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Abstract

Investigating the microbial community of the Sishen Iron-Ore Mine in South Africa has become a topic of interest. Micro-
organisms could prove to be useful in bioleaching processes, resulting in the minimisation of the negative impact that certain
substances, such as phosphorus (P) and potassium (K), have on the economic functioning of the mine. The objective of this
investigation was, therefore, to determine which micro-organisms were indigenously present in the process- and groundwater
systems of the mine. Groundwater samples and three different process water samples were collected from the mine, followed
by chemical- and microbial community analyses. Microbial inhibition was observed in all the process water samples due to
the relatively high levels of copper, chromium and zinc present. Aeromonas hydrophila proved to be the dominant bacterial
species in all the process water samples, whereas Pseudomonas aeruginosa and Herbaspirillum spp. were observed in the
groundwater of the mine. None of the isolated micro-organisms have been implicated in bioleaching practices, and there-
fore these organisms will not be included as candidates for the removal of P and K from the iron-ore of the Sishen Iron-Ore

Mine.
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Introduction

The depletion of high-quality iron-ore (>60% Fe; <0.24% K)
deposits necessitates the processing of lower-quality iron-ore
(<60% Fe; >0.24% K) (Jian and Sharma, 2004; Taljaard, 2005).
Impurities, such as P and K contained within the lower-quality
iron-ore have a detrimental effect on the steel-making process,
and steel-making plants charge penalties when purchasing iron-
ore with P and K levels exceeding 0.24% (Yusfin et al., 1999).
In the past, low-quality iron-ore concentrate has been blended
with high-quality iron-ore, in an attempt to ‘dilute’ the P and
K contained within the export iron-ore concentrate of the mine
(Dukino et al., 2000). However, the low-quality iron-ore stock-
piles of the Sishen Iron-Ore Mine are increasing, and therefore
it is essential to develop an economically and environmentally
friendly process to reduce the high P and K concentrations of the
iron-ore concentrate.

Micro-organisms could prove to be useful in the removal
of the P and K from the iron-ore, as they may have metabolic
properties, which could enable them to produce acids that may
prove invaluable when applied in industrial practice (Gupta and
Sharma, 2002; Lesniak et al., 2002). It is essential to determine
which micro-organisms are indigenous to the mine environ-
ment before strategising how best to employ them to industrial
advantage. Therefore, there has been an increasing interest in the
microbial community of the Sishen Iron-Ore Mine environment.

It is hypothesised that indigenous micro-organisms already
living in the Sishen Iron-Ore Mine environment are capable of
using the P and K in the iron-ore as structural components for
their cell walls and membranes, as well as many other metabolic
processes, such as organic acid production, since the environ-
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ment selects for them to do so. The purpose of this investiga-
tion was to determine which micro-organisms are indigenously
present in the process- and groundwater of the Sishen Iron-Ore
Mine, as well as to determine the microbial diversity. To date
no information regarding the microbial community of the Sishen
Iron-Ore Mine’s aguatic environment exists.

Experimental design
Sample selection and processing

Process water samples (10 ¢) were collected in sterile containers
at three different sampling points of the Sishen Iron-Ore Mine.
The sampling points included water from the process dam, water
flowing into the slimes dam, and water flowing from the slimes
dam. In addition, a groundwater sample was collected from a
borehole located within the Sishen Iron-Ore Mine. The samples
were stored at 4°C until processing.

Chemical analysis of the process- and groundwater

The pH and turbidity, as well as the levels of ammonium, hydro-
gen sulphide, nitrates, nitrites, total phosphorus, potassium, free
chlorine, fluoride, copper, chromium, iron, manganese and zinc
were determined for all water samples by spectrophotometry
using the Spectroquant® Photometer SQ 118 (Merck, Darm-
stadt, Germany). Spectroquant® test kits (Merck) for each of the
abovementioned parameters were used according to the manu-
facturers instructions. The pH of the water samples was meas-
ured using a Beckman ®34 pH meter (Beckman Coulter, Inc.,
Fullerton, CA, USA).

