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Chaotic linear systems in mathematical biology

J. Banasiak®

Chaotic phenomena occurring in the natural sciences have been a
focus of interest of both theoreticians and experimentalists for over
five decades. Usually associated with nonlinear systems, they can
also appear in infinite dimensional linear ones; that is, governed by,
for instance, infinite systems of ordinary differential equations or
partial differential equations. In this paper we shall provide a survey
of mathematical tools which are necessary to analyse chaotic linear
systems and discuss several examples of such systems arising in
mathematical biosciences, ranging from drift-diffusion processes,
through mutations, to the production of blood cells. We shall also
attempt to address some questions related to the relevance of the
mathematical analysis to properties of real-life systems.

1. Introduction

Chaotic behaviour typically is associated with nonlinear
phenomena. The original example of chaotic evolution, given in
the paper of Lorentz,' and all the subsequent results on chaotic
behaviour of solutions to ordinary differential equations, refer to
nonlinear systems; that is, in the equation

i = f(u), (1.1)

where “" denotes the time derivative, the function fis nonlinear
(possibly acting in a multidimensional space R", in which case
u = (uy,..., Uy,)). In the Lorentz example we had n = 3, f = (f;, f>, f5)
with fl(ul, U, u3) = 10(1/[2 - 1/[1), fz(ul, U, 1/[3) = —-u; + 28”1 — Uilz,
fo(t, tha, Us) = =51y +uu, .

In the last few decades, however, it has been observed that
linear dynamical systems also can display a chaotic behaviour
but for this they must be infinite dimensional. This means that
the function f on the right-hand side of (1.1) must be, for
instance, an infinite matrix, or a differentiation operator. That a
finite dimensional linear system cannot produce chaotic behav-
iour should be intuitively clear: using the Jordan decomposition
of a matrix we see that any finite dimensional linear dynamics
is a superposition of finitely many simple ones (exponential,
polynomial and trigonometric) and this cannot lead to any
unexpected outcome.

First, we have to specify what is meant by a chaotic behaviour.
There are several different, and not always equivalent, defini-
tions of chaos; see ref. 2. The original idea, which appeared in
Lorentz’s paper,' was that the solutions to (1.1) for large times
behaved in a strange and unpredictable way. This characteriza-
tion is prevalent today within physics and applied mathematics,
and in modern language it is phrased as the system having a
strange attractor. We shall not develop this notion further as,
from the mathematical point of view, this concept is very diffi-
cult to work with, see ref. 3, and also it is not relevant to linear
systems. Also, we shall not dwell on another popular approach
to chaos based on the measure theory and ergodic properties of
the system (see e.g. refs 4-6). Instead, we shall focus on the
so-called topological definition of chaos and from many (to a cer-
tain extent equivalent) definitions we have chosen the one intro-
duced in ref. 7.
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Before stating this definition, we must make sure that we know
what we are talking about. We start with an explanation of the
dynamical system. First, when we are talking about a system, we
mean a variable describing the state of the system. The same real
(physical, biological, etc.) system may then be represented in
many ways. If we are interested in, say, the evolution of the
average temperature of abody, then, at each time, the state of the
system will be described by a single variable, and thus the system
will be one-dimensional. If we want to know the temperature of
each point of the body, then for each time the state of the system
is described by a function of three spatial variables; in such a case
the system is infinite-dimensional because the set of all, say,
continuous functions is not a finite dimensional linear space.

Hence, we describe the system by a variable taken from some
set which is called the state space. Although in principle the state
space may be any set, in what follows we shall require thatitis at
least a topological space so that the concept of neighbourhood of
a point can be properly defined. However, most consideration
will be carried out in a much narrower class of Banach spaces
(linear spaces with a translation invariant and homogeneous
metric).

A dynamical system is one whose state x € X (X is the state space)
changes with some parameter ¢ (time). Two main types of
dynamical systems occur in applications: those for which the
time variable is discrete (like the observation times) and those for
which it is continuous. Our main interest lies with continuous
dynamical systems. The dynamics is usually described by a
differential equation

x=A(x), teR,, 1.2)
where the operator A, which describes mechanisms driving the
system, is called its generator. Precisely speaking, by a continuous
dynamical system we understand a family of functions (operators)
(G()):=0 such that for each t, G(t)x is a continuous function of x,
for each x the function ¢ - G(t)xis continuous with G(0)x = x, and
for t > 0 and for x, from a sufficiently large subset of X [called the
domain of the generator A and denoted by D(A)], the function
x(t) = G(t)xo is a solution of the Cauchy problem

x= A(x) (13)

It is worth noting that if the solution to this problem is unique,
then it has the following important property

Gt +s)x0 = GG (s)%0, 1.5 >0,

x(0) = xo.

