluded when the errors for the training dataset decreased and the 
errors for the validation dataset increased, with the model exhibiting the lowest validation error rate during 
this time. To achieve a high level of prediction precision, the training dataset was used to train the model. 
Each iteration’s update group size was 10 samples. The number of epochs for an ANN model denoted the 
number of times the entire training dataset was processed. This investigation examined one thousand 
epochs. After 53 epochs, the ANN model’s prediction accuracy for the training datasets exceeded 99%. The 
proposed testing set had an overall prediction accuracy of 98%. Figure 9 shows the regression analysis of 
the network.  
 

 

Figure 9: Regression analysis 
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In the present case study, we have discussed the core defects and the reasons for the defects, which helped 
us to understand the arrangement of the manufacturing equipment and the workforce involved in the core 
production shop. AHP and fuzzy AHP were found to be more suitable MCDM models for finding the causes 
and helping to analyse the productivity improvement [58-61]. Both MCDM models showed almost similar 
results for all factors. AHP and fuzzy AHP prioritised the factors that needed to be analysed. The highest 
priorities were given for the highest rank, which invariably affected the other low priority factors. Since 
the workforce was found to be the most influential factor, we employed a standard operating procedure 
(SOP) to target primarily the workforce and to employ it productively. In the implementation of the SOP, 
the core was transported from the production shop to the storage station in a tray. In that way, the 
workforce involved in carrying the core from one station to another was considerably reduced. In the 
painting stations, suggestions were given to apply the paint in a controlled flow over the core instead of 
dipping the core directly into the paint. It also reduced the ergonomic problems experienced by the 
workforce, thus helping to reduce the absenteeism and lateness of the workforce. These suggestions 
reduced the core defects and improved the production of the core, which in turn reduced the casting 
defects.  

We also attempted to improve the use of the manufacturing equipment through the Standard Operating 
Procedure (SOP). To use the oven space fully, we suggested that the workforce arranged the trays and 
compartmentalised the baking area. This would enable them to place a greater number of cores in the oven 
and to bake them for a standard time interval. Compartmentalisation of the oven would not only enhance 
the production volume, but also minimise the consumption of electrical power. A nominal increase in the 
utility of the equipment would lead to an elevation of the productivity scale because it would improve the 
quality of the baking of large cores in the shortest time at a lower fuel cost, leading to an improvement in 
the efficiency of the electric oven. Moreover, the correct baking of the cores would decrease defects such 
as cuts, washes, and over-baked cores. Therefore, this reduction would improve the output of casting 
without defects. Later, all cores were moved to the moulding area for further processing. All of the 
aforementioned suggestions, changes, and arrangements to use the workforce properly and to handle the 
material would help to increase productivity [52]. After the implementation of these methods and their 
resultant outcomes, a significant decrease in non-value-added activities (NVA) by 65.56% was revealed, 
along with a notable enhancement of the process time by 61.03%, a substantial reduction in waiting time 
by 66.66%, a decrease in manpower by 35%, and a cost reduction by 45%. These findings showed the superior 
performance achieved in the core shop environment, and productivity was increased by 23%. Figure 10 
shows the post implementation of standard operating procedure (SOP).  

 

Figure 10: Changes to SOP: a, b – Before implementing, after implementing in paint shop; c, d – 

Arrangement in oven 

7. CONCLUSION 

This paper proposed a very simple and novel method of comparison among the rankings obtained from 
various MCDM techniques. A number of other different MCDM techniques such as TOPSIS, entropy TOPSIS, 
VIKOR, and EDAS were selected for the purpose of ranking. The proposed method of comparison analysed 
the rankings, based on the benefits provided by the rankings. The benefits were determined by the 
maximum or minimum values of the highest ranked criterion. The reason for choosing the measure of 
benefit for the analysis was the fact that the primary purpose of any MCDM ranking is to identify the most 
appropriate alternatives that will produce the maximum benefit.  

A case study on core shop in foundry was presented in this paper in order to show the establishment of the 
associations among the rankings using existing rank correlation methods, and to establish the effectiveness 
of the proposed method of comparison. 
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Productivity improvement is an important activity for manufacturing companies, as selecting the wrong 
criteria can be expensive with respect to product quality, production time, production rate, and resource 
allocation. It has been suggested that an effective and efficient MCDM tool should be used to address the 
criteria that could increase productivity.  

The manager, along with a team of nine people, examined the criteria for improving productivity in the 
core shop of a foundry industry (the casting process) [63,64]. 

• A total of nine major criteria and 38 sub-criteria required pairwise comparisons from the decision-
maker in order to establish criteria weights using AHP and fuzzy AHP. The determined criteria 
weights of the AHP analysis and the fuzzy weights of the fuzzy AHP analysis were compared (Table 
10). 

• The normalised weights and scores of the analyses were consistent, with AHP and FAHP showing 
few differences. This could most likely be attributed to the accuracy of the AHP and FAHP selection 
scales, and the decision-makers’ perceptions of the criteria with correct weights had a good impact 
on the decision results. 

• There were significant differences in the results from one method: VIKOR could not provide a 
conclusive result, indicating that the other methods were better. 

• Hybrid neuro-MCDM models could boost criterion weighting and handle uncertainty in the decision 
environment. The ANN tool is a sophisticated analytical tool for comparing decision-makers’ data 
and criteria ranking. This MCDM study used ANN because fuzzy logic computation is repetitive. 

• The comparison of the different MCDM methods directly influenced the core shop in the foundry 
to make an informed decision to improve productivity in every stage of its processes. By going 
through this, the team of industrial professionals became more knowledgeable about their 
decisions and the uncertainty associated with each criterion-related option, directing them to 
evaluate each criterion-related option before implementing another.  

Implementing a material handling system between the stations reduces the handling of the cores by the 
workforce, and so reduces damage to the cores. The solution that emerged from the research was provided 
to the plant in order to enhance productivity. The identified factors – the workforce, poor handling of 
materials and work in progress, and a poor mode of transportation between the stations – directly 
influenced the core defects that affected productivity. Thus commissioning an effective material handling 
system at an appropriate place would minimise the adverse role played by the prioritised sub-criteria. As 
a result they would have a positive impact on the major criteria and so produce better levels of 
productivity.  
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