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Abstract

Investigating the microbial community of the Sishen Iron-Ore Mine in South Africa has become a topic of interest.  Micro-
organisms could prove to be useful in bioleaching processes, resulting in the minimisation of the negative impact that certain 
substances, such as phosphorus (P) and potassium (K), have on the economic functioning of the mine.  The objective of this 
investigation was, therefore, to determine which micro-organisms were indigenously present in the process- and groundwater 
systems of the mine.  Groundwater samples and three different process water samples were collected from the mine, followed 
by chemical- and microbial community analyses.  Microbial inhibition was observed in all the process water samples due to 
the relatively high levels of copper, chromium and zinc present.  Aeromonas hydrophila proved to be the dominant bacterial 
species in all the process water samples, whereas Pseudomonas aeruginosa and Herbaspirillum spp. were observed in the 
groundwater of the mine.  None of the isolated micro-organisms have been implicated in bioleaching practices, and there-
fore these organisms will not be included as candidates for the removal of P and K from the iron-ore of the Sishen Iron-Ore 
Mine.  
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Introduction

The depletion of high-quality iron-ore (>60% Fe; <0.24% K) 
deposits necessitates the processing of lower-quality iron-ore 
(<60% Fe; >0.24% K) (Jian and Sharma, 2004; Taljaard, 2005).  
Impurities, such as P and K contained within the lower-quality 
iron-ore have a detrimental effect on the steel-making process, 
and steel-making plants charge penalties when purchasing iron-
ore with P and K levels exceeding 0.24% (Yusfin et al., 1999).  
In the past, low-quality iron-ore concentrate has been blended 
with high-quality iron-ore, in an attempt to ‘dilute’ the P and 
K contained within the export iron-ore concentrate of the mine 
(Dukino et al., 2000).  However, the low-quality iron-ore stock-
piles of the Sishen Iron-Ore Mine are increasing, and therefore 
it is essential to develop an economically and environmentally 
friendly process to reduce the high P and K concentrations of the 
iron-ore concentrate.
	 Micro-organisms could prove to be useful in the removal 
of the P and K from the iron-ore, as they may have metabolic 
properties, which could enable them to produce acids that may 
prove invaluable when applied in industrial practice (Gupta and 
Sharma, 2002; Lesniak et al., 2002).  It is essential to determine 
which micro-organisms are indigenous to the mine environ-
ment before strategising how best to employ them to industrial 
advantage.  Therefore, there has been an increasing interest in the 
microbial community of the Sishen Iron-Ore Mine environment.
	 It is hypothesised that indigenous micro-organisms already 
living in the Sishen Iron-Ore Mine environment are capable of 
using the P and K in the iron-ore as structural components for 
their cell walls and membranes, as well as many other metabolic 
processes, such as organic acid production, since the environ-

ment selects for them to do so.  The purpose of this investiga-
tion was to determine which micro-organisms are indigenously 
present in the process- and groundwater of the Sishen Iron-Ore 
Mine, as well as to determine the microbial diversity.  To date 
no information regarding the microbial community of the Sishen 
Iron-Ore Mine’s aquatic environment exists.

Experimental design

Sample selection and processing

Process water samples (10 ℓ) were collected in sterile containers 
at three different sampling points of the Sishen Iron-Ore Mine.  
The sampling points included water from the process dam, water 
flowing into the slimes dam, and water flowing from the slimes 
dam.  In addition, a groundwater sample was collected from a 
borehole located within the Sishen Iron-Ore Mine.  The samples 
were stored at 4°C until processing.

Chemical analysis of the process- and groundwater

The pH and turbidity, as well as the levels of ammonium, hydro-
gen sulphide, nitrates, nitrites, total phosphorus, potassium, free 
chlorine, fluoride, copper, chromium, iron, manganese and zinc 
were determined for all water samples by spectrophotometry 
using the Spectroquant® Photometer SQ 118 (Merck, Darm-
stadt, Germany).  Spectroquant® test kits (Merck) for each of the 
abovementioned parameters were used according to the manu-
facturers instructions.  The pH of the water samples was meas-
ured using a Beckman Φ34 pH meter (Beckman Coulter, Inc., 
Fullerton, CA, USA).

Total plate counts of the process- and groundwater

Heterotrophic plate counts of the process- and groundwater of 
the mine were conducted using the pour plate method (Health 
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Protection Agency, 2004a).  A dilution series for each water 
sample was prepared in sterile test tubes using distilled water 
(dH2O) (Health Protection Agency, 2004b).  One millilitre of 
each dilution was pipetted into a 90 mm Petri dish (Concorde 
Plastics, Johannesburg, South Africa), followed by the addition 
of 20 mℓ of liquid (50°C) standard nutrient agar to each Petri 
dish.  Once the agar had solidified, the agar plates were incu-
bated for 48 h at 28°C.  Each process- and groundwater sample 
was analysed in triplicate.  Following the incubation period, the 
bacterial colonies were enumerated and the Simpson’s index of 
diversity (1-D = 1- Σpi2), as well as the Equitability Index (ED = 
D/Dmax) (D: Simpson’s diversity index; pi: proportion of species 
made up of the ith species; Dmax: the maximum value D could 
assume if individuals in the community were completely evenly 
distributed).

Preparation of pure cultures

Pure cultures of each morphologically distinct bacterial colony, 
which was isolated on the standard plate-count agar plates, were 
prepared.  Each colony was inoculated separately onto agar 
plates containing solidified standard nutrient agar.  The agar 
plates were incubated for 48 h at 28°C in order to obtain single 
bacterial colonies.  The procedure was repeated, followed by the 
bacterial identification.  Suspensions from the pure cultures iso-
lated from the groundwater sample were prepared, using sterile 
dH2O, for molecular analysis.

Bacterial identification of the bacteria isolated from 
the process water

Bacteria isolated from the process water samples were Gram-
stained according to the method described by the Health Pro-
tection Agency (2007).  Oxidation-fermentation (OF) analysis 
was performed by the Hugh-Leifson Test (Health Protection 
Agency, 2004c), using OF basal medium, supplemented with a 
10% filter-sterilised solution of D (+) glucose (Merck), lactose 
(Merck) and sucrose (Merck).  The oxidase test using N, N, N’, 
N’-tetramethyl-p-phenylenediamine (Aldrich Chemical Co, 
Milwaukee, Wisconsin) was performed on all isolated bacteria 
(Health Protection Agency, 2004d).  Finally, the bacterial spe-
cies were identified using the API 20E and 20NE identification 
systems as described by the manufacturer (Analytab Products, 
Plainview, NY).

16S polymerase chain reaction for the amplification 
of bacterial DNA from the groundwater sample 

A 16S polymerase chain reaction (PCR) was performed by 
amplifying a portion of the 16S eubacterial gene from the bac-
terial suspensions prepared from the pure cultures of bacteria 
isolated from the groundwater sample.  The following primers 
were used for DNA amplification:

	 PRUN518r:	5’-ATT-ACC-GCG-GCT-GCT-GG-3’ (Siciliano 
et al., 2003),

	 PA8f-GC:	 5’-CGC-CCG-CCG-CGC-GCG-GCG-GGC-
GGG-GCG-GGG-GCA-CGG-GGG-GAG-AGT-TTG-
ATC-CTG-GCT-CAG-3’ (Fjellbirkeland et al., 2001).  

   
All PCR reagents were manufactured by Bio-Rad Laboratories 
(Hercules, CA, USA), unless otherwise stated.  The PCR reac-
tion was performed in a reaction volume of 25 µℓ containing 150 
mM KCl, 30 mM Tris-HCl (pH 9.0), 0.3% Triton X-100, 50 mM 

MgCl2, 10 µM PCR nucleotide mix, 5 pmol primer PRUN518r 
(Whitehead Scientific, Cape Town, South Africa), 5 pmol primer 
PA8f-GC (Whitehead Scientific), 1.5 units of Taq polymerase 
and 0.5 µℓ bacterial suspension.  Denaturation of extracted DNA 
at 95ºC for 10 min was followed by 35 cycles of denaturation at 
94ºC for 30 s, annealing at 51ºC for 30 s, and extension at 72ºC 
for 1 min (Bio-Rad Thermal Cycler, Bio-Rad Laboratories).  A 
final extension at 72ºC for 10 min concluded the PCR ampli-
fication of the DNA.  A reaction containing no DNA template 
was included as a negative control.  The amplified PCR products 
were separated using 1% agarose gel electrophoresis in tris-ace-
tate-EDTA (TAE) buffer.

