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Titanium dioxide (TiO2) nanostructured materials have attracted a great deal of attention 
because of their numerous applications. However, TiO2 applications depend strongly on 
the material’s high homogeneity and definite phase composition, morphology, particle size, 
high surface area and porosity, which are dependent on the sample history, the method of 
preparation and heat treatment. We synthesised TiO2 nanopowder with an anatase structure 
by the sol-gel method using TiCl4-ethanol solution as a precursor in an argon gas environment, 
with and without applying ultrasonic waves. Our results show that the use of ultrasonic 
waves (after aging) has a significant effect on the homogeneity and size of TiO2 nanoparticles. 
A smaller crystallite size was obtained using ultrasonic waves. For this purpose, the average 
diameter of TiO2 nanoparticles was decreased by about 3 nm. The synthesised powder was 
characterised by X-ray diffraction, scanning electron microscopy and transmission electron 
microscopy.

Introduction
Titanium dioxide (TiO2) nanostructured materials have attracted a great deal of attention because 
of their numerous applications in various fields, such as in photocatalysts and self-cleaning,1,2 dye-
sensitised solar cells,3,4,5,6 gas sensing and sensor devices,7,8 electroluminescent hybrid devices,9 
energy-storage technologies,10 electrodes in lithium batteries11 and water-splitting catalysts 
for generating hydrogen.12,13 TiO2 has recently been tested as a dielectric material for the next 
generation of ultrathin capacitors14 and as a photonic crystal for photonic band-gap materials.15,16 
TiO2 has three main structures: rutile, anatase and brookite.17,18,19 The anatase phase of TiO2 is 
useful in photocatalytic applications because of its higher electron mobility, lower fixed dielectric 
properties and lower density than the other phases.17,20 

TiO2 applications depend strongly on the material’s high homogeneity and definite phase 
composition,21 morphology, particle size, high surface area and porosity.19,20,22,23 All of the above 
parameters depend on the sample history,24 the method of preparation25 and the heat treatment 
used.26 Some parameters play a more important role than others. For example, the size or 
surface area to volume ratio of the nanoparticles is an important factor for their application in 
catalysis.20,27,28 Thus, it is very important to develop synthetic methods in which the crystalline 
phase as well as the size and morphology of the TiO2 nanocrystals can be controlled. Having fine 
and homogeneous nanoparticles with controlled diameters is necessary for using this material as 
a good photocatalyst.17,20,29 

TiO2 nanoparticles can be synthesised using various methods, such as the sulphate process,30 
the chloride process,30 impregnation,31 co-precipitation,32 the hydrothermal method,33,34,35 
direct oxidation of TiCl4,

36 the metal organic chemical vapour deposition method37 and the sol-
gel method.38,39 The sol-gel method is one of the most convenient ways to synthesise various 
metal oxides because of its low cost, ease of fabrication and low processing temperatures.40 
It is worth mentioning that only a few investigations have so far dealt with a comparison 
between the crystallisation process of TiO2 in the presence or absence of ultrasonic irradiation 
after gelatinisation with the sol-gel method. Some investigations have recently used ultrasonic 
irradiation in the crystallisation process of TiO2.

22,23,41,42,43,44,45,46,47,48,49 

In the present work, TiO2 nanoparticles (anatase phase) were synthesised using the sol-gel process 
on their TiCl4 precursor both with and without ultrasonic irradiation at 40 kHz (low intensity) 
and for specific gelatinisation times. Here, we compare the size and morphology of the particles 
in the presence and absence of ultrasonic irradiation.

Experimental set-up
TiCl4 (99.5% Merck, Hohenbrunn, Germany) and ethanol solutions (99.8% Merck, Darmstadt, 
Germany) with a certain ratio in an argon gas environment were used without any further 
purification. All of the chemicals were analytical grade. 
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At room temperature under argon gas, 2  ml of TiCl4 was 
slowly added drop wise into 20 ml of ethanol. A light yellow 
solution was obtained after adding all the TiCl4. The pH 
value of the solution was between 1.5 and 2.0. The solution 
was then gelatinised for different periods (24  h, 72  h and 
120 h) and each prepared solution was subjected to an aging 
process for 3 h. We prepared each gel solution in two ways, 
(1) without using ultrasonic waves and (2) with ultrasonic 
waves at a frequency of 40 kHz and a power of 60 W for 
30 min. Each sol-gel solution was vaporised at 80  °C until 
a dry gel was obtained. Finally, the dry-gel precursor was 
calcined at 400  °C for 1  h in air to form TiO2 powder. To 
promote the decomposition of organic components in the 
precursor, the initial heating rate was maintained at 5°C/min.