(1.4)

which expresses the fact that the final state of the system can be
obtained as the superposition of intermediate states. From the
algebraic point of view, the above equation tells us that the
dynamical system has a semigroup structure and therefore,
especially in the linear case, it is called a semigroup of operators.

To define a chaotic dynamical system, we have to introduce the
relevant terminology and notation. The orbit of (G(t)):», originat-
ing from x € Xis the set {G(t)x} - .. We say that (G(t)):»o1s topologi-
cally transitive if for any two non-empty open sets U,V C X there
is to= Osuch that G(t,)U N V # 0. Finally, a periodic point of (G(t))»
is any point x € X satisfying G(7)x = x for some 7> 0.

Definition 1.1. Let X be a metric space.” A dynamical system (G(t)):so
in X is said to be (topologically) chaotic in X if it is topologically transi-
tive and its set of periodic points is dense in X.
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Historically speaking, Devaney’s definition of chaos contained
one more condition: sensitive dependence on initial data (sdic),
which commonly is regarded as a core property characterising
chaos. However, it can be proved® that topological transitivity
and density of periodic points yield sdic.

Devaney’s chaos is closely related to the property called
hypercyclicity: a dynamical system (G(t));», is called hypercyclic
if there is an orbit of (G(#)),=o which is dense in X; that s, it passes
arbitrarily close to any point of X.

It turns out that hypercyclicity of a dynamical system is equiv-
alent to its topological transitivity.” Thus, Devaney’s definition
means that (G(t)):s is chaotic if it has an orbit dense in X and its
set of periodic points is dense.

2. Linear chaos

From now on we shall focus our attention on linear dynamical
systems. A dynamical system (G(t));» is linear if for each t = 0 the
operator G(f) is a linear bounded operator. In this case the gener-
ator A is also a linear, but not necessarily bounded, operator.

Even in this, in principle simpler, case proving chaoticity of a
given dynamical system is not straightforward. Possibly the first
systematicapproach to determine whether a given linear system
is chaotic was developed in ref. 10. It states (see Appendix A) that
(G(t))=0 s chaotic if the point spectrum of its generator A contains
an open set Qin the complex plane C, which intersects the imagi-
nary line and, moreover, each set of eigenvectors corresponding
to, respectively,

Q= ={AeQ; RAZ 0},
<

spans X. The last condition is usually quite difficult to check and
that is why in Theorem A.2 we see a weaker requirement that

thereis a selection Q 3 A = x, of eigenvectors which is an analytic
function, and whose range spans X. Recently, in ref. 11, the
authors observed that the existence of such an analytic selection
of eigenvectors in Q alone (that is, without the assumption that
its range spans X) suffices for the eigenvectors corresponding to
each set Q. to span the same space, say Xq, in which (G(f))=o is
chaotic.

To describe such a situation in a general case, we introduce the
following definition. If there exists a closed subspace X,;, which is
invariant under (G(f)),so and such that {(G(f)x}=¢ = X, for some x
€ X, then we say that (G(t))» is sub-hypercyclic. Furthermore, if
(G(t))i=0 is chaotic in X,;,, then we say that (G(t)):» is sub-chaotic.
The subspace X, is called, respectively, the hypercyclicity
(chaoticity) subspace for (G(t)):s. Recently,'"" it has been proven
that for (G(t)); o to be sub-hypercyclic (respectively sub-chaotic)
itis enough that the set of eigenvalues of A contains a subset of
the imaginary axis of non-zero measure over which the corre-
sponding selection of eigenvectors is strongly measurable
(respectively weakly continuous). Then (G(t)):»o is hypercyclic
(respectively chaotic) in the closed span of the essential range of
this selection.

Itis worth noting that while sub-chaos (sub-hypercyclicity) is a
weaker property than chaos (hypercyclicity), they still indicate
the existence of trajectories oscillating between points of
arbitrary small and arbitrary large magnitude (since X, is a
nontrivial linear space). Thus, from the point of view of, say,
numerical analysis, subchaos is as bad as chaos itself.

