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Introduction
Numerous reliability optimization techniques have been

proposed in the past three decades.1–4 Stochastic programming
models for general redundancy-optimization problems have
been studied by Zhao et al.5 Stochastic programming models
arise as reformulations or extensions of reliability optimization
problems with random parameters. Moreover, the resource
elements vary and it is reasonable to regard them as stochastic
variables. Problems in this field are not easy to solve. Most
research concentrates on developing methods for approximate
solutions as optimal solutions. Efficiency in the complex theoretical
aspect is usually not considered. Quality statements are mostly
restricted to convergence to an optimal solution without consid-
ering the implications of the running time of the algorithms for
attaining the most accurate solutions. The complexity of stochastic
programming problems has recently been addressed, confirm-
ing that these problems are harder than most combinatorial
optimization problems. The diversity of system structures in
engineering, resource constraints, and options for reliability
improvement has led to the construction and analysis of several
optimization models. The review by Tillman et al.1 classifies
papers on reliability optimization according to system structure
and its application to problem type and solution method.

This paper addresses the chance constraints reliability stochas-
tic optimization (CCRSO) problem. The chance-constrained
programming technique was first proposed by Charnes and
Cooper.6 The objective is to maximize system reliability for the
given chance constraints. A method is illustrated to determine
optimal solutions to an n-stage series system with m chance
constraints of the redundancy allocation problem. Various cases
of randomness with known distributions, such as uniform, nor-
mal, and lognormal distributions, when the resource variables
are random, have been discussed. Once the real number solu-
tion is obtained using the technique of chance constraints, the

branch-and-bound (B&B) method is used to obtain the integer
solution. We illustrate this approach for a 4-stage series system
with two chance constraints.

This paper has been organized as follows: we discuss the
stochastic integer programming problem for an n-stage series
system with m chance constraints, and then illustrate the model
by deriving the required algorithm to obtain an integer solution
along with a numerical example.

Stochastic integer programming: n-stage series system
with m chance constraints

The chance constraint optimization problem for an n-stage
series system with m chance constraints can be formulated as

subject to P[gi(x) ≤ bi] ≥ 1 – αi , i = 1, 2,..., m; xj ≥ 1, j = 1, 2,..., n,
where resource vector b is random in nature; Rs is the reliability
of the system; rj , qj is reliability, unreliability of components j;
rj + qj ≡ 1, xj , is the number of components used at stage j; gi(x)
is the chance constraint i; bi is the amount of resource i available
(random), and αi is the level of significance.

Case 1. b is uniformly distributed
Let bi : U(li , ui), the constraint in system (1) is equivalent to

gi(x) ≤ τi , where βi = 1 – αi , = i , i.e. τi = αiui + i li .

Hence, the deterministic equivalent of system (1) is

subject to gi(x) ≤ iui + βili , i = 1, 2,…, m; xj ≥ 1, j = 1, 2,..., n.

Case 2. b is normally distributed
Let bi : N(µbi, σbi

2), where µbi , σbi
2 are mean and variance of the

normal random variable bi . Using the ith chance constraint of the
system (1), restate the chance constraint as P[bi ≥ gi (x)] ≥ 1 – αi ,
i = 1, 2,..., m, so this expression can be further stated as P[(bi –
µbi )/σbi ≥ (gi(x) – µbi /σbi] ≥ 1 – αi, i = 1, 2..., m. Using the cumula-
tive density function of the standard normal random 1 – Φ[(gi(x)

– µbi )/σbi] ≥ 1 – αi , I=1, 2,..., m, where Φ
π
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This can be further simplified as Φ[(gi(x) – µbi /σbi] ≤ Φ(–K i),
i = 1, 2,..., m. The chance constraint can be transformed into a de-
terministic constraint as gi (x) ≤ µbi – σbi K i , i = 1, 2..., m.

Hence, the deterministic equivalent of system (1) is

subject to gi (x) ≤ µbi – σbi K i , i = 1, 2..., m.