Total plate counts of the process- and groundwater

Heterotrophic plate counts of the process- and groundwater of
the mine were conducted using the pour plate method (Health
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Protection Agency, 2004a). A dilution series for each water
sample was prepared in sterile test tubes using distilled water
(dH,0) (Health Protection Agency, 2004b). One millilitre of
each dilution was pipetted into a 90 mm Petri dish (Concorde
Plastics, Johannesburg, South Africa), followed by the addition
of 20 m¢ of liquid (50°C) standard nutrient agar to each Petri
dish. Once the agar had solidified, the agar plates were incu-
bated for 48 h at 28°C. Each process- and groundwater sample
was analysed in triplicate. Following the incubation period, the
bacterial colonies were enumerated and the Simpson’s index of
diversity (1-D = 1- Xpi®), as well as the Equitability Index (E, =
D/D, ) (D: Simpson’s diversity index; pi: proportion of species
made up of the ith species; D__: the maximum value D could
assume if individuals in the community were completely evenly
distributed).

Preparation of pure cultures

Pure cultures of each morphologically distinct bacterial colony,
which was isolated on the standard plate-count agar plates, were
prepared. Each colony was inoculated separately onto agar
plates containing solidified standard nutrient agar. The agar
plates were incubated for 48 h at 28°C in order to obtain single
bacterial colonies. The procedure was repeated, followed by the
bacterial identification. Suspensions from the pure cultures iso-
lated from the groundwater sample were prepared, using sterile
dH,0, for molecular analysis.

Bacterial identification of the bacteria isolated from
the process water

Bacteria isolated from the process water samples were Gram-
stained according to the method described by the Health Pro-
tection Agency (2007). Oxidation-fermentation (OF) analysis
was performed by the Hugh-Leifson Test (Health Protection
Agency, 2004c), using OF basal medium, supplemented with a
10% filter-sterilised solution of D (+) glucose (Merck), lactose
(Merck) and sucrose (Merck). The oxidase test using N, N, N’,
N’-tetramethyl-p-phenylenediamine (Aldrich Chemical Co,
Milwaukee, Wisconsin) was performed on all isolated bacteria
(Health Protection Agency, 2004d). Finally, the bacterial spe-
cies were identified using the API 20E and 20NE identification
systems as described by the manufacturer (Analytab Products,
Plainview, NY).

16S polymerase chain reaction for the amplification
of bacterial DNA from the groundwater sample

A 16S polymerase chain reaction (PCR) was performed by
amplifying a portion of the 16S eubacterial gene from the bac-
terial suspensions prepared from the pure cultures of bacteria
isolated from the groundwater sample. The following primers
were used for DNA amplification:

PRUN518r:5-ATT-ACC-GCG-GCT-GCT-GG-3 (Siciliano
etal., 2003),

PABf-GC: 5-CGC-CCG-CCG-CGC-GCG-GCG-GGC-
GGG-GCG-GGG-GCA-CGG-GGG-GAG-AGT-TTG-
ATC-CTG-GCT-CAG-3’ (Fjellbirkeland et al., 2001).

All PCR reagents were manufactured by Bio-Rad Laboratories
(Hercules, CA, USA), unless otherwise stated. The PCR reac-
tion was performed in a reaction volume of 25 uf containing 150
mM KCI, 30 mM Tris-HCI (pH 9.0), 0.3% Triton X-100, 50 mM
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MgCl,, 10 pM PCR nucleotide mix, 5 pmol primer PRUN518r
(Whitehead Scientific, Cape Town, South Africa), 5 pmol primer
PASf-GC (Whitehead Scientific), 1.5 units of Taq polymerase
and 0.5 pl bacterial suspension. Denaturation of extracted DNA
at 95°C for 10 min was followed by 35 cycles of denaturation at
94°C for 30 s, annealing at 51°C for 30 s, and extension at 72°C
for 1 min (Bio-Rad Thermal Cycler, Bio-Rad Laboratories). A
final extension at 72°C for 10 min concluded the PCR ampli-
fication of the DNA. A reaction containing no DNA template
was included as a negative control. The amplified PCR products
were separated using 1% agarose gel electrophoresis in tris-ace-
tate-EDTA (TAE) buffer.