It is equally important to distinguish cases when the dynamical
system cannot be chaotic, even in a subspace. To this end, we
note that, by Theorem A.4, the only subspace in which the
semigroup could be chaotic is the complement of the space
spanned by all eigenvectors of the adjoint to the generator A.
Hence, if this complement is finite dimensional, then the
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semigroup cannot be subchaotic as there are no chaotic linear
systems acting in finite dimensional spaces. In particular, if the
adjoint of the generator has an eigenvalue, then (G(t))», cannot
be chaoticin the whole space X. Indeed, then the complement of
the chaoticity space X, is nontrivial and thus X, # X.

This result allows us to rule out important classes of
semigroups from being hypercyclic. For example, the dynamical
system generated by the diffusion equation on a bounded
domainis not chaotic, as then the resolventis a compact operator
and the point spectrum of A* cannot be empty. However, if we
remove the boundedness of the domain, the situation changes
diametrically.

Example”. On X = L,([0, «)) we consider the equation

a—u = a@—kb@-i-cu t>0,2>0
ot 0 Ox ’ ’ '
w0.t) = 0, t>0,
w(z,0) = f(z), x>0, feX. (2.5)

It follows thatif a, b, c > 0 and ¢ < b’/2a < 1, then the assump-
tions of Theorem A.1 are satisfied and the semigroup (G(f)):o
solving (2.5) is chaotic. Since the adjoint of the generator is given

o 0
bya BJTZ; -b al + cu with the same boundary condition, we obtain
x
from Theorem A.4 that the dynamical system generated by
ou *u  Ou
i aﬁ—b%+cu, t>0,2>0,
w(0,t) = 0, t>0,

u(z,0) = f(z), >0, feX,

is not chaotic in any subspace of L,([0, «)). These results can be

(2.6)

intuitively explained by noting that the term +bg% in (2.5)
describes flow towards the closed end x = 0 of the domain,

whereas in (2.6) the term —b% models flow towards the open

end at x = o,

It is worth noting that there is a large gap between the
sufficient and necessary criteria for chaos; at present any ‘if and
only if” result pertaining to the occurrence of chaos in general
linear dynamical system seems to be far beyond our understand-
ing of this phenomenon.

3. Birth-and-death type systems
Description of the models

Model 1. Development of drug resistance in cancer cells

A factor which can have a strong influence on the evolution of
drug resistance of cancer cells is gene amplification. This process
includes an increase in the number of genes responsible for
coding a protein which aids either removal or metabolization of
the drug. The more copies of the gene exist, the more resistant
the cell, with the understanding that it can survive under higher
concentrations of the drug. An increase in drug resistance by
gene amplification has been observed in numerous experiments
with in vivo and cultured cell populations. In addition, it
hasbeen established that tumour cells may increase the number
of copies of an oncogene in response to an unfavourable
environment. For further information, the reader is referred to
refs 13-15, amongst others.

We consider a population of cancer cells stratified into
subpopulations of cells of different types, labelled by numbers
n=0,1,2,.... Because the biological process considered is gene
amplification, cells of different types are identified as cells with
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different numbers of the drug resistance gene and therefore dif-
ferent levels of resistance. The cells belonging to 0-th sub-
population are sensitive to the drug. Due to a mutational event,
the sensitive cell of type 0 can acquire a copy of the gene that
makes it resistant to the agent. Likewise, the division of resistant
cells can result in a change in the number of gene copies.

Empirical arguments support the hypothesis that the process
described is subcritical; that is, in each cycle and at each level the
probability of the decrease in the number of genes is greater than
the probability of its increase. The randomness of the amplifica-
tion process is modelled by a branching process.” Since the
number of gene copies can be very large, we use a model with an
infinite number of cell subpopulations. As discussed in ref. 16,
the infinite dimensional model provides a useful approximation
of finite dimensional systems of arbitrarily high order, which are
tractable only with numerical methods.

The process is characterized by two components: the conser-
vative and the proliferative, which are described in detail below.
The conservative component of the process describes the muta-
tions of cells modelled as in a standard birth-and-death process.
Here, a,At, for n = 0, is the chance of one mutation in the
n-subpopulation shifting the mutated cell to the n + 1-sub-
population, and d,At, for n € N, is the chance of one mutation in
the n-subpopulation shifting the mutated cell to the n-1-
subpopulation (we assume that d, = 0). The proliferative compo-
nent is related to the assumption that the moment of death
represents the moment of cell division with progeny of type
n—1,norn + 1and that the average life-span is given by the coef-
ficient 6, for the nth subpopulation (n = 0), described in detail
below.