Case 3. b is log-normally distributed
Let bi : LN(µi ,σi

2), where µi,σi
2 are mean and variance of the

log-normal random variable bi. Using the ith chance constraint
of system (1), we restate the chance constraint as P[ln bi ≥
ln gi(x)] ≥ 1 – αi , i = 1, 2, ..., m. This expression can be further
stated as P[ln bi – µi)/σi ≥ (ln gi(x) – µi)/σi] ≥ 1 – αi , i = 1, 2,..., m. The
following deterministic ith constraint is obtained by the same
arguments made in case 2:

Hence, the deterministic equivalent of system (1) is:

subject to gi(x) ≤ exp (ui – σiK i), i=1, 2,…, m; xj j = 1, 2,…, n.
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This paper addresses the chance constraints reliability stochastic
optimization (CCRSO) problem, for which the objective is to maximize
system reliability for the given chance constraints. A method is
illustrated to determine optimal solutions to an n-stage series sys-
tem with m chance constraints of the redundancy allocation prob-
lem, incorporating the concepts of chance constraints techniques.
One can quickly reach an exact real number solution closest to the
optimal solution by this means. Once the real number solution is
obtained, the branch-and-bound (B&B) technique is used to obtain
the integer solution. We illustrate this approach for a 4-stage series
system with two chance constraints.



General algorithm
1. Convert the deterministic form of the chance constraint into

a linear constraint, adopting the technique of sequential
linear programming.7–10

2. Code any one of the systems (2)–(4) along with their respective
linearized constraints in MATLAB or LINGO and generate
optimal solutions by inputting initial values using a random
function (in later stages, one can use the derived real solution
to generate an integer solution using the step given below).

3. Apply the branch-and-bound algorithm given below to
obtain integer solutions.

Branch-and-bound technique
The B&B technique for CCRSO for stochastic optimization is as

follows:
1. Solve the problem as if all the variables were real numbers,

i.e. not integers, using the general algorithm given above.
This solution is the upper bound (for the maximization
problem) of the CCRSO problem.

2. Choose one variable at a time that has a non-integer value,
say, xj, and branch that variable to the next higher integer
value for one problem and to the next lower integer value for
the other. The real valued solution of the variable j can be
expressed as xj = [xj] + xj*, where [xj] is the integer part of xj
and xj* is the fractional part of xj, 0 < xj*< 1. The lower bound
and upper bound constraints of the two mutually exclusive
problems are xj = [xj] and xj = [xj] + 1, respectively. Add these
two constraints to both branched problems.

3. The variable xj is an integer in either branch. Fix the integer of
xj for the following steps of the branch-and-bound method.
Select the branch that yields the maximum objective func-
tion with all constraints satisfied. Then repeat step 2 on
another variable xk ≠ xj for each of the new sub-problems
until all variables become integers.

4. Stop the particular branch if the solution does not satisfy the
constraints of the original problem or else stop the branch
when all the desired integer values are obtained.

Numerical example
Example 1. A four-stage system with chance constraints is

formulated as a pure stochastic integer programming problem
using the data given in Table 1. The decision variables, X = (x1,…,

x4), are the number of redundancies at each stage. The problem is
formulated as in Case 1.

With the data given in Table 1, the real solutions are obtained
using the general algorithm, which is exhibited in Table 2. We
suggest that the real solution be further elaborated by the B&B
technique. Let us take one solution, namely, X = (11.3697, 7.6831,
1.3097, 1.0000) from Table 2. The integer solution is obtained
using the B&B technique. Figure 1 illustrates the B&B network.

P1 : x1 = 11.3697; x2 = 7.6831; x3 = 1.3097; x4 = 1.0000; R = 1.0000
P11 : Fathomed
P12 : x1 = 11.1175; x2 = 7.1284; x3 = 2.0000; x4 = 1.0000; R = 1.0000
P121 : x1 = 11.1175; x2 = 7.0000; x3 = 2.0000; x4 = 1.0000; R = 1.0000
P122 : x1 = 9.2000; x2 = 8.0000; x3 = 2.0000; x4 = 1.0000; R = 1.0000
P1211 : x1 = 11.0000; x2 = 7.0000; x3 = 2.0000; x4 = 1.0000; R = 1.0000
P1212 : Fathomed
P1221 : x1 = 9.0000; x2 = 8.0000; x3 = 2.0000; x4 = 1.0000; R = 1.0000
P1222 : Fathomed

An alternative optimal integer is obtained from the B&B
process, X = (11, 7, 2, 1) and X = (9, 8, 2, 1).