Sequence analysis of the bacterial DNA from the
groundwater sample

Sequences of the 16S eubacterial gene of the rDNA operon were
obtained using primer PRUN518r. The sequences reported in
this study were compared to 16S eubacterial gene sequences
present in the GenBank database by using the BLAST program
of the National Center for Biotechnology Information (http:/
www.ncbi.nlm.nih.gov/BLAST/ ). Matching hits with e-values
closest to 0.0 were chosen for alignment. Reported and refer-
ence sequences were aligned using CLUSTAL X version 1.8
(ftp://ftp-igbmc.u-stras-bg.fr/pub/Clustal X/ ) (Thompson et al.,
1997) and inserted gaps were treated as missing data. Ambigu-
ously aligned regions were excluded from the data set before
analysis. Phylogenetic analysis was based on parsimony using
PAUP 4.0b8 (Phylogenetic Analysis Using Parsimony) (Swof-
ford, 2000). Heuristic searches were made with random addi-
tion of sequences (1 000 replicates), tree bisection-reconnection
(TBR), branch swapping and MULPAR effective and MaxTrees
set to auto-increase. Evaluating tree length distributions over
100 randomly generated trees assessed phylogenetic signal in the
data sets. The consistency (CI) and retention indices (R1) were
determined for all data sets. Characters were re-weighted to the
Cl, and only informative characters were included, while miss-
ing, ambiguous and constant characters were excluded. Phylo-
genetic trees were rooted with Bacillus subtilis as out-group to
the remaining taxa. Bootstrap analyses were conducted, retain-
ing groups with 70% consistency, to determine confidence in
branching points (1 000 replicates) for the most parsimonious
trees generated.

Results and discussion

The chemical analysis of the process- and groundwater samples
of the Sishen Iron-Ore Mine is reported in Table 1. The pH of all
water samples ranged between 7.25 and 7.80. The water flowing
to the slimes dam contained the highest concentrations of cop-
per (0.72 mg-€*), chromium (0.24 mg-0™) and zinc (0.44 mg-0?).
This water also contained ammonium (0.23 mg-¢?), hydrogen
sulphide (0.34 mg-C?), high levels of nitrates (>90.0 mg-(?),
nitrites (>3.0 mg-£?), phosphorus (2.4 mg-¢?), free chlorine (0.6
mg-L?), fluoride (0.89 mg-£?), iron (0.52 mg-€?) and manganese
(0.8 mg-€%). The water collected from the process dam contained
lower concentrations of copper (0.29 mg-€Y), chromium (0.20
mg-¢?t) and zinc (0.31 mg-L?), compared to the water flowing to
the slimes dam, while it contained the highest concentrations of
ammonium (0.39 mg-¢?), hydrogen sulphide (0.41 mg-£%), phos-
phorus (3.4 mg-t%), free chlorine (0.8 mg-?), fluoride (0.97 mg-?),
iron (0.66 mg-0?) and manganese (1.3 mg-€?), as well as high levels
of nitrates (>90.0 mg-¢?) and nitrites (>3.0 mg-C?).

In contrast, the water collected from the slimes dam con-
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tained only high levels of nitrates

le _ TABLE 1
(>90.0 mg-t%), nitrites (2.0 mg-t*) Chemical analyses of the process- and groundwater samples of the Sishen
and fluoride (0.74 mg-?). These Iron-Ore Mine
_results |n_d|c_ate that the slimes dam Parameters Process dam Water to the | Water from the | Groundwater
is functioning properly by pre- slimes dam slimes dam
cipitating elements such as copper, pH 754 761 7.80 7.5
chromium, iron, manganese and | ryyp;qity 54 NTU 14NTU 1NTU 23NTU
zinc. The groundwate_r, however, | Ammonium 0.39 mg-0* 0.23 mg-0* ND ND
only showed traces of nitrates (10.5 |y yrogen sulphide | 0.41 mg-t* 0.34 mg-? ND ND
mg:L) and high levels of nitrites | njiyate >900mg* | >900mgl? | >900mgt* | 10.5 mgtt
(>3.0:mg (") in the water, with all | njriteg >30mglt | >30mglt 2.0 mg 0 >3.0 mg-(*
other elements below the detection | rota) phogsphorus 3.4 mg-(* 2.4 mg-(? ND ND
limits, indicating that the ground- | poioccinm ND ND ND ND
water table remains isolated from Free chlorine 0.8 mg-0t 0.6 mg-(* ND ND
contamination with heavy metals | £y, orige 0.97 mg-0* 0.89 mg-(1 0.74 mg-0* ND
and other chemical compounds Copper 0.29 mg-(* 0.72 mg-0* ND ND
and elements, which may arise | chromium 020mgt? | 024 mgtt ND ND
from the mining process. Iron 066 mgt? | 0.52mgt? ND ND
Table 2 illustrates the average Manganese 1.3 mg-01 0.8 mg-(? ND ND
plate counts obtained foreachdilu- | ;. 0 '31 mg-( 0 44 mg-(* ND ND
tion of the process- and ground- *ND — Not detected - -
water samples. When the bacte- - Notdetecte
rial counts for each dilution of the TABLE 2

process water samples were compared to one another,
it became evident that the bacterial growth was inhib-
ited in all the undiluted samples. However, no inhibi-

The average bacterial counts (cfu-me€?) obtained for the
different dilutions of the process- and groundwater samples

of the Sishen Iron-Ore Mine

tory effect was observed in the groundwater collected  [sample Undiluted 1log 2log 3log
from the mine. The inhibitory effect that heavy metals  prgcess dam 11 x 102 513x 10° | 217 x 10 20x 10°
have on bacterial growth is well documented (Gordon | 14 glimes dam 0 553x 102 | 4.67x 102 | 1.33x 10°
etal., 1994; Yenign et al., 1996), and therefore, it can | rom slimes dam 297x10% | 923%x 102 | 6.0 x 10 0
be assumed that the inhibitory effect observed in this | 5 ndwater 266 x 10 0 0 0
study is most likely as a result of the copper, chromium
and zinc contained in the process water of the mine.

As the copper, chromium and zinc were diluted in the dilu- TABLE 3

tion series, the inhibitory effect decreased in all the process
water samples. The inhibitory effect was diminished at a 3-log
dilution in the water flowing to the slimes dam, compared to a
1-log dilution in the water from the process dam and the water
flowing from the slimes dam. This indicates that the level of the
substance(s) responsible for the inhibitory effect must have been
significantly higher in the water flowing to the slimes dam than
in the other two water sources. The total amount of copper, chro-
mium and zinc in the water flowing to the slimes dam (1.4 mg-¢?)
was significantly higher than observed in both the water from the
process dam (0.8 mg-€?) and the water flowing from the slimes
dam (~0.0 mg-¢?), as well as the groundwater (~0.0 mg-¢t), con-
firming that these heavy metals were indeed responsible for the
bacterial inhibitory effect observed during this study.

Bacteria isolated and identified by API analysis from the dif-
ferent process water samples collected at the Sishen Iron-Ore
Mine, are listed in Table 3. Aeromonas hydrophila was found to
be the dominant bacterial species in all the process water sam-
ples from the mine.

Comparing the Simpson’s Index of Diversity (1-D) calcu-
lated for the three process water samples, it is evident that the
bacterial diversity is greatest in the water flowing to the slimes
dam (0.3279), followed by the water flowing from the slimes dam
(0.2415) and water from the process dam (0.1677). Although the
species richness of the water from the process dam is the highest
(4), the population is dominated by A. hydrophila. The species
richness of both the water flowing to and from the slimes dam
was found to be 3, and the bacterial population was dominated
to a lesser extent by A. hydrophila compared to the water from
the process dam. This suggests that the species are more evenly
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Bacteria isolated and identified from the different
process water samples collected at the Sishen
Iron-Ore Mine

Identification of isolated bacteria Average bacterial
count (cfu-me€?)
Water from the process dam
Aeromonas hydrophila 4.67 x 103
Alcaligenes faecalis 3.21 x 10?
Brevundimonas vesicularis 1.39 x 10?
Acinetobacter junii 0.33 x 10
Water flowing from the slimes dam
Aeromonas hydrophila 7.99 x 10?
Pantoea spp. 7.01 x 10
Flavobacterium meningosepticum 5.35 x 10
Water flowing to the slimes dam
Aeromonas hydrophila 1.08 x 10°
Chryseomonas luteola 172 x 102
Enterobacter sakazakii 8.60 x 10

distributed in both the water flowing to and from the slimes dam,
compared to the water from the process dam.