Sequence analysis of the bacterial DNA from the 
groundwater sample

Sequences of the 16S eubacterial gene of the rDNA operon were 
obtained using primer PRUN518r.  The sequences reported in 
this study were compared to 16S eubacterial gene sequences 
present in the GenBank database by using the BLAST program 
of the National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/BLAST/ ).  Matching hits with e-values 
closest to 0.0 were chosen for alignment.  Reported and refer-
ence sequences were aligned using CLUSTAL X version 1.8 
(ftp://ftp-igbmc.u-stras-bg.fr/pub/ClustalX/ ) (Thompson et al., 
1997) and inserted gaps were treated as missing data.  Ambigu-
ously aligned regions were excluded from the data set before 
analysis.  Phylogenetic analysis was based on parsimony using 
PAUP 4.0b8 (Phylogenetic Analysis Using Parsimony) (Swof-
ford, 2000).  Heuristic searches were made with random addi-
tion of sequences (1 000 replicates), tree bisection-reconnection 
(TBR), branch swapping and MULPAR effective and MaxTrees 
set to auto-increase.  Evaluating tree length distributions over 
100 randomly generated trees assessed phylogenetic signal in the 
data sets.  The consistency (CI) and retention indices (RI) were 
determined for all data sets.  Characters were re-weighted to the 
CI, and only informative characters were included, while miss-
ing, ambiguous and constant characters were excluded.  Phylo-
genetic trees were rooted with Bacillus subtilis as out-group to 
the remaining taxa.  Bootstrap analyses were conducted, retain-
ing groups with 70% consistency, to determine confidence in 
branching points (1 000 replicates) for the most parsimonious 
trees generated.      