Phase identification and crystallite size determination 
of the products were achieved using X-ray diffraction 
(XRD)17,18,19,20,21,22 on a GBC-MMR diffractometer (Melbourne, 
Australia) at a scan rate of 10°/min and Cu–Kα line 
(λ  =  0.1541056  nm) radiation with a working voltage of 
30  kV. The particle morphology was investigated using a 
Philips XL30 scanning electron microscope (Eindhoven, the 
Netherlands) and a Philips CM120 transmission electron 
microscope50 operating at 16 kV and 100 kV, respectively.

Results and discussion
Using the sol-gel method, the diameter of TiO2 nanoparticles 
can be controlled by adjusting several physical and 
chemical factors, such as gelatinisation time and calcination 
temperature,17,18 and other methods can be used for reducing 
the size of the particles.

In order to synthesise TiO2 nanoparticles, one can combine 
TiCl4 and ethanol under special conditions. At first a 
large amount of HCl gas and TiClx(OH)4-x is produced in 
combining TiCl4 and ethanol. In the mixing process, the 
solution TiClx(OH)4-x absorbs a small amount of water from 
the atmosphere and forms Ti-OH bonds with the remaining 
ethanol in the solution. In the polymerisation and hydrolysis 
process, these Ti-OH bonds form …-Ti-O-…-Ti-OH strings. 
In the hydrolysis process and while mixing, these long 
strings form smaller Ti-O-Ti strings. In closing and with 
development of Ti-O-Ti strings, three-dimensional polymers 
are produced to form Ti(OH)4 matter. TiO2 nanoparticles are 
formed when Ti(OH)4 molecules are under specific (critical) 
thermal conditions according to the following equation17,18,29:
 
Ti(OH)4 à TiO2 + 2H2O                                                              [Eqn 1]

The …-Ti-O-…-Ti-OH strings break and produce a large 
number of smaller Ti-O-Ti strings, which help to form 
more Ti(OH)4 molecules. The Ti(OH)4 molecules emerging 
at a high rate in solution cause the formation of more TiO2 
nanoparticles in a short time. 

Ultrasonic waves have a monotonous effect on all 
components of the solution made by the sol-gel method 
and cause the breaking of loose links of large nanometric 
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FIGURE 1: X-ray diffraction patterns for TiO2 powder samples synthesised at a 
calcination temperature of 400 °C and gelatinisation times of (a) 120 h, (b) 72 h 
and (c) 24 h, in the absence of ultrasonic waves.
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FIGURE 2: X-ray diffraction patterns for TiO2 powder samples synthesised at a 
calcination temperature of 400 °C and gelatinisation times of (a) 120 h, (b) 72 h and 
(c) 24 h, in the presence of ultrasonic waves.
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colloids in solution, thus allowing the production of smaller 
nanoparticles. The high local pressure and temperature 
break the links in long polymer strings as well as the weak 
links binding smaller particles that form large colloidal 
masses. Very small bubbles are produced in the fluid when 
it is affected by ultrasonic waves. These bubbles collapse 
when they grow beyond a critical size and this creates 
high temperatures of 5000 °K and pressures of 108 Pa in the 
area of collapse. The ultrasonic waves create three distinct 
states within the fluid, (1) that inside the bubbles (in their 
gaseous phase) where extremely high temperatures and 
pressures are produced as they collapse; (2) spaces between 
the bubbles within the fluid, where temperature is less than 
that inside the bubbles but is still high; and (3) the overall 
volume of fluid, where temperatures are equal to the ambient 
temperature.17 As the bubbles collapse, there is a high heating 
to cooling rate of about 1010 K/s – 1011 K/s in the boundaries 
between the bubbles and fluid (active area). It was found that 
applying ultrasonic waves after the gel solution has been 
mixed is an ideal technique to reduce the diameter of the 
TiO2 nanoparticles formed. 