Conclusions
The combination of the chance constraint and the B&B

techniques takes advantage of an exact method and an enumer-
ative method. In this paper the chance constraint technique,
using a MATLAB program, quickly reaches real solutions that
are close to optimum. In addition, the B&B technique generates
many sets of integer solutions. The competitive alternatives pro-
vide management with several options and flexibility. Since a
good approximation is obtained by the chance constraint tech-
nique, it does not take many branches for the B&B technique to
reach the integer solution. The B&B algorithm given in this pa-
per can be directly applied to the mixed integer stochastic pro-
gramming problem (MISPP), for which only the integer
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Table 1. Data for Example 1.

Stage, j 1 2 3 4 Available
resource

rj 0.75 0.80 0.75 0.85 li ui αi

c1j 1.5 3.3 3.2 4.4 b1 50 60 0.10
c2j 4.0 5.0 7.0 9.0 b2 110 140 0.15

Table 2. Solutions for Example 1.

No. Initial guess [obtained using Rs(X)] x1 x2 x3 x4 Rs(X)

x1 x1 x2 x3

1 1.9501 1.2311 1.6068 1.4860 7.7656 9.5884 1.0344 1 1
2 1.8913 1.7621 1.4565 1.0185 10.857 8.2167 1 1 1
3 1.8214 1.4447 1.6154 1.7919 8.4843 8.6375 1 1.4931 1
4 1.9218 1.7382 1.1763 1.4057 7.7650 6.2088 1 1 0.9999
5 1.9355 1.9169 1.4103 1.8936 10.226 7.5664 1 1.7028 1
6 1.0579 1.3529 1.8132 1.0099 11.370 7.6831 1.3097 1 1
7 1.1389 1.2028 1.1987 1.6038 10.706 8.0460 1 1.1794 1
8 1.2722 1.1988 1.0153 1.7468 10.125 7.9687 1 1.4356 1
9 1.4451 1.9318 1.4660 1.4186 12.011 6.5778 1 1 1

10 1.8462 1.5252 1.2026 1.6721 9.3136 8.5091 1.0046 1.3034 1

Fig. 1. A B&B network representation of Example 1.
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variables need to be enumerated by the B&B procedure. The real
variables are free of restriction after each step of the B&B tech-
nique.

Recieved 23 November 2005. Accepted 26 March 2006.

1. Tillman F.A., Hwang C.L. and Kuo W. (1977). Optimization techniques for
system reliability with redundancy – A review. IEEE Trans. Reliability R26,
148–155.

2. Tillman F.A., Hwang C.L. and Kuo W. (1980). Optimization of System Reliability.
Marcel Dekker, New York.

3. Kuo W., Lin H-H., Xu Z. and Zhang W. (1987). Reliability optimization with the
Lagrange-multiplier and branch-and-bound technique. IEEE Trans. Reliability
R36(5), 624–630.

4. Chern M.S. (1992). On the computational complexity of reliability redundancy
allocation in a series system. Operations Res. Lett. 11, 309–315.

5. Zhao R. and Liu B. (2003). Stochastic programming models for general redun-
dancy – optimization problems. IEEE Trans. Reliability R52(2), 181–191.

6. Charnes A. and Cooper. W. W. (1954). Chance constrained programming. Man-
agement Science 6, 131–150

7. Rao S.S. (2000). Engineering Optimization Theory and Practice, 3rd edn. New Age,
New Delhi.

8. Jeeva M., Rajalakshmi R. and Charles V. (2002). Stochastic programming
in manpower planning – cluster-based optimum allocation of recruitments.
Advances in Stochastic Modelling. Notable Publications, New Jersey.

9. Jeeva M., Rajalakshmi R. Charles V. and Yadavalli V.S.S. (2004). An application
of stochastic programming with Weibull distribution – Cluster based optimum
allocation of recruitments in manpower planning. Stochastic Anal. Appl. 22(3),
801–812.

10. Charles V. and Dutta D. (2003). Bi-weighted multi-objective stochastic
fractional programming problem with mixed constraints. Proc. Second National
Conference on Mathematical and Computational Models. Allied Publishers,
Chennai.