Results and discussion

The chemical analysis of the process- and groundwater samples 
of the Sishen Iron-Ore Mine is reported in Table 1.  The pH of all 
water samples ranged between 7.25 and 7.80.  The water flowing 
to the slimes dam contained the highest concentrations of cop-
per (0.72 mg·ℓ-1), chromium (0.24 mg·ℓ-1) and zinc (0.44 mg·ℓ-1).  
This water also contained ammonium (0.23 mg·ℓ-1), hydrogen 
sulphide (0.34 mg·ℓ-1), high levels of nitrates (>90.0 mg·ℓ-1), 
nitrites (>3.0 mg·ℓ-1), phosphorus (2.4 mg·ℓ-1), free chlorine (0.6 
mg·ℓ-1), fluoride (0.89 mg·ℓ-1), iron (0.52 mg·ℓ-1) and manganese 
(0.8 mg·ℓ-1).  The water collected from the process dam contained 
lower concentrations of copper (0.29 mg·ℓ-1), chromium (0.20 
mg·ℓ-1) and zinc (0.31 mg·ℓ-1), compared to the water flowing to 
the slimes dam, while it contained the highest concentrations of 
ammonium (0.39 mg·ℓ-1), hydrogen sulphide (0.41 mg·ℓ-1), phos-
phorus (3.4 mg·ℓ-1), free chlorine (0.8 mg·ℓ-1), fluoride (0.97 mg·ℓ-1), 
iron (0.66 mg·ℓ-1) and manganese (1.3 mg·ℓ-1), as well as high levels 
of nitrates (>90.0 mg·ℓ-1) and nitrites (>3.0 mg·ℓ-1).  
	 In contrast, the water collected from the slimes dam con-
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tained only high levels of nitrates 
(>90.0 mg·ℓ-1), nitrites (2.0 mg·ℓ-1) 
and fluoride (0.74 mg·ℓ-1).  These 
results indicate that the slimes dam 
is functioning properly by pre-
cipitating elements such as copper, 
chromium, iron, manganese and 
zinc.  The groundwater, however, 
only showed traces of nitrates (10.5 
mg·ℓ-1) and high levels of nitrites 
(>3.0 mg·ℓ-1) in the water, with all 
other elements below the detection 
limits, indicating that the ground-
water table remains isolated from 
contamination with heavy metals 
and other chemical compounds 
and elements, which may arise 
from the mining process.
	 Table 2 illustrates the average 
plate counts obtained for each dilu-
tion of the process- and ground-
water samples.  When the bacte-
rial counts for each dilution of the 
process water samples were compared to one another, 
it became evident that the bacterial growth was inhib-
ited in all the undiluted samples.  However, no inhibi-
tory effect was observed in the groundwater collected 
from the mine.  The inhibitory effect that heavy metals 
have on bacterial growth is well documented (Gordon 
et al., 1994; Yenigün et al., 1996), and therefore, it can 
be assumed that the inhibitory effect observed in this 
study is most likely as a result of the copper, chromium 
and zinc contained in the process water of the mine.
	 As the copper, chromium and zinc were diluted in the dilu-
tion series, the inhibitory effect decreased in all the process 
water samples.  The inhibitory effect was diminished at a 3-log 
dilution in the water flowing to the slimes dam, compared to a 
1-log dilution in the water from the process dam and the water 
flowing from the slimes dam.  This indicates that the level of the 
substance(s) responsible for the inhibitory effect must have been 
significantly higher in the water flowing to the slimes dam than 
in the other two water sources.  The total amount of copper, chro-
mium and zinc in the water flowing to the slimes dam (1.4 mg·ℓ-1) 
was significantly higher than observed in both the water from the 
process dam (0.8 mg·ℓ-1) and the water flowing from the slimes 
dam (~0.0 mg·ℓ-1), as well as the groundwater (~0.0 mg·ℓ-1), con-
firming that these heavy metals were indeed responsible for the 
bacterial inhibitory effect observed during this study.
	 Bacteria isolated and identified by API analysis from the dif-
ferent process water samples collected at the Sishen Iron-Ore 
Mine, are listed in Table 3.  Aeromonas hydrophila was found to 
be the dominant bacterial species in all the process water sam-
ples from the mine.  
	 Comparing the Simpson’s Index of Diversity (1-D) calcu-
lated for the three process water samples, it is evident that the 
bacterial diversity is greatest in the water flowing to the slimes 
dam (0.3279), followed by the water flowing from the slimes dam 
(0.2415) and water from the process dam (0.1677). Although the 
species richness of the water from the process dam is the highest 
(4), the population is dominated by A. hydrophila.  The species 
richness of both the water flowing to and from the slimes dam 
was found to be 3, and the bacterial population was dominated 
to a lesser extent by A. hydrophila compared to the water from 
the process dam.  This suggests that the species are more evenly 

distributed in both the water flowing to and from the slimes dam, 
compared to the water from the process dam.
	 Aeromonas hydrophila is a Gram-negative ubiquitous 
aquatic bacterium, which has been isolated from a wide range 
of water sources, such as river water, drinking water, as well as 
water distribution pipe biofilms (Havelaar et al., 1990; Chauret 
et al., 2001; Lynch et al., 2002; Bomo et al., 2004; Canals et al., 
2006).  A. hydrophila has been found to persist in chlorinated 
drinking water supplies as a result of biofilm production within 
distribution pipe systems (Fernandez et al., 2000; Bomo et al., 

TABLE 1
Chemical analyses of the process- and groundwater samples of the Sishen 

Iron-Ore Mine
Parameters Process dam Water to the 

slimes dam
Water from the 

slimes dam
Groundwater

pH
Turbidity 
Ammonium 
Hydrogen sulphide 
Nitrates
Nitrites 
Total phosphorus 
Potassium
Free chlorine
Fluoride
Copper
Chromium
Iron
Manganese
Zinc