In practice, the same model arises in a context of microsatellite
repeats.

Model 2. Microsatellite repeats

More than 95% of the human genome does not code any
proteins. The non-coding DNA plays an organizational and
regulatory role in the expression of genetic information. Large
portions of non-coding DNA are organized in repeated sequences,
which developed in different ways by amplification, transposi-
tions or faults during replications. The shortest non-coding
repeats of DNA are called microsatellites; they are repetitive
sequences composed of 2-5 nucleotides and repeated 10-100
times. Formation of multiple repeats of such short units occurs
most probably as a result of DNA replication errors in which
slippage through the strand occurs. If not repaired, it gives rise to
shortening or elongation of microsatellites with one or more
repeated units. The stability of the number of repeats in a
microsatellite sequence depends on the intact mismatch DNA
repair and changes in the number of repeats accompany many
diseases such as Huntington’s disease, spinocerebellar ataxia
type 1, the syndrome of fragile X chromosome or myotonic
dystrophy; see e.g. refs 17-20. As mentioned above, the
modelling is the same as in the case of gene amplification-
deamplification, only now the population is indexed by integers
n=0,1,... corresponding to different variants of the number of
repeats in the microsatellite. The interpretation of coefficients is
similar.

To derive a mathematical model in both cases, following refs 13
and 20, we adopt the following assumptions:
* there exists denumerably many types of all particles, labelled

withn =0,1,...;
* the coefficients &, and , are probabilities of mutation (in a unit

time) from n to n + 1 and n — 1 type, respectively;
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* the life-spans of all particles are independent, identically
distributed random variables with mean 1/6,;

* upon its death, each particle of type 1 produces a pair of progeny,
which survive independently with probability 8, and, for
n = 1,independently of type n—1, n + 1 or n with probabilities
vy, e and 1 -7, —v,, respectively;

* each progeny of an 0-type particle is of type 0.

Standard balancing argument produces the system

dfy

i —agfo+difi,
a
dt = _anf'n + bn—lfn—l + d'rH»lfrH»l) n> 17 (37)

where we denotea,=— A + by anda, = -\, + b, + d,forn €N.

The coefficients A, represent the proliferating term given by
A = 0,(2p, — 1), while b, and d, represent the conservative
component and are given by

dy, = 2B,0n0, + 0y,

To provide a rough idea of how the system (3.7) is derived, we
note that the number of particles of type 1 increases due to the
emergence of such particlesatlevelsn—1,and n + 1, represented
here by the terms b, f,; and d,..f..., respectively (note that the
factor 2 corresponds to the fact that we are considering pairs of
the progeny), and also by the production of type n progeny by

b, = 2s‘9n7]n€n + Q.

type n parents, represented here by the term A, f,. On the other
hand, type n particles are lost in the same way, by giving birth to
type n—1,nand n + 1 particles, and by mutations. In the coeffi-
cients d, and b,, the first terms, respectively, correspond to
creation of particles of new type by birth whereas the second
terms represent mutations.

Stability results. We denote by f(t) = {f.(f)},s, the distribution
function and by L the infinite matrix of the coefficients on the
right-hand side of (3.7). The proper Banach space for the process
defined by Equation (3.7) is the space I', where the norm

Hful = Z fn

n=0

(3.8)

of any element f in the positive cone I': I! = {f E';f, 2 0,n=0,
1,2...} represents the total number of cells. For the sake of com-
pleteness, we shall consider also the Banach spaces I" < p < o,
and ¢, (the space sequences converging to 0), with natural
norms.

This model has been thoroughly investigated in the case of
constant coefficients when the solutions can be found by
Laplace transforms.”'*®* In the case of no mutations, the
assumption that progeny of type-0 particles are themselves of
type zero decouples the first equation from the rest (in the sense
that the system for n = 1 can be solved independently of the first
equation):

dh

o Ao+ dfi,

7}

D - eran v

dfa

ﬁ )\fn - (b + d)fn + bfnfl + dfn+17 n 2 2.

The interest in the papers cited above was in the asymptotic
behaviour of the resistant cells” population, n = 1. Assume that
£.(0) = 6,, and define

Fs(8) =" fult).

n=1
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It was found that

1 3/ 2
8~ t—s/ze()\—(\/é—\/é) )t
fil) ~ T ,
d 2
L (t 13/2 /(/\—(\/H—ﬁ) )t7
N T IO Y

fort - oo, Similar calculations can be done for other k. Thus, these
solutions are exponentially stable provided

Vd—vb> VA,

in addition to the subcriticality assumption d > b. Clearly, if
this assumption is not satisfied, the functions f; and fs grow
exponentially fast with t > . To the author’s knowledge, the
question whether constant coefficient birth-and-death type
models can be chaoticin [” is still open. However, as described in
Theorem 3.2, subchaos can be proved for a more general system
with affine coefficient.

(3.9

Variable coefficients — emergence of chaos. Constant coeffi-
cients are not always realistic. In ref. 22 the Equation (3.7) was
considered under the assumption that the coefficients a,, b, (for
n € Ny), d, (for n € N) are nonnegative and

(A1) forsomea =0,a, =a + a,, n € Ny, with }151}0 a, =0,

(A2) for some d > 0 lim d, = d,

(A3) lim sup b, =0.

To makg%these assumptions clearer, we note that the death-
only systems with constant coefficients (b, = 0,d, = danda, = a
with d > a) has been known to be chaotic for some time, see e.g.
ref. 23. The results below can be interpreted as showing that the
property of being chaotic persists when we consider small
perturbations of such death systems with constant coefficients
(including addition of a very small birth term). The exact form of
the assumptions (A1)—(A3), and the constant g below, are related
to the techniques of the proof.

Let £, p € [1, »[U{0} denote the operator, defined by the
matrix L of coefficients of (3.7), in I’ and ¢, respectively. The
operators £, are bounded, hence they generate dynamical
systems (G,(t)):= in I’ and ¢, respectively.

Theorem 3.1*'. Let the assumptions (A1), (A2) and (A3) be satisfied.
Thereis g > O such that if |, | < dg**', |bd,.| < d*¢"**anda < d, then
the semigroup generated by L, is chaoticinanyl?,1 < p <o, andinc,.

Consider the system transposed to (3.7)

fo —ao fo+ bofi,

lel 7a'nfn + dnfnfl + bnfn+l:

and, by Theorem A 4, if (3.10) was chaotic in any subspace, then
the co-dimension of the span of all eigenvectors of the operator
in (3.7) in respective space would be finite. Since this is not true,
we have

(3.10)

n €N,

Corollary 3.1. Suppose that the sequences (a,), (b,) and (d,) are as in
Theorem 3.1.*' Then the semigroup generated by (3.10) is chaotic in no
subspace of I', 1 < p < o, or of c,.

Theorem 3.1 ensures the existence topological chaos for large
deamplification (‘death’) rates and small amplification (‘birth’)
rates, i.e. for the process which is subcritical. On the contrary,
chaos will not appear in processes with small deamplification
rates and possibly large amplification rates.

Let us compare our result with the stability result for the
constant coefficients model. For simplicity, letd, = d, a, =a,a < d
and (b,),ey satisfy |b,| < dg”*; then \, = d—a + b, and the stabil-
ity condition (3.9) for our model reads

Vd(1 = @) > \/d— a + b,
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This condition clearly is satisfied for large n provided assump-
tions (A1)-(A3) hold. This apparent contradiction can be
explained by noting that the asymptotic stability result (3.9) was
obtained for positive data of finite length. Even more, results
contained in ref. 18 show that no chaotic behaviour is possible if
the initial distribution f= {f.}s=0 converges to zero sufficiently
fastas n - o. On the other hand, chaos in this model is (probably)
related to the possibility of infinitely many switches between
negative and positive entries in initial conditions. Though this
may seem to limit relevance of the above results for real life
biological systems, Proposition 3.1 offers another way of inter-
preting them.

The assumptions of Theorem 3.1 are often too restrictive — in
most standard applications the coefficients may grow with .
This creates numerous problems starting from the generation of
the semigroup through the construction of eigenvectors to their
density in [°. In our analysis we adopt the following assumption.

Assumption AC. There exists Ny = 1 with

—a, = an+ «,
dpi1=dn+96,
by =bn+ 3,

(3.11)
n > Ny, .

witha=—-(b+4d),b,d=0,a,8,0 ER.

Under these conditions one can prove” that the maximal
operator associated with the infinite matrix on the-right hand
side of (3.7), denoted L,..., generates a semigroup. Then we have
Theorem 3.2*. Suppose that 1 < p < o and that Assumption AC
holds with d > b and a+  + 0 — (d - b)/p > 0. Then the semigroup
generated by L., in 1" is sub-chaotic.

Also in this case it is easy to see that the stability condition (3.9)
is satisfied:

iy = Vb > /7
forlarge n provided b > d and yet the semigroup displays chaotic
behaviour (though possibly in a subspace). We also have the
following result, which rules out chaotic behaviour.
Theorem 3.3. Suppose that Assumption AC is satisfied, p € [1; + ),
and either (i) b > d, or (ii) d,, = 0 for some my = 1. Then the semigroup
generated by L, is not topologically chaotic.

It is worth commenting on the ‘fragility” of the class of chaotic
dynamical systems: according to (ii) it is enough to remove one
entry of the infinite matrix L to switch from a chaotic to a
non-chaotic system. The reason for this is that putting d.,, = 0
decouples the system into a finite dimensional part, which is not
chaotic, while the remaining infinite dimensional part may be
chaotic at most in the proper subspace of I” consisting of
sequences having first m, entries equal to zero. On the other
hand, if the system generated by L., is subchaotic, then putting
dw, = 0 for some m, = 1 will not change this property. At present
we do not know whether such a result is true in general; that is,
whether subchaoticity of a system is preserved under finite-
dimensional perturbations.

Interpretation of chaos. Let us reflect on the relevance of chaos
for this particular model. In most biological applications only
nonnegative solutions make sense and it is only fair to note
that chaotic phenomena discussed here cannot occur for such
solutions. In fact, for systems with strictly positive proliferation,
the [; norm of any positive solution to (3.7) may only grow and
hence the solution cannot wander.

On the other hand, as we are dealing with linear systems we
may wish to consider the differences between two physical
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(i.e.non-negative) solutions and such a difference certainly need
not be non-negative and it may be chaotic. In fact, we have
Proposition 3.1. If (G(t));» is a subchaotic semigroup, then for
any € > 0 there exist x;, x, = O such thatHxl - X, H < eand {G(fH)x)
— G(t)x2):20 is dense in the space of chaoticity of (G(t));o.

In other words, the difference between two positive solutions
which were arbitrarily close to each other at t = 0 may evolve in
a chaotic manner.

Another way of looking at this question is discussed in the
following example.

Example 3.1. Finite dimensional manifestation of chaos.
Consider a pure death system with proliferation:

dfo

i —afo+dfy,
dfn , .
prli —afn, + dfps1, n > 1.

By Theorem 3.1 this system is always chaotic provided d > a.
We can write down an explicit solution to this system

E—a,t de—att %dZB—a,ttZ
ty=| " et (3.12)
“lo o et U '

The eigenvector corresponding to eigenvalue A is given by
e, = (u,u’..., u",..) where u = (A + a)/dy", provided |u| <1.

Let us puta = 0.1, d = 10 and take the initial condition £, =
Re, = R, #,..., ",...), where i is the imaginary unit and %
denotes the real part of a complex number. As this corresponds
to a purely imaginary eigenvalue, the solution of the full system
is periodic.

For calculations, we took 100 X 100 cut-off of the solution (3.12)
corresponding to the above eigenvalue and plotted the behav-
iour of two first coordinates for t = 10, 20, 30, 40.

Fig. 1. Development of an erratic orbit for a finite dimensional cut-off of a chaotic
infinite dimensional death type system for t = 10, 20, 30, 40.

We see that a perfectly periodic orbit suddenly changes its
behaviour. While this is not a proof that the dynamical system
described by (3.12) is chaotic (after all, a 100 x 100 cut-off of (3.12)
can be extended to an infinite system in many ways, including
non-chaotic ones), it could, however, be an indication that the
system has a potential to develop irregular behaviour.

4. Population models for the evolution of blood cells
Regular growth. Following ref. 25, we consider a population of
blood cells distinguished only by their size and describe the
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population by the density function n(t, s) of cells having size s in

time t. The following processes take place when the time passes:

1) Each cell grows in time with velocity g(s) depending on cell
size s;

2) each cell dies with a probability # depending on size;

3) each cell divides into two daughter cells of equal size with a
probability depending on size.

Moreover, we assume that there exists a maximal cell size (here
normalized to 1); also there exists a minimal cell size s = a > 0
below which no division can occur. As a consequence of the last
assumption, if we start with an initial population with sizes
greater that a/2, the size of each cell in the population must
satisfy s > @/2 and we can assume the boundary condition
u(t, a/2) = 0.

These assumptions lead to the following evolution equation:

u(t, 5) —(g(s)ult, s))s — p(s)ult, s) — b(s)u(t, s)
+4b(2s)u(t, 25)X[a/2,1/2)(8), s> a/2,t>0
(4.13)

u(0,s) = wup(s),
where yx is the characteristic function of the set A. We assume
that the death rate u is a positive continuous function on [¢/2, 1].
The division rate should be continuous with b(s) > 0 on (¢, 1) and
b(s) = 0 elsewhere. Moreover, g(s) is differentiable and satisfies
0 < e =g(s) =0oon a2, 1] and 2g(s) > g(2s) for s € [a/2, 1/2].
We consider this equation as an evolution equation in X =
Li([a/2, 1], ds). One can prove that (4.13) generates a semigroup
(G(t)): =0 which is uniformly continuous, compact for t > 1-¢/2,
and is also irreducible. Thus, (4.13) is a model example of the
so-called asynchronous exponential growth, a property well
known in population theory. This property can be expressed as

G(t)ug = e*m=tn + O(ePma==9t) ¢ > 0,

for any initial condition u, where 1 is the eigenvector corre-
sponding to the dominant eigenvalue An.y; 7 is called the stable
size distribution. In other words, irrespective of the initial condi-
tion, after a short time the distribution of cells starts evolving asa
scalar multiple of a fixed vector. Hence, the evolution definitely
does not display any features of a chaotic behaviour.

Abnormal cell growth. In ref. 26 the author considered the
growth rate g to be g(s) = s and deviated from the set of usual
assumptions by assuming that:

4. thereis animmigration of new cells from a regulatory source,
allowing for renewal of the cell population at a rate v(s)
depending upon cell size;

5. cells of any size may divide.

The first assumption is not difficult to accept —in many biologi-
cally significant systems within an organism, such as in the
production of blood, we recognize the need for a source. Since all
cellular lines are dead ends, a source such as the precursor stem
cells is needed to sustain a viable population. The second
assumption amounts to setting @ = 0 in (4.13) and allowing cells
of any size to exist. While biologically the idea of having a cell
of size 0 is unrealistic, this size is taken as a limiting value to
describe an abnormality in the division process, resulting in the
accumulation of cells in a population of non-functional ‘dwarf’
cells. The presence of such dwarf cells is seen in the blood disorder
alpha-thalassemia, a genetic disease associated with sickle cell
anaemia. This has the effect of greatly reducing the mean cor-
puscle volume of red blood cells.

We begin analysis of this model by first considering a simpli-
fied equation

w, = —sus + 0.5u,  u(0,s) = ug(s). (4.14)
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0.02 0.04 0.0€ 0.08 0.1
Fig 2. Comparison of the exact (continuous line) and approximate (dotted line)
initial conditions on [0, 0.1].

Though the semigroup is given explicitly by
u(t, s) = [G(t)uol(s) = e *ug(se™),

it is chaotic in the space Cy([0, 1]) (of continuous functions
vanishing at 0) and in the spaces L,([0, 1]), p = 1, see refs 5,21, 27,
28. Interestingly enough, (4.14) does not generate a chaotic
semigroup in the space of all continuous functions C([0, 1]). The
fact that the semigroup is chaotic in Cy([0, 1]) but not in C([0, 1])
was attributed by Glenn Webb in ref. 28, p. 48 to the insufficient
supply of the most primitive blood cells (with size 0) in the
former case.

In this case, chaotic solutions are non-negative and thus are
biologically relevant. We illustrate sensitive dependence of solu-
tions on initial conditions by presenting exact solutions for the
initial condition uy(s) = sin s, s € [0, 1] and for its approximation
by the Fourier series of cosines truncated after 100 terms. The
comparison of these two initial conditions is given in Fig. 2.

The comparison of solutions is given in Fig. 3. We see that the
solution corresponding to the exact initial condition almost
immediately decays to zero, whereas the one for the approxi-
mate condition reaches the level of over 150 in just 20 time units.
This can be explained by noting that, due to the concentration of
characteristics of (4.14) close to s = 0, the minute difference
between the exact and approximated initial condition close to
the origin will be exponentially magnified as time increases.

Consider nexta variant of (4.13) modified so that the additional
assumptions 4 and 5 are satisfied:

ut(ta '5) = _Sus(tv 5) + T]U(t, 5) + 46U<t QS)X[U,I/Q](S)
u(0,8) = &(s) (4.15)
in X = Ly([0, 1], ds). The eigenvectors® are given by
< —46 '—()\—n) In2\n
'UA(Z/) = E(A_n) Z %(y —nln 2)”X[nln?,oo) (Z/) (416)

n=0
where y = -Ins, and they are analytic for ®# A< + 1-24. Thus, if
n +1-24 >0, then the assumptions of Theorem A.2 are satisfied
and hence the dynamics generated by (4.15) is subchaotic in

Xepn = Spanf{uy, RX < n+1—24}.

Furthermore, using quite sophisticated results from complex
analysis, the authors of ref. 29 showed that

Xu=X;
that is, the dynamics is chaotic in the whole space, provided
p=12In2.

Appendix: Criteria for existence of chaos

Sufficient criteria for chaos

Theorem A.1." Let X be a separable Banach space and let A be the gen-
erator of a semi-group (G(t))i=o on X. Suppose that
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Fig 3. Comparison of solutions to Equation (4.14). At the top we have the solution
with the exact initial condition and at the bottom for the approximate one. The mag-
nitude of the former is practically 0 beyond t= 10, whereas the latter explodes over
150 as t = 20.

1) the point spectrum of A, op(A), contains an open connected set U
such that Uik # 0;

2) There exists a selection U S\ - x, of eigenvectors of A that is
analytic in U;

3) Span{x,, A € U}

Then (G(t)):=o is chaotic.

In many cases property 3 is the most difficult to establish.

However, the following result paves a way to circumvent the
problem.
Theorem A.2.*° Suppose that conditions 1 and 2 of Theorem A.1 are
satisfied. Then there exists an infinite-dimensional closed subspace
Y (©) X, which is invariant under (G(t)),so, such that (G|y (£))iso is
chaotic.

This proposition justifies the definitions of sub-hypercyclic
and subchaotic semigroups given in the main text. Another
far-reaching generalization of Theorem A.1 is given below.
Theorem A.3."""* Let A be the generator of a strongly continuous semi-
group (G(t))i=o on a separable Banach space X. Assume that there is

Q:= (w;, wy) C Rwithu(Q) > 0and a strongly measurable f : Q - X

such that Af (\)= 1Ax()) for almost any A € Q. Then ((G(t)):so is
sub-hypercyclic in X with a hypercyclicity space

Xch = m

Here, for a function f defined on a measure space (Q, u) with
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values in a Banach space X, f(Q). is the essential range of f;
that is,

F()ess = {x € X; p({s € Q: [[f(s) —x|| <e€}) #0,Ve >0},

Corollary A.1 If there is an interval I C Q such that £(I) C £(Q).., then
(G(t))i=0 is sub-chaotic (with chaoticity space possibly smaller that X;,).
Corollary A.2 Under notation of Theorem A.3, if Q = [a, bl and X -
() is weakly continuous on Q, then (G(t))i= is chaotic in X, =
Span{f(Q)}.

It is often suggested that a system with a sufficiently large
number of periodic solutions should be chaotic. For linear
systems, periodic solutions are solutions corresponding to imagi-
nary eigenvalues, thus Theorem A.3 seems to be a step in right di-
rection. However, one can construct a subspace of the space
X = Cy(R) of bounded continuous functions on which the
semigroup of translations

(GO f)(z) = f{t+2)

is a strongly continuous semigroup of isometries (and thus can-
not be chaotic), while each point of the imaginary axis is an
eigenvalue of its generator."

Necessary criteria for chaos. For a set M C X define the
‘orthogonal’ complement of M in the adjoint space X* as

M+ = {feX"; < fax>=0Vze M}

Then we have
Theorem A.4. Let (G(t))=o be a continuous linear dynamical
generated by A in a Banach space X, having an orbit dense in some
subspace X, C X. Then the adjoint A* of A and the dual dynamical
system ((G*(t))eo have the following properties:
(i) Let 0 # ¢ € X*. Ifthe orbit {G*(t)p } 150 is bounded, then p € X .
(ii) If ¢ is an eigenvector of A*, then ¢ € X3

In particular, if

op(A”) # 0,

then (G(t))i=o cannot be chaotic. Indeed, in this case X is

nontrivial and thus X, # X. Furthermore, if the codimension of
the linear span of all eigenvectors corresponding to o,(A*)
is finite, then there is no subspace of X in which (G(t)):= ¢ is
chaotic.
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