Aeromonas hydrophila is a Gram-negative ubiquitous
aquatic bacterium, which has been isolated from a wide range
of water sources, such as river water, drinking water, as well as
water distribution pipe biofilms (Havelaar et al., 1990; Chauret
et al., 2001; Lynch et al., 2002; Bomo et al., 2004; Canals et al.,
2006). A. hydrophila has been found to persist in chlorinated
drinking water supplies as a result of biofilm production within
distribution pipe systems (Fernandez et al., 2000; Bomo et al.,
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2004). A. hydrophila is able to produce cytotoxins and entero-
toxins that are often associated with acute gastroenteritis, as well
as wound infections in humans, and less commonly associated
with septicaemia of immunocompromised patients (Janda and
Abbott, 1998; Fernandez et al., 2000). In addition, A. hydrophila
could also be pathogenic to fish, reptiles and amphibians, caus-
ing haemorrhagic septicaemia (Fernandez et al., 2000). The
pathogenicity of A. hydrophila has been associated with toxins,
proteases, outer membrane proteins, lipopolysaccharides and
flagella (Merino et al., 1996; Negueras et al., 2000; Rabaan et al.,
2001; Canals etal., 2006). Alcaligenes faecalis is a heterotrophic
nitrifying bacterium, which is commonly found in wastewater
treatment systems where it is used for the removal of nitrogen
from wastewater (Nishio et al., 1998; Kim et al., 2004; Joo et al.,
2007). The phenol-degrading ability of Alcaligenes faecalis in
wastewater sediments has also been documented (Tong et al.,
1998). Brevundimonas (formerly Pseudomonas) vesicularis is
an aerobic, non-sporulating and non-fermenting Gram-negative
bacillus (Segers et al., 1994; Gilligan et al., 2003), which has
been isolated from soil, bottled mineral water and hydrotherapy
pools (Aspinall and Graham, 1989; Morais and Da Costa, 1990;
Davis et al., 1994). Brevundimonas vesicularis is an opportun-
istic human pathogen, which has mostly been associated with
infections due to the immunocompromised state caused by
underlying diseases, such as autoimmune disorders associated
with long-term steroid use, end-stage renal disease treated by
haemodialysis, and sickle cell anaemia with functional asplenia
(Gilad et al., 2000; Chi et al., 2004; Choi et al., 2006; Sofer et al.,
2007). Pantoea spp. belong to the Enterobacteriaceae family
and are important pathogens causing intestinal and systemic ill-
ness in humans and animals, and are commonly found in domes-
tic wastewater sludge (Vacca et al., 2005; Chale-Matsau and
Snyman, 2006). Chryseobacterium (formerly Flavobacterium)
meningosepticum is an opportunistic pathogen often responsi-
ble for nosocomial infections associated with water systems in
hospitals (Squier et al., 2000). Chryseobacterium meningosep-
ticum, which is typically found in water and soil, generally has
low pathogenicity, but may be of clinical importance in immu-
nocompromised patients, often causing neonatal meningitis
with a high mortality rate (Ratner, 1984; Sheridan et al., 1993).
Chryseomonas luteola has been implicated in the biosorption
of chromium from industrial wastewater (Ozdemir and Baysal,
2004). Chryseomonas luteola was isolated from the water flow-
ing to the slimes dam, containing the highest levels of chromium
(0.24 mg-¢*) (Table 1). Therefore, the possibility exists to use C.
luteola during water treatment to remove the chromium from the
wastewater of the mine.

DNA was successfully extracted from all pure cultures iso-
lated from the groundwater samples collected from the Sishen
Iron-Ore Mine. The PCR of total DNA extracted from the pure
cultures isolated from the groundwater samples yielded a ca.
500bp fragment of PCR product on a 1% TAE agarose gel. No
protein contamination in the walls of the gel or RNA contami-
nation smears below the DNA bands was observed. The phylo-
genetic analysis of the 16S eubacterial gene of the rDNA operon
of the bacteria isolated from the groundwater of the mine is
illustrated in Fig. 1. The phylogenetic analysis indicated that
5 of the bacterial isolates from the groundwater samples have
a strong sequence comparison with Pseudomonas aeruginosa
(Verce et al., 2000) and a further 7 bacterial isolates a strong
sequence comparison with a Herbaspirillum species (Probian
etal., 2003).

Herbaspirillum species have previously been isolated from
groundwater systems (Connon et al., 2005). These micro-
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22 29 AF531855 Acinetobacter baumann
28 2 AB247218 Pseudomonas aeruginosa
AJ888579 uncultured gamma prot
5 AY438567 Uncultured Leptospiri
AB108690 Pseudomonas aeruginosa
AY264292 Pseudomonas aeruginosa
6 DQ115539 Pseudomonas aeruginosa
AF125317 Pseudomonas sp pDLO1
/AB222018 Pseudomonas aeruginosa

1
AY177773 Uncultured bacterium

AB196252 Burkholderia sp. IC13
AY429715 Oxalobacteraceae bact

AB024305 Matsuebacter sp. KS6
AB074524 Aquaspirillum autotro
AF543312 Herbaspirillum lusita
DQ103258 Herbaspirillum magnet
/AB094401 Herbaspirillum chloro

AJ012069 Herbaspirillum sp. G8

AY512626 Stenotrophomonas malt

AY216797 Ralstonia sp. OV225 K
AB021387 Pseudomonas spinosa

DQO005909 Telluria mixta KS6

LF16SRNA Leptospirillum ferroo
AF513709 Leptospirillum sp.

33

AY907889 Sulfolobus sp.

AF513710 Ferroplasma sp.

Kumba water seq 1

17 | Kumba water seq 2
Kumba water seq 3

67 Kumba water seq 4

Kumba water seq 5
Kumba water seq 6
Kumba water seq 7
Kumba water seq 8
Kumba water seq 9

52 Kumba water seq 10

33 Kumba water seq 11

Kumba water seq 12
73

Kumba water seq 13
45

AY222042 Ferroplasma acidiphil

AY379769 Bacillus subtilis ATC

= 10 changes

Figure 1
Phylogenetic analysis of the 16S Eubacterial gene of the rDNA
operon of the bacteria isolated from the groundwater of the
Sishen Iron-Ore Mine

organisms are able to exist in groundwater systems where
nitrogen limitation prevails, due to their ability to fix nitrogen
(Elbeltagy et al., 2001; Kirchhof et al., 2001; Connon et al.,
2005). The fact that Herbaspirillum magnetovibrio was identi-
fied as surviving in the iron-ore (Williams and Cloete, 2008),
and that nitrogen (~11 mg-£?) is limited in the groundwater, may
explain why this bacterium is able to exist in the groundwater of
the Sishen Iron-Ore Mine.

Pseudomonas aeruginosa is a Gram-negative rod-like bac-
terium, which is ubiquitous in soil and water, and commonly
detected in great amounts in sewage contaminated by humans
and animals, although its main habitat remains controversial
(Pellett et al., 1983; Romling et al., 1994; Todar, 2004). In
nature, P. aeruginosa may be found in surface biofilms, or in
a planktonic form, actively swimming by means of a single
polar flagellum (Sauer et al., 2002; Todar, 2004). Taking into
account the low nutritional content in the groundwater of the
Sishen Iron-Ore Mine (Table 1), it is not surprising to isolate
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AF193514 Pseudomonas aeruginosa

AJ505863 Herbaspirillum sp. KS



P. aeruginosa, as this bacterial species has very simple nutri-
tional requirements (Todar, 2004). Pseudomonas aeruginosa
is an opportunistic pathogen in humans and a major cause of
nosocomial infection (Khan and Cerniglia, 1994; Rémling et
al., 1994), where it may cause urinary tract infections, acute
respiratory illness (ARI), dermatitis, soft tissue infections,
bacteraemia, bone and joint infections, acute gastrointestinal
illness (AGI) and a variety of systemic infections, particularly
in immunocompromised patients (Fegan et al., 1990; Hirarkata
etal., 1991; Furuya et al., 1993; Todar, 2004; US Dept of Health
and Human Services, 2006).

Conclusions

Except for C. luteola which may be used for the biosorption of
chromium from wastewater, there is no indication of bioleaching
properties for any of the micro-organisms isolated in the proc-
ess- and groundwater systems, and therefore, they should be
excluded as bioleaching candidates for the removal of undesir-
able substances from the iron ore of the Sishen Iron-Ore Mine.
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