7.54
54 NTU

0.39 mg·ℓ-1

0.41 mg·ℓ-1

>90.0 mg·ℓ-1

>3.0 mg·ℓ-1

3.4 mg·ℓ-1

ND
0.8 mg·ℓ-1

0.97 mg·ℓ-1

0.29 mg·ℓ-1

0.20 mg·ℓ-1

0.66 mg·ℓ-1

1.3 mg·ℓ-1

0.31 mg·ℓ-1

7.61
14 NTU

0.23 mg·ℓ-1

0.34 mg·ℓ-1

>90.0 mg·ℓ-1

>3.0 mg·ℓ-1

2.4 mg·ℓ-1

ND
0.6 mg·ℓ-1

0.89 mg·ℓ-1

0.72 mg·ℓ-1

0.24 mg·ℓ-1

0.52 mg·ℓ-1

0.8 mg·ℓ-1

0.44 mg·ℓ-1

7.80
1 NTU

ND
ND

>90.0 mg·ℓ-1

2.0 mg·ℓ-1

ND
ND
ND

0.74 mg·ℓ-1

ND
ND
ND
ND
ND

7.25
23 NTU

ND
ND

10.5 mg·ℓ-1

>3.0 mg·ℓ-1

ND
ND
ND
ND
ND
ND
ND
ND
ND

*ND – Not detected

TABLE 2
The average bacterial counts (cfu·mℓ-1) obtained for the  

different dilutions of the process- and groundwater samples 
of the Sishen Iron-Ore Mine

Sample Undiluted 1 log 2 log 3 log
Process dam
To slimes dam
From slimes dam
Groundwater

1.1 x 102

0
2.97 x 102

2.66 x 101

5.13 x 103

5.53 x 102

9.23 x 102

0

2.17 x 103

4.67 x 102

6.0 x 102

0

2.0 x 103

1.33 x 103

0
0

TABLE 3
Bacteria isolated and identified from the different 

process water samples collected at the Sishen 
Iron-Ore Mine

Identification of isolated bacteria Average bacterial 
count (cfu·mℓ-1)

Water from the process dam
Aeromonas hydrophila
Alcaligenes faecalis
Brevundimonas vesicularis
Acinetobacter junii
Water flowing from the slimes dam
Aeromonas hydrophila
Pantoea spp.
Flavobacterium meningosepticum
Water flowing to the slimes dam
Aeromonas hydrophila
Chryseomonas luteola
Enterobacter sakazakii

4.67 x 103

3.21 x 102

1.39 x 102

0.33 x 101

7.99 x 102

7.01 x 101

5.35 x 101

1.08 x 103

1.72 x 102

8.60 x 101
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2004).  A. hydrophila is able to produce cytotoxins and entero-
toxins that are often associated with acute gastroenteritis, as well 
as wound infections in humans, and less commonly associated 
with septicaemia of immunocompromised patients (Janda and 
Abbott, 1998; Fernandez et al., 2000).  In addition, A. hydrophila 
could also be pathogenic to fish, reptiles and amphibians, caus-
ing haemorrhagic septicaemia (Fernandez et al., 2000).  The 
pathogenicity of A. hydrophila has been associated with toxins, 
proteases, outer membrane proteins, lipopolysaccharides and 
flagella (Merino et al., 1996; Negueras et al., 2000; Rabaan et al., 
2001; Canals et al., 2006).  Alcaligenes faecalis is a heterotrophic 
nitrifying bacterium, which is commonly found in wastewater 
treatment systems where it is used for the removal of nitrogen 
from wastewater (Nishio et al., 1998; Kim et al., 2004; Joo et al., 
2007).  The phenol-degrading ability of Alcaligenes faecalis in 
wastewater sediments has also been documented (Tong et al., 
1998).  Brevundimonas (formerly Pseudomonas) vesicularis is 
an aerobic, non-sporulating and non-fermenting Gram-negative 
bacillus (Segers et al., 1994; Gilligan et al., 2003), which has 
been isolated from soil, bottled mineral water and hydrotherapy 
pools (Aspinall and Graham, 1989; Morais and Da Costa, 1990; 
Davis et al., 1994). Brevundimonas vesicularis is an opportun-
istic human pathogen, which has mostly been associated with 
infections due to the immunocompromised state caused by 
underlying diseases, such as autoimmune disorders associated 
with long-term steroid use, end-stage renal disease treated by 
haemodialysis, and sickle cell anaemia with functional asplenia 
(Gilad et al., 2000; Chi et al., 2004; Choi et al., 2006; Sofer et al., 
2007).  Pantoea spp. belong to the Enterobacteriaceae family 
and are important pathogens causing intestinal and systemic ill-
ness in humans and animals, and are commonly found in domes-
tic wastewater sludge (Vacca et al., 2005; Chale-Matsau and 
Snyman, 2006).  Chryseobacterium (formerly Flavobacterium) 
meningosepticum is an opportunistic pathogen often responsi-
ble for nosocomial infections associated with water systems in 
hospitals (Squier et al., 2000).  Chryseobacterium meningosep-
ticum, which is typically found in water and soil, generally has 
low pathogenicity, but may be of clinical importance in immu-
nocompromised patients, often causing neonatal meningitis 
with a high mortality rate (Ratner, 1984; Sheridan et al., 1993).  
Chryseomonas luteola has been implicated in the biosorption 
of chromium from industrial wastewater (Ozdemir and Baysal, 
2004).  Chryseomonas luteola was isolated from the water flow-
ing to the slimes dam, containing the highest levels of chromium 
(0.24 mg·ℓ-1) (Table 1).  Therefore, the possibility exists to use C. 
luteola during water treatment to remove the chromium from the 
wastewater of the mine.
	 DNA was successfully extracted from all pure cultures iso-
lated from the groundwater samples collected from the Sishen 
Iron-Ore Mine.  The PCR of total DNA extracted from the pure 
cultures isolated from the groundwater samples yielded a ca. 
500bp fragment of PCR product on a 1% TAE agarose gel.  No 
protein contamination in the walls of the gel or RNA contami-
nation smears below the DNA bands was observed.  The phylo-
genetic analysis of the 16S eubacterial gene of the rDNA operon 
of the bacteria isolated from the groundwater of the mine is 
illustrated in Fig. 1.  The phylogenetic analysis indicated that 
5 of the bacterial isolates from the groundwater samples have 
a strong sequence comparison with Pseudomonas aeruginosa 
(Verce et al., 2000) and a further 7 bacterial isolates a strong 
sequence comparison with a Herbaspirillum species (Probian 
et al., 2003).  
	 Herbaspirillum species have previously been isolated from 
groundwater systems (Connon et al., 2005). These micro- 

organisms are able to exist in groundwater systems where 
nitrogen limitation prevails, due to their ability to fix nitrogen 
(Elbeltagy et al., 2001; Kirchhof et al., 2001; Connon et al., 
2005).  The fact that Herbaspirillum magnetovibrio was identi-
fied as surviving in the iron-ore (Williams and Cloete, 2008), 
and that nitrogen (~11 mg·ℓ-1) is limited in the groundwater, may 
explain why this bacterium is able to exist in the groundwater of 
the Sishen Iron-Ore Mine.
	 Pseudomonas aeruginosa is a Gram-negative rod-like bac-
terium, which is ubiquitous in soil and water, and commonly 
detected in great amounts in sewage contaminated by humans 
and animals, although its main habitat remains controversial 
(Pellett et al., 1983; Römling et al., 1994; Todar, 2004).  In 
nature, P. aeruginosa may be found in surface biofilms, or in 
a planktonic form, actively swimming by means of a single 
polar flagellum (Sauer et al., 2002; Todar, 2004).  Taking into 
account the low nutritional content in the groundwater of the 
Sishen Iron-Ore Mine (Table 1), it is not surprising to isolate  
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operon of the bacteria isolated from the groundwater of the 
Sishen Iron-Ore Mine
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P. aeruginosa, as this bacterial species has very simple nutri-
tional requirements (Todar, 2004).  Pseudomonas aeruginosa 
is an opportunistic pathogen in humans and a major cause of 
nosocomial infection (Khan and Cerniglia, 1994; Römling et 
al., 1994), where it may cause urinary tract infections, acute 
respiratory illness (ARI), dermatitis, soft tissue infections, 
bacteraemia, bone and joint infections, acute gastrointestinal 
illness (AGI) and a variety of systemic infections, particularly 
in immunocompromised patients (Fegan et al., 1990; Hirarkata 
et al., 1991; Furuya et al., 1993; Todar, 2004; US Dept of Health 
and Human Services, 2006).  

Conclusions

Except for C. luteola which may be used for the biosorption of 
chromium from wastewater, there is no indication of bioleaching 
properties for any of the micro-organisms isolated in the proc-
ess- and groundwater systems, and therefore, they should be 
excluded as bioleaching candidates for the removal of undesir-
able substances from the iron ore of the Sishen Iron-Ore Mine.    
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