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Fresh, ready-to-eat produce is frequently irrigated with untreated water, making it a leading cause of food-
borne illness outbreaks worldwide. This study investigated the presence of Listeria monocytogenes in fresh 
produce that was grown using river water. Standard biochemical tests were used for the identification of 
L. monocytogenes isolated from river water used for irrigation, and from fresh produce including lettuce, 
spinach, and pumpkin. The inlA gene of L. monocytogenes was molecularly identified using PCR amplification. 
The susceptibility of L. monocytogenes isolates to antimicrobial agents was assessed using the Kirby-Bauer 
disc diffusion method. The presence of the amplified inlA gene (800 bp) indicated that all of the fresh produce 
and river water samples were contaminated with virulent L. monocytogenes. Lettuce and spinach exhibited 
higher quantities of L. monocytogenes, with lettuce recording 87 CFU/g and spinach recording 71 CFU/g. The 
L. monocytogenes isolates from spinach and lettuce sources showed significant resistance to colistin (56.2% 
and 53.3%, respectively) as well as ampicillin (68.8% and 53.3%, respectively). Moreover, lettuce (40%) and 
spinach (31%) exhibited a common resistance pattern of AMP-CHL-CT-KAN-PIP-ERY-TET, with a maximum MAR 
index value of 0.54. Our research demonstrates the transmission of multidrug-resistant L. monocytogenes from 
irrigation river water to fresh produce. Hence, the ingestion of ready-to-eat fresh produce carries the potential 
for human listeriosis, particularly among individuals with compromised immune systems.
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INTRODUCTION

Foodborne diseases (FBD), which mainly arise from the consumption of unsafe foods and water, 
have threatened the public health and economic status of human populations around the world 
(WHO, 2015; Jaffee et al., 2020). Furthermore, microorganisms (bacteria, viruses, and fungi) 
account for approximately 80% of the food-borne illness outbreaks recorded globally (Bintsis, 2017; 
Jaffee et al., 2018). Every year there are approximately 600 million reported cases of food-related 
illnesses globally, resulting in approximately 420 000 deaths. This is particularly true for individuals 
with weakened immune systems, the elderly, and children under the age of 5 (WHO, 2015). In 
Africa, about 135 million cases of foodborne diseases are recorded annually, resulting in about  
180 000 foodborne-related deaths (Akhtar et al., 2014; Jaffee et al., 2020). In South Africa, 327 cases 
of foodborne disease outbreaks were documented between 2013 and 2017, resulting in 49 deaths 
(Shonhiwa et al., 2019). Consumption of food contaminated with pathogenic microorganisms such 
as Salmonella, Clostridium perfringens, Bacillus cereus, Shigella spp., and L. monocytogenes was the 
main cause of these outbreaks (Shonhiwa et al., 2019).

Listeria monocytogenes is a facultative anaerobic foodborne pathogen known to cause invasive and 
non-invasive listeriosis in humans (Allerberger and Wagner, 2010), mostly via the consumption 
of compromised foods and water (Kurpas et al., 2018). The ability of L. monocytogenes to grow in 
adverse conditions, including wide temperature ranges (−7 to 45°C), pH ranges (4.0 to 9.6), and salt 
concentrations (Junttila et al., 1988; Lado and Yousef, 2007), makes it a difficult pathogen to control 
and eradicate. Because of this, L. monocytogenes has been implicated in multiple FBD outbreaks 
worldwide. In South Africa, L. monocytogenes was implicated in a 2017–2018 FBD outbreak that 
claimed over 230 lives and was regarded as the worst outbreak to date (Smith et al., 2019). Most 
recently, L. monocytogenes was associated with the multi-state FBD outbreak from Dole packaged 
leafy greens, affecting 18 individuals in the USA (FDA, 2022). Most L. monocytogenes–associated 
outbreaks are a result of the consumption of ready-to-eat products, including green salads and 
vegetables (Hazards et al., 2018).

Although the incidence of human listeriosis outbreaks is very low compared to other foodborne 
illnesses, the unattended outcome of the disease is often more severe, making L. monocytogenes 
a priority. Furthermore, the inlA gene, one of L. monocytogenes virulence genes, can be used as a 
marker for the detection of L. monocytogenes in water and agricultural produce. The inlA gene was 
recently used for the identification of L. monocytogenes isolated from clinical sources, including 
vaginal swabs and faeces (Meghdadi et al., 2019).

This study aimed to assess the prevalence of L. monocytogenes in fresh agricultural produce, 
including Cucurbita (pumpkin), Lactuca sativa (lettuce), and Spinacia oleracea (spinach) irrigated 
with untreated river water from a farm in Verulam, KwaZulu-Natal Province, South Africa. Several 
studies have already identified untreated water as the main route of introducing pathogenic bacteria 
onto agricultural produce (Pandey et al., 2014; Uyttendaele et al., 2015; Allende et al., 2017).  
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Recently, L. monocytogenes resistant to several antibiotics, including 
ampicillin, penicillin and trimethoprim-sulphamethoxazole, was 
detected in environmental waters in the Eastern Cape Province 
of South Africa (Mpondo et al., 2021). In the current study, the 
antibiogram of L. monocytogenes from fresh agricultural produce 
was also studied.

Surveillance of the carry-over of potential pathogens from 
contaminated irrigation water to agricultural fresh produce in 
South Africa is an area of research that is currently neglected. 
However, in a country with several immunocompromised 
individuals because of disease, lack of clean potable water and 
other factors, addressing water–fresh produce contamination in 
order to curb the spread of potential FBD pathogens is crucial. 
This work provides first-line data for antibiotic-resistant patterns 
of L. monocytogenes isolates from agricultural produce in the 
KwaZulu-Natal Province of South Africa.

MATERIALS AND METHODS

Sample collection

A volume of 1 L of each water sample and 200 g of each 
agricultural produce sample (i.e., lettuce, spinach, and pumpkin) 
were aseptically collected on a monthly basis (June–September 
2021) from an agricultural farm in Verulam (29°36’47.2”S 
31°02’11.7”E), KwaZulu-Natal, and stored in a portable ice chest 
during transportation. All samples were processed within 4 h of 
sampling.

Isolation of L. monocytogenes from agricultural produce 
and water samples

In this study, L. monocytogenes were isolated using a modified 
version of the protocol by Stea et al. (2015). Briefly, about 25 g 
of each composite sample of freshly harvested lettuce, spinach, 
and pumpkin obtained from the farm was immersed in 100 mL of 
sterile peptone water and vigorously homogenized by shaking for 
5 mins in a water bath. A volume of 25 mL of the suspension (from 
spinach, lettuce, pumpkin, and river water sample) was mixed 
with 225 mL of Listeria enrichment broth (LEB; Sigma-Aldrich) 
and then incubated (37°C for 24 h). Following the overnight 
incubation period, a volume of 1 mL of Listeria enrichment 
broth (LEB; Sigma-Aldrich) was mixed with 9 mL of Fraser broth 
(Sigma-Aldrich, Fraser Broth Base) and incubated (37°C for 24 h)  
once more. Finally, the resulting enriched Fraser broth culture 
was streaked onto Oxford Agar (Sigma-Aldrich) in triplicate and 
incubated (37 °C for 24 h) further. The colonies that resulted were 
counted using a colony counter, and their quantity was measured 
in terms of colony-forming units (CFU) per 25 g of vegetables and 
CFU per 100 mL of water used. The colonies were subsequently 
purified and analysed using biochemical and molecular tests to 
determine their identity.

Identification of inlA gene in L. monocytogenes isolates by 
PCR

The crude DNA was prepared from the L. monocytogenes 
isolates using the DNA precipitation method according to 
Green and Sambrook (2016), and purified using the DNA 
purification kit (Gene-JET PCR Purification Kit, Thermo 
Scientific), according to the manufacturer’s protocol. The pure 
DNA obtained was used as templates for the amplification 
of the inlA gene-specific in L. monocytogenes using the 
primer set 5’-  AATCTAGCACCACTGTCGGG  -3’ and 5’- 
TGTGACCTTCTTTTACGGGC -3’ (Rousseaux et al., 2004). The 
general thermocycling conditions used were 94°C for 3 min for 
initial denaturation, 35 cycles of 30 s denaturation at 94°C, 53°C 
for 1 min for annealing, and extension at 72°C for 1 min, with 

final elongation at 72°C for 5 min. The PCR reaction mixtures 
contained concentrations of the components including PCR 
mastermix (12, 5 µL), forward primer (2 µL), reverse primer (2 µL), 
double-distilled water (8, 5 µL), and DNA template (2 µL) to a 
final volume of 25 µL. The L. monocytogenes strain ATCC 7644 
was used as the positive control. All samples display a fragment of 
730 bp on 1% (w/v) TAE (40 mM TRIS base (w/v), 0.2 mM glacial 
acetic acid (w/v), 10 mM EDTA (w/v)), pH 8.0 agarose gel.

Determination of AST, MAR, and MAR indices in L. 
monocytogenes

The Kirby-Bauer disc diffusion technique, following the guidelines 
of the Clinical and Laboratory Standards Institute (CLSI, 2006), 
was used to perform antimicrobial susceptibility testing on the 
isolates obtained from agricultural products. The technique 
involved the use of Muller Hinton agar (Oxoid, Basingstoke, UK) 
supplemented with 7% defibrinated sheep blood. Furthermore, 
the susceptibility assay of L. monocytogenes isolates was 
tested against the following antimicrobial combinations and 
concentrations; chloramphenicol (CHL, 10 µg), ampicillin (AMP, 
10 µg), kanamycin (KAN, 30 µg), fosfomycin (FOS, 50 µg), 
tetracycline (TET, 30 µg), pipemidic acid (PIP, 20 µg), gentamycin 
(GN, 20 µg), streptomycin (STR, 25 µg), erythromycin (ERY,  
30 µg), and vancomycin (VAN, 30 µg). Furthermore, Krumperman’s 
(1983) method was used to calculate and interpret the multiple 
antibiotic resistance (MAR) index. In this method, MAR = a/b, 
where a represents the number of antibiotics to which a specific 
isolate showed resistance, and b represents the total number of 
antibiotics that the isolates were exposed to.

Bioinformatics analyses and interpretation

We compared the resulting metabolic activities of the treatment 
groups and controls using one-way analysis of variance (ANOVA) 
and Tukey’s multiple-comparison post-test at p < 0.05. Statistical 
analyses were performed with GraphPad Prism 5.0 (GraphPad 
Software, Inc., San Diego, CA).

RESULTS AND DISCUSSION

Listeria monocytogenes in irrigation river water and 
agricultural samples

PCR analysis identified 59 L. monocytogenes isolates from river 
water and agricultural produce. All isolates showed the inlA gene 
(Fig. 1) which confirmed L. monocytogenes (Budniak et al., 2016). 
This finding supports previous studies that identified the presence 
of internalin genes in L. monocytogenes isolates from irrigation 
water and agricultural soil in South Africa’s Eastern Cape Province 
(Iwu et al., 2022). Moreover, the inlA gene has long been known 
to be conserved in L. monocytogenes (Poyart et al., 1996), and has 
been implicated in the establishment of listeriosis (Chatterjee, 
2006; Ingeborg, 2011; Casey et al., 2016). The surface internalin 
A (inlA) protein, a product of the inlA gene, plays an important 
role in the invasion of L. monocytogenes into mammalian cells 
(Werbrouck et al., 2006; Phelps et al., 2018). In humans, the 
internalization of L. monocytogenes into mammalian cells is 
brought about when the inlA binds to the transmembrane protein 
E-cadherin, leading to the emergence of the adherens junctions 
(cell-to-cell adhesion complex) in a Ca2+-dependent manner (Bou 
Ghanem et al., 2012; Pizarro-Cerdá et al., 2012; Bonazzi et al., 
2009). Therefore, molecular identification of the inlA gene in this 
study confirms the presence of pathogenic L. monocytogenes in 
agricultural produce.

In addition, statistical analysis of Oxford-agar culturable  
L. monocytogenes isolated from the river water sample revealed 
the highest number (74  000 CFU/mL) in June (Fig. 2).  
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In a recent study conducted by Mpondo (2021), it was found that 
L. monocytogenes was present in 13% (9/69) of water samples 
collected from river and irrigation waters in the Eastern Cape 
Province of South Africa. Previously, Meghdadi et al. (2019) 
also detected L. monocytogenes 16.76% (16/180) in river waters. 
The high prevalence of L. monocytogenes in the river is likely 
due to anthropogenic inputs (Khatri and Tyagi, 2014). Several 
anthropogenic activities, including domestic and industrial 
sewage discharges, have been related to an increase in pathogenic 
microorganisms in rivers (Abraham, 2011). Concerning  
L. monocytogenes, infected individuals may excrete a high 
quantity of this bacterium in their faeces. Consequently, it can 
enter river waters through the release of untreated or partially 
treated wastewater (Manjur et al., 2016).

Elevated incidence of L. monocytogenes in lettuce and 
spinach samples

The study found that the lettuce and spinach had the highest 
concentration of L. monocytogenes, while the pumpkin had 
the lowest (Fig. 3). A study by Willis et al. (2020) has also 
reported a higher prevalence of L. monocytogenes isolates in 
vegetables (69/673) than in fruits (3/340). Due to their structural 
characteristics, lettuce and spinach have the potential to retain 
a greater amount of water on their leaves compared to the 
pumpkin. As a result, this creates a favourable environment 
for L. monocytogenes to thrive and proliferate. A subsequent 
investigation conducted by Okeye et al. (2020) discovered a 
maximum count of 370 CFU/g of L. monocytogenes in lettuce, a 

Figure 1. Agarose gel electrophoresis showing PCR products of approx. 800 bp from L. monocytogenes inlA gene: A – river water; B – spinach;  
C – lettuce; D – pumpkin; M – molecular weight marker; P – positive control and N – negative control. The DNA was resolved on a 1.0 %  
agarose gel.

Figure 2. Enumeration of total presumptive L. monocytogenes. The number of CFU/mL is the sample means, which accounts for the dilution 
factor and number of replicates.  Enumerations of total presumptive L. monocytogenes in river water (RW) are shown.
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significantly higher figure compared to the levels observed in this 
study in lettuce (87 CFU/g), spinach (71 CFU/g), and pumpkin 
(51 CFU/g) Nonetheless, these recorded values are considerably 
lower than the suggested infective dose of 100 CFU/g (Center 
for Food Safety and Applied Nutrition, 2017). According to 
previous studies, as few as 10 CFU/g of L. monocytogenes on 
agricultural produce have the potential to rapidly multiply and 
reach pathogenic levels within 8 days (Salvat and Fravalo, 2004). 
The findings of our study indicate that spinach and lettuce have a 
higher likelihood than pumpkin of containing L. monocytogenes 
transmitted from irrigation water.

Higher rate of resistance of L. monocytogenes isolates 
from lettuce and spinach sources to colistin and penicillin

In this study, we tested the susceptibility of 45 L. monocytogenes 
strains isolated from lettuce, spinach, and pumpkin to 11 
antibiotics widely used in medical and veterinary practice. The 
findings indicated that the majority of L. monocytogenes isolates 
from lettuce and spinach sources exhibited comparable antibiotic-
resistance patterns (Table 1), with colistin and ampicillin being 
the two antibiotics to which they displayed the highest resistance. 
The isolates originating from the pumpkin source exhibited 
remarkably low resistance to these two antibiotics. Penicillin is an 
antibiotic with a broad-spectrum effect, employed in the treatment 
of infections caused by L. monocytogenes and other clinically 
significant pathogens such as Escherichia coli, Staphylococcus 
aureus, Streptococcus pneumoniae, and Haemophilus influenzae 
(Kaushik et al., 2014; Peechakara et al., 2021). The lack of efficacy 
of colistin and ampicillin against L. monocytogenes, as stated in this 

study, aligns with the findings of Ennaji et al. