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ABSTRACT 

Chronic sinusitis is a common disease that significantly affects quality of 
life. To treat chronic sinusitis, functional endoscopic sinus surgery (FESS) 
is frequently considered. FESS alleviates chronic sinusitis symptoms by 
restoring natural sinus drainage. Otolaryngologists rely on computed 
tomography (CT) reports to establish whether FESS is appropriate. To 
enhance sinus CT reports and improve decision-making, a segmentation 
model is developed. Both 2D and 3D segmentation models were 
compared, with the 3D model achieving marginally better results. The 
model accurately segments the sinus system, including the nasal cavity, 
achieving a mean Dice coefficient of 0.889 ± 0.028. The resulting 3D 
visualisation of the segmented sinus system enables quick identification 
of opacified regions, helping otolaryngologists to make informed 
decisions about the appropriateness of FESS. This automated approach 
reduces the time required to compile reports, improves the precision of 
clinical evaluations, and ultimately enhances patient care 

 OPSOMMING  

Chroniese sinusitis is 'n algemene siekte wat lewenskwaliteit aansienlik 
beïnvloed. Om chroniese sinusitis te behandel, word funksionele 
endoskopiese sinuschirurgie (FESS) gereeld oorweeg. FESS verlig 
chroniese sinusitis simptome deur die herstel van natuurlike sinus 
dreinering. Otolaryngoloë maak staat op rekenaartomografie (CT) 
verslae om vas te stel of FESS toepaslik is. Om sinus-CT-verslae te 
verbeter en besluitneming te verbeter, word 'n segmenteringsmodel 
ontwikkel. Beide 2D- en 3D-segmenteringsmodelle is vergelyk, met die 
3D-model wat marginaal beter resultate behaal het. Die model 
segmenteer die sinusstelsel akkuraat, insluitend die neusholte, en bereik 
'n gemiddelde Dobbelsteenkoëffisiënt van 0.889 ± 0.028. Die gevolglike 
3D-visualisering van die gesegmenteerde sinusstelsel maak vinnige 
identifikasie van ondeursigtige streke moontlik, wat otolaryngoloë help 
om ingeligte besluite oor die toepaslikheid van FESS te neem. Hierdie 
outomatiese benadering verminder die tyd wat nodig is om verslae saam 
te stel, verbeter die akkuraatheid van kliniese evaluasies en verbeter 
uiteindelik pasiëntsorg 
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1. INTRODUCTION 

The sinuses consist of four pairs of interconnected air-filled cavities: the frontal, ethmoid, maxillary, and 
sphenoid sinuses [1], [2]. These cavities, located in various parts of the skull, connect to the nasal cavity 
and play a crucial role in maintaining respiratory health through mucociliary clearance [2], [3]. Mucociliary 
clearance relies on mucus production and ciliary motion. Epithelial cells line the interior of the sinuses and 
nasal cavity and secrete mucus, a gel-like substance with sticky characteristics that traps breathed-in 
particles such as bacteria, germs, and pollutants [2], [3]. Hair-like structures called cilia extend from the 
surfaces of the epithelial cells and perform coordinated rhythmic movements that sweep the mucus 
particles out of the sinuses and into the throat or nasal cavity for expulsion [2], [3], [4]. 

When mucus in the sinuses cannot drain freely and frequently, it stagnates and becomes a breeding ground 
for bacteria, increasing the risk of sinus infections, which can lead to sinusitis [2], [5]. Sinusitis is a common 
condition that affects people of all ages [2], [6]. Patients with sinusitis can experience fatigue, difficulty 
sleeping, and decreased productivity, all of which can affect their ability to work, study, or engage in social 
activities [7]. Sinusitis can also lead to anxiety, depression, and other psychological symptoms that have a 
further impact on the overall well-being of a patient [7].  

Messerklinger’s research on mucociliary clearance and its role in sinusitis laid the groundwork for functional 
endoscopic sinus surgery (FESS), a procedure designed to restore natural sinus drainage and alleviate 
chronic sinusitis symptoms [1], [2], [3], [8], [9], [10]. FESS is considered when a patient with chronic 
sinusitis has recurrent symptoms despite receiving appropriate medication [10], [11]. When an 
otolaryngologist contemplates surgical intervention, computed tomography (CT) scans are obtained [12]. 
The images obtained from these scans provide critical information such as the extent of the disease, the 
opacification of the sinus drainage pathways, the location of surgically pertinent anatomic structures, and 
anatomic variations [1], [4], [12], [13], [14], [15], [16]. 

To derive insights from sinus CT scans, radiologists must meticulously examine the multiple two-dimensional 
(2D) images or slices that constitute a sinus CT scan. Owing to the worldwide shortage of radiologists, the 
comprehensive assessment of CT scans may not be performed in depth or promptly [17], [18], [19]. South 
Africa in particular has only 1.2 radiologists per 100,000 individuals, which is in stark contrast to Europe, 
where there was an average of 12.8 radiologists per 100,000 individuals in 2020 [18], [20]. In extreme cases, 
radiologists are expected to examine one image every three to four seconds in an eight-hour workday [17], 
[18].  

To guarantee that sinus CT assessments could be performed comprehensively and promptly, the 
effectiveness of current sinus CT scan reporting must be improved. This study aims to enhance the 
effectiveness and efficiency of sinus CT scan assessments by developing a machine-learning sinus 
segmentation model that represents the sinus system as a three-dimensional (3D) model with supporting 
annotations. By analysing the 3D model rather than individual 2D slices, the effectiveness of sinus CT scan 
assessments is improved. 

Towards the aim of developing a 3D model: 

1. Current sinus CT reporting practices are reviewed to identify the requirements of manual 
assessment procedures. 

2. Models that have previously been proposed to automate sinus CT reporting are identified and 
compared in order to identify their shortcomings. 

3. Machine learning models are proposed, implemented, and evaluated to determine their 
applicability in improving sinus CT scan assessments. 

Unlike related work, this study specifically considers the segmentation of sinus drainage paths and directly 
compares 2D and 3D segmentation models. The proposed solution could segment sinus drainage paths, a 
key area that requires examination but that has been largely ignored by previous automation efforts. The 
3D segmentation models only marginally outperform the 2D segmentation models, suggesting that 
computationally efficient 2D models may be a viable option for effective sinus CT scan assessments. 

The paper is structured as follows: A detailed review of current sinus CT reporting practices is provided in 
Section 2. Machine learning models that have previously been proposed to automate sinus CT reporting are 
evaluated in Section 3. Machine learning models are then proposed and evaluated, with the experimental 
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setup discussed in Section 4 and the results in Section 5. Section 6 concludes the paper with a summary of 
the main findings and limitations of this study. 

2. SINUS COMPUTED TOMOGRAPHY ASSESSMENT 

The assessment of sinus CT scans is crucial to determine whether FESS should be performed, as a surgical 
intervention is not without risks and costs [8], [21]. Patients who undergo FESS may experience minor 
complications such as bleeding, infection, crusting, tooth, lip numbness, and/or disease recurrence, or 
more serious complications such as optic nerve damage, meningitis, and carotid vascular injury [4], [22]. 
Thomas et al. [23] evaluated the cost and operation time of 1,477 endoscopic sinus surgeries and found 
that the total operation cost ranged from 2,100 to 4,600 United States Dollars (USD). Given the risks and 
costs associated with FESS, the comprehensive assessment of CT scans is essential to ensure that decisions 
are well-informed and unbiased.  

Despite the importance of comprehensive assessment, no universally accepted standard for radiology 
reporting on sinus CT scans exists [12]. Deutschmann et al. [12] surveyed Canadian otolaryngologists and 
found that sinus CT radiologic reporting did little to assist with clinical evaluation. More recently, Cadd et 
al. [24] determined that only seven out of 129 otorhinolaryngology surgeons surveyed in Australia 
considered CT reporting practices useful. Radiologists typically receive limited formal education in 
reporting, learning through periodic correction and imitation of other reports [25]. Consequently, CT scan 
reports vary, based on the training and expertise of the radiologist. 

To improve the state of current sinus CT scan reporting, radiologists should report on:  

1. the extent of sinus opacification [4], [12], [13], [14];  

2. the opacification of sinus drainage pathways [1], [4];  

3. any anatomical variants that predispose patients to recurrent diseases and that would have a 
significant impact on potential surgical interventions [4], [12], [16], [24]; and 

4. observations of polyps, cysts, deviated nasal septums, concha bullosa, and bone thinning [12].  

For instance, radiologists should report any obstruction of the ostiomeatal complex, a key sinus drainage 
pathway, since an obstruction can prevent effective mucociliary clearance, potentially leading to sinus 
infections [3].  

Efforts to enhance the quality of sinus CT scan reporting have led to the adoption of standardised formats, 
the most prominent being the Lund and Mackay scoring format [26], which requires radiologists to grade 
six areas of the sinuses on both the left and right sides, using a scorecard. 

The maxillary sinus, the sphenoid sinus, the frontal sinus, the posterior ethmoid, and the anterior ethmoid 
are scored using an ordinal scale with three categories: a score of zero indicates no abnormality, a score 
of one indicates partial opacification, and a score of two indicates complete opacification [26], [27]. The 
ostiomeatal complex is scored using an ordinal scale with two categories: zero indicates no obstructions 
and two indicates obstruction [26], [27]. An example of this scoring system is illustrated in Table 1. 

Table 1: Lund and Mackay scorecard 

Radiological grading Right sinus Left side 

Maxillary sinus 0-2 0-2 

Sphenoid sinus 0-2 0-2 

Frontal sinus 0-2 0-2 

Posterior ethmoids 0-2 0-2 

Anterior ethmoids 0-2 0-2 

Ostiomeatal complex 0 or 2 0 or 2 

While prominent, the Lund and Mackay scorecard has been criticised for having insufficient levels to track 
the progression or regression of disease, leading to the development of several modified versions of the 
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Lund and Mackay scorecards [26]. For instance, Kennedy et al. [28] proposed reporting opacification using 
a score from zero to five to allow finer grading.  

While the Lund and Mackay scoring format and similar grading systems have aided in the standardisation 
and interpretation of radiology reports, they do not reduce the workload of radiologists. To assign a score 
to each of the twelve areas, a radiologist must still meticulously evaluate the multiple slices that constitute 
a sinus CT scan. Owing to the limited range of the scale used, a vast range of conditions could be assigned 
similar scores. To avoid misinterpretation, an otolaryngologist would have to review the accompanying CT 
scan to understand the severity of the assigned score. 

3. AUTOMATED SINUS COMPUTED TOMOGRAPHY ASSESSMENT 

Machine learning models have shown promising results in a range of medical applications, including the 
analysis of medical images to improve the accuracy and efficiency of diagnostic procedures [29]. Machine 
learning models, particularly those suitable for image-based tasks such as image recognition, image 
detection, and image segmentation, offer promising solutions that address some of the limitations of 
current sinus CT radiologic reporting. Image classification models can be used to classify images into known 
categories; image detection models can be used to locate features in an image; and image segmentation 
models can be used to divide an image automatically into distinct segments or regions.  

Convolutional neural networks (CNNs) are typically used for image-based tasks, since they are translation-
invariant and can automatically and adaptively learn features directly from images. By automatically 
learning features from images, the need for hand-crafted features is eliminated. CNNs employ multiple 
convolutional, pooling, and non-linear layers in succession, allowing the models to learn increasingly 
complex features. Features are usually learned using supervised learning, a process in which a model is 
trained using a data set that consists of input-output pairs. Several studies have investigated using 
supervised learning to develop CNNs in order to analyse sinus CT scans automatically. The relevant studies 
that have been identified are discussed and compared in the subsections that follow, grouped by image 
task. 

3.1. Object classification 

Chowdhury et al. [13] developed an object classification model using a data set of 2D coronal CT slices 
from 239 patients to classify whether the ostiomeatal complex was opened or closed. The CNN could 
accurately distinguish between the two categories, achieving an area-under-the-curve (AUC) performance 
of 0.87. While accurate, the CNN only covered a single area of the Lund and Mackay report, and assumed 
that the ostiomeatal complex could be evaluated from a single 2D slice. Using a single 2D slice can lead to 
the loss of crucial information, as the sinus system is inherently 3D and requires the selection of an 
appropriate slice. 

Ozbay and Tunc [5] focused on classifying the sinus system as either normal or abnormal, using a three-
step process. Five 2D slices that include the full view from the front of the head are first selected from a 
3D sinus CT scan. The sinus system is then identified in each image using Otsu’s method, and cropped. 
Otsu’s method separates pixels into two classes by finding a threshold that minimises the intra-class 
variance [30]. A CNN is then trained on the cropped image to classify images as normal or abnormal. When 
the individual predictions are combined for the five images that have been considered, the model achieves 
an accuracy of 0.98 on a held-out test set of 67 patients. Ozbay and Tunc [5] did not specify the criteria 
that were used to distinguish between normal and abnormal sinus CT scans. The criteria to decide whether 
FESS should be performed are poorly defined [31], [32], [33], and the use of FESS varies significantly 
geographically [6], [10], [34], [35]. Consequently, image classification models could propagate the bias of 
noisy categorisation.  

When the criteria used to assign labels to images are not defined, it becomes difficult to establish the 
significance of the results. It is straightforward to develop a system that classifies an image as abnormal 
when any opacification is detected. On the other hand, determining whether FESS should be performed is 
a difficult task that must account for several factors. To avoid any label ambiguity and bias, object 
detection and segmentation models could be used. These models provide specific information about the 
structures considered as opposed to distinct categories. 

3.2. Object detection 
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Laura et al. [36] developed an object detection model to identify and locate key structures of the sinus. 
The object detection model was trained to detect seven different objects from 2D slices, namely the frontal 
sinus, the sphenoid bone, the left ethmoid bone, the right ethmoid bone, the left maxillary sinus, the right 
maxillary sinus, and the nasal cavity. To create 3D objects, the detected objects from the 2D slices were 
combined to form irregular polyhedrons.  

The model was developed and evaluated using 57 CT scans. Global performance values were not provided; 
instead, recall and precision graphs were provided for each of the seven detected objects. Overall, the 
model had good performance, covering all the areas of the Lund and Mackay reporting format. However, 
the clinical evaluation of the detected objects was not covered in the study. 

3.3. Object segmentation 

Iwamoto et al. [37] proposed a two-step process to segment the maxillary sinus automatically. A region of 
interest is first identified from each 2D CT slice using a probabilistic atlas – a statical representation of the 
anatomical variability of the maxillary sinus. A CNN is then used to segment the maxillary sinus from the 
region of interest. The CNN they used was developed using 80 sinus CT scans and evaluated on 20 sinus CT 
scans using the Dice coefficient.  

The Dice coefficient measures the agreement between a manually segmented image and an image 
segmented by a model by considering the degree of overlap between the images – that is: 

Dice coefficient =  
2|Vmodel ∩ Vmanual|

|Vmodel|+|Vmanual|
  (1) 

where Vmodel is the set of predicted pixels or voxels and Vmanual is the set of manually annotated pixels or 
voxels. A Dice coefficient of one indicates perfect agreement between the manually segmented image and 
the predicted segmented image, while a dice coefficient of zero indicates no overlap. The model proposed 
by Iwamoto et al. [30] achieved a dice coefficient of 0.83, which indicated that the segmentation results 
mostly agreed with the manual segmentation.  

Xu et al. [38] proposed a two-step process to segment the maxillary sinus automatically. A classification 
model is first used to determine whether each image contains the maxillary sinus. Next, the images that 
contain the maxillary sinus are segmented individually. The model was developed using 35 sinus CT scans 
and evaluated on 26 sinus CT scans. The classification model they used to detect the maxillary sinus 
achieved a test accuracy of 97%. Three different CNN segmentation models were evaluated for segmenting 
the maxillary sinus: a U-Net [39], a V-Net [40], and a V-Net based on edge supervision. These segmentation 
models achieved similar Dice coefficients of 0.93, 0.93, and 0.94 respectively. Although effective in 
segmentation, the studies by Iwamoto et al. [37] and by Xu et al. [38] covered only one area of the Lund 
and Mackay report and excluded clinical evaluation, similar to the study of Laura et al. [36]. 

Unlike the studies by Iwamoto et al. [37] and Xu et al. [38], Jung et al. [41] included the clinical evaluation 
of the maxillary sinus. The authors incorporated the clinical evaluation by differentiating between air and 
lesion, and performed 3D segmentation directly using a 3D U-Net [39]. The 3D U-Net was trained on 83 
cone-beam CT (CBCT) scans and evaluated on 20 internal and 20 external CBCT scans. The model achieved 
a Dice coefficient of 0.93 for the air class and a Dice coefficient of 0.76 for the lesion class on the internal 
data set. On the external data set, however, the model performed poorly, achieving a Dice coefficient of 
0.97 for the air class and a Dice coefficient of 0.54 for the lesion class. Furthermore, it was noted that the 
performance of the model diminished for patients with severe maxillary sinusitis. As part of the study, the 
authors established that CNN-assisted segmentation could reduce the manual segmentation time by more 
than 50% [41].  

Humphries et al. [42] developed a 3D CNN based on the Tiramisu [43] architecture. The model was trained 
on 140 CT scans to segment the combined sinus cavities. The output of the model was used to estimate the 
opacification percentage of the combined sinus cavities. CT pixels with values of between -500 and +200 
Hounsfield (HU) units were assumed to represent opacification. The CNN achieved a Dice coefficient of 
0.93, and the estimated percentage opacification had a strong linear relationship with Lund and Mackay 
scores, indicating that opacification calculations could be used as a potential substitute for Lund and 
Mackay scores. Although Humphries et al. [42] compared their results with Lund and Mackay scores, the 
authors did not consider sinus drainage pathways such as the ostiomeatal complex.  
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3.4. Comparison of related work 

Table 2 compares the approaches identified above against the areas of the Lund and Mackay reporting 
format.  

Table 2: Comparison of related work 

 Maxillary sinus Sphenoid sinus Frontal sinus Posterior 
ethmoids 

Anterior 
ethmoids 

Ostiomeatal 
complex 
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[5] x  x x  x x  x x  x x  x x  x 

[13]                x   

[36]  x   x   x   x   x   x  

[37]   x                

[38]   x                

[41] x  x                

[42] x  x x  x x  x x  x x  x    

x indicates areas considered 

Four of the seven identified approaches covered only one area of the Lund and Mackay report. Laura et al. 
[36] developed an object detection model that covered all the areas of the Lund and Mackay report, but 
excluded clinical evaluation. Humphries et al. [42] developed a segmentation model that included clinical 
evaluation of all the areas of the Lund and Mackay report, but excluded the ostiomeatal complex.  

Five of the seven studies considered here used 2D images instead of 3D images directly. Since none of the 
papers directly compared 2D CNNs with 3D CNNs, it remains unclear which approach would yield better 
results. The complexity of the sinus anatomy is more accurately captured in 3D owing to its inherent 3D 
structure, but more computational resources would be required to develop 3D CNN models.  

The data sets employed to develop sinus CT models were typically small, ranging from 35 to 239 CT scans. 
This limitation is to be expected, as the annotation of 3D CT scans is a time-consuming task – even more so 
for segmentation, which requires the annotation of each voxel.  

While existing studies have made important strides in automating the analysis of sinus CT scans, there 
remains a need for a holistic model that can comprehensively evaluate the sinus system. This study aims 
to determine whether the sinus system, inclusive of sinus drainage pathways, can be accurately segmented, 
and whether more accurate results are obtained when employing 3D models as opposed to 2D models. The 
result is used to develop a model that can construct a 3D visualisation of the sinus system that indicates 
opacified areas. 

4. METHODOLOGY 

4.1. The data collection and preparation, the selection of evaluation measures, the evaluation 

methodology employed, and the machine learning models considered are discussed in this 

section. Data collection 

Data was collected from 35 patients who underwent sinus CT scan examinations in South Africa. Each CT 
scan was initially stored as a series of Joint Photographic Experts Group (JPEG) images in the coronal view, 
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the preferred perspective for sinus CT scans [32]. Unique identifiers were generated for each patient, and 
all metadata were removed to protect the patients’ privacy. 

The number of slices in a single CT scan ranged from 72 to 156. Slices that did not contain the sinus system 
and nasal cavity were manually removed. After removing the empty slices, each CT scan was standardised 
to 70 slices by selecting slices at about equal intervals and/or removing slices at regular intervals. The 
slices were then stacked and saved as 3D images in the Neuroimaging Informatics Technology Initiative 
(NIfTI) file format. The annotated segmentation mask was created in 3D Slicer, a free open-source software 
for 3D medical image segmentation and image processing [44]. Voxel intensities were normalised to a range 
between zero and one, and the images and labels were resized to a height and width of 352 pixels. 

To increase the number of training instances artificially, data augmentation was randomly applied during 
training. The data augmentation techniques included flipping images along the y-axis, modifying the pixel 
intensities of images within a range of ±0.1 and a combination of scaling images within a range of ±10%, 
and rotating images within a range of ±0.05 radians. Each augmentation technique had a 50% probability of 
being applied during training. Model performance was assessed without data augmentation, with each data 
augmentation technique applied individually and for a combination of the three augmentation techniques. 

4.2. Evaluation measures 

The performance of each model being considered was evaluated using five-fold cross-validation. The data 
set was randomly divided into five non-overlapping folds of equal size. Each fold was used once as a 
validation set. The mean Dice coefficient across the five validation sets was reported along with the 
standard deviation. Although the Dice coefficient is the most common segmentation measure used in 
medical segmentation studies [46], the Dice coefficient has several limitations. Notably, it assumes that 
the ground truth is accurate. Identifying the sinus system from CT scans is straightforward for healthy 
patients, but is difficult for patients with sinus infections, where differentiating between mucus and 
inflamed tissue can be problematic. Consequently, the ground truth may be inaccurate. In addition to the 
Dice coefficient, model performance was manually validated by comparing the ground truth and predicted 
segmentations, as recommended by Müller et al. [45].  

4.3. Model description 

A 2D and a 3D U-Net were considered, since the related work did not directly compare 2D segmentation 
models against 3D segmentation models. In contrast, different 3D segmentation models have been 
compared against one another and have achieved similar Dice coefficients. The U-Net architecture selected 
in this study consisted of an encoder-decoder structure with skip connections between corresponding blocks 
of the encoder and decoder. The encoder path reduces the spatial dimension of the input image, while the 
decoder path restores the spatial dimension of the representation to the original size. When the spatial 
resolution of a tensor is increased, both the input from the preceding layer and feature maps from the 
encoder path, connected via skip connections, are considered. These connections help to capture the finer 
details, making a U-Net suitable for medical image segmentation tasks that require high precision.  

The encoder of the U-Net model consists of five sequentially connected blocks. Each block contains two 
convolutional layers, each followed by a batch normalisation layer, a dropout layer, and a parametric 
rectified linear unit (PReLU) activation. After these two sets, there is another convolutional layer, followed 
by a batch normalisation layer, a dropout layer, and a PReLU activation. Finally, each block includes a 
residual layer that adds the input of the block to its output. The convolutional layers extract features, the 
PReLU functions introduce non-linearity, batch normalisation layers improve convergence and stability 
during training, while dropout with a probability of 20% helps to prevent overfitting. The first convolutional 
layer of the first three blocks uses a stride of two to down-sample the input. The number of channels is 
doubled in each block, starting from 16 and increasing to 256. 

The decoder of the U-Net model consists of four sequentially connected blocks. Each block in the decoder 
consists of transposed convolutional layers followed by a batch normalisation layer, a dropout layer, and a 
PReLU activation. In addition, the first three blocks include a second convolutional layer, followed by a 
batch normalisation layer, a dropout layer, and a PReLU activation. The last layer of each block is a residual 
layer that adds the input of the block to its output. The last block employs only a single convolutional layer 
that produces a tensor with the same shape as the initial input. A sigmoid activation function is applied to 
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transform the outputs within the range of zero to one. Values equal to or greater than 0.5 are considered 
to form part of the sinus system. The model architecture for the 3D U-Net is summarised in Table 3. 

Table 3: 3D U-Net architecture 

Layer Output  

shape 

Number  

of parameters 

Input 352, 352, 80  

Encoder 

Block 1 16, 176, 176, 40  9 618 

Block 2 32, 88, 88, 20  30 610 

Block 3  64, 44, 44, 10  121 986 

Block 4  128, 22, 22, 5 885 634 

Block 5  256, 22, 22, 5  2 688 770 

Decoder 

Skip connection 384, 22, 22, 5  

Block 6  64, 44, 44, 10 774 530 

Skip connection 128, 44, 44, 10  

Block 7  32, 88, 88, 20 113 522 

Skip connection 64, 88, 88, 20  

Block 8  16, 176, 176, 40 34 658 

Skip connection 32, 176, 176, 40  

Block 9  352, 352, 80 896 

The 2D and 3D U-Net employ the same architecture, except for the dimensionality of the convolutions and 
operations; the 2D U-Net employs 2D convolutions and operations, while the 3D U-Net employs 3D 
convolutions and operations. The 2D U-Net is about 65% smaller than the 3D U-Net, significantly reducing 
the computational resources required for training. For the 2D U-Net, the images from a single CT scan are 
processed individually, and the outputs are combined to form a coherent 3D volume. The final 3D volume 
is then used to highlight areas of opacification by considering the HU units of the corresponding CT scan 
voxels. 

Both the 2D and the 3D models were trained to minimise the Dice loss, which is computed by subtracting 
the Dice coefficient from one. To minimise the loss, the adaptive moment estimation (ADAM) [46] 
optimisation algorithm was used with 𝛽1 set to 0.9 and 𝛽2 set to 0.999. The learning rate was selected to 
ensure convergence. The training of each model was stopped after 100 epochs or when the validation loss 
did not decrease in three consecutive epochs. When the training was completed, the model was returned 
to the state with the best validation loss. The performance of the model was then determined using the 
held-out validation data.  

To reduce computational requirements, training with a limited batch size and sliding window inference was 
considered. Using a batch size smaller than four produced poor performance, which could likely be 
attributed to increased noise in the gradients used to update the model’s parameters. Training with a 
sliding window in a patch-like manner led to a fragmented understanding of the sinus and nasal cavity 
structures: some regions were well-defined, while others were overlooked. Consequently, training was 
performed using a batch size equal to or greater than four and without sliding window inference. 

5. RESULTS 

The 3D U-Net was trained using a batch size of four and a learning rate of 0.0005, while the 2D U-Net was 
trained using a batch size of 256 and a learning rate of 0.005. The batch size could be increased for the 2D 
U-Net, as the 2D U-Net consisted of about 1.6 million trainable parameters compared with the 4.7 million 
or so parameters of the 3D U-Net. The mean Dice coefficient, along with the standard deviation of the 
models and data augmentation strategies that were considered, is provided in Table 4. 

Table 4: Average validation performance per model 

Model Flip image 
Modify pixel 
intensities 

Scale and rotate 
images 

Mean Dice 
coefficient 
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2D U-Net    0.869 ± 0.064 

3D U-Net    0.871 ± 0.053 

3D U-Net ✓   0.859 ± 0.072 

3D U-Net  ✓  0.889 ± 0.028 

3D U-Net   ✓ 0.878 ± 0.061 

3D U-Net ✓ ✓ ✓ 0.882 ± 0.029 

Best performance highlighted in bold 

The 2D U-Net and the 3D U-Net without data augmentation achieved a mean Dice coefficient of 0.869 ± 
0.064 and 0.871 ± 0.053 respectively. Using data augmentation to increase the variability in the training 
data had a limited impact on segmentation performance while roughly doubling the training time. The 3D 
U-Net with the best performance used pixel intensity modification, achieving a mean Dice coefficient of 
0.889 ± 0.028. Intuitively, modifying the pixel intensities could help to introduce variations similar to 
opacification, which could improve the ability of the model to generalise to different levels of sinus 
opacification. 

An example of a single slice of the segmented sinus system generated by the model is illustrated in Figure 
1. The model successfully segments the nasal cavity. However, in some instances, voxels that do not 
represent the sinus system are incorrectly categorised as part of the sinus system.  

 

  

 

 (a) Manual segmentation (b) Automated segmentation  

 Figure 1: Comparison of manual segmentation vs automated 
segmentation 

 

Once segmented, the sinus system can be visualised and the opacified areas highlighted, based on the 
corresponding HU units of the original CT scan, as illustrated in Figure 2. In addition, the exact amount of 
opacification can be calculated and presented alongside the model output.  

 

 

Figure 1: 3D segmented sinus CT with opacified regions indicated in red  
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6. CONCLUSION 

Current sinus CT reports provide limited assistance to otolaryngologists in deciding whether FESS should be 
performed. Improving sinus CT reporting requires innovative solutions that consider real-world constraints 
such as the global shortage of radiologists. To improve sinus CT reporting standards, a machine learning 
model was developed that can automatically segment the sinus system. Unlike previous work, the 
segmentation model included the nasal cavity and sinus drainage paths, which play a key role in effective 
mucociliary clearance.  

A 2D segmentation model was compared directly with a 3D segmentation model to determine whether 3D 
segmentation models would provide superior results. The 3D U-Net marginally outperformed the 2D U-Net, 
which contradicted the large performance gain reported by Avesta et al. [47] in brain segmentation. The 
use of data augmentation to improve model performance was explored, as annotating 3D sinus CT scans is 
both time-consuming and costly. Data augmentation had a marginal impact on the model’s performance.  

The best model, the 3D U-Net trained with modified pixel intensities, achieved a mean Dice coefficient of 
0.889 ± 0.028, indicating that the complete sinus system can be accurately segmented. The performance 
achieved is lower than the 0.93 Dice coefficient reported by Humphries et al. [39], who used around four 
times more training data and did not consider the nasal cavity. When interpreting the results, it is important 
to consider that the Dice coefficient assumes that the manually annotated label is accurate. 

Future work should focus on addressing the limitations of the current study, which include the limited data 
set size and the integration of the model into clinical practice. To enhance reporting, it should be 
investigated whether CNNs could be used to identify anatomical variants automatically that predispose 
patients to recurrent sinusitis and/or that would have a significant impact on potential surgical 
interventions as well as the identification of polyps, cysts, deviated nasal septums, concha bullosa, and 
bone thinning. 
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