The samples prepared at different gelatinisation times (24 h, 
72 h and 120 h) and calcined at 400 °C were compared using 
XRD. Phase identification using XRD relies mainly on the 
position of the peaks in a diffraction profile and to some 
extent on the relative intensities of these peaks.17,18,19,20,21,22,40 
The half width of the peaks decreases slightly when the size 
of the crystallites decreases. Figures 1 and 2 show the XRD 
patterns for powder samples of TiO2 obtained at a calcination 
temperature of 400 °C and gelatinisation times of 24 h, 72 h 
and 120 h, with and without ultrasonic waves, respectively. 
All the observed peaks in the XRD spectra are related to the 
anatase phase. In Figure 2, the crystallite diameters relative 
to those in Figure  1 were estimated for most sharp peaks 
using Debye-Scherrer’s  equation: 

S=K.l/(b cosq)                                                                            [Eqn 2]

where S is the crystallite size, λ = 1.54056 Å (the wavelength 
of the X-ray radiation), K is a constant taken as 0.94, θ is the 
diffraction half angle and β is the line width at half maximum 
height.

Figure 3 and Table 1 show a comparison of the average 
diameter of synthesised crystallites with and without the use 
of ultrasonic waves. The crystallite dimensions evaluated 
from the line profile analysis of the XRD peaks indicated 
that all prepared samples were nanocrystalline in the anatase 
phase and that crystallites with a mean diameter of less than 
15  nm were prepared in the presence of ultrasonic waves. 
By applying ultrasonic waves, the average diameter of the 
TiO2 nanoparticles was reduced by about 3 nm during each 
gelatinisation time of 24 h, 72 h and 120 h. 

Both Figure 1 and Figure 2 show that, as gelatinisation time 
increases, the beam plates’ diffraction peak of the anatase 
phase becomes sharper and the line width at half maximum 
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FIGURE 3: Crystallite size at different gelatinisation times after calcination for 1 h at 
400 °C with (squares) and without (circles) ultrasonic irradiation.
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FIGURE 4: Scanning electron microscopy images of TiO2 powder samples 
synthesised at a calcination temperature of 400 °C for 1 h and gelatinisation times 
of (a) 120 h, (b) 72 h and (c) 24 h, in the presence of ultrasonic waves.
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height decreases. Therefore, by increasing the gelatinisation 
time, the size of the crystallites became larger. Figure 4 shows 
scanning electron microscope (SEM) images of TiO2 powder 
samples prepared using ultrasonic waves and different 
gelatinising times. With increased gelatinisation time, the 
boundaries between the nanometric grains became more 
specific and the shape of the particles became more spherical.

Figure  5 compares SEM images of TiO2 powder samples 
prepared using a gelatinisation time of 24 h, with and without 
ultrasonic waves. The images of the surface of the powder 
samples show clearly that using ultrasonic waves resulted 
in greater homogeneity in the average size of the particles 
and resulted in smaller particles. Transmission electron 
microscopy (TEM) also was used to investigate the particle 
size. Figure 6 shows a TEM image of nanoparticles synthesised 
using a gelatinisation time of 120 h, a calcination temperature 
of 400 °C and ultrasonic waves. The nanoparticles produced 
had a diameter of 14 nm – 15 nm. 

The above results show that if gelatinisation times are 
increased, the average size of TiO2 nanoparticles increases, 
irrespective of whether or not ultrasonic waves are applied. In 
addition, if ultrasonic waves are used, the average diameter 
of TiO2 nanoparticles decreases by about 3 nm. Thus, smaller 
and more controlled nanoparticles can be produced using 
ultrasonic waves.

Conclusion
We successfully prepared TiO2 nanoparticles using TiCl4 
and ethanol as precursors by a sol-gel route, in the presence 
and absence of ultrasonic waves at room temperature. The 
use of ultrasonic waves led to smaller particle size, low-
dimensional particle shape (spherical) and improved particle 
morphology. The fact that nanoparticles can be produced 
using ultrasonic waves, as reported in this paper, strongly 
supports the proposition that ultrasonic irradiation has great 
potential to control the formation of inorganic nanoparticles 
by influencing the organic reaction pathway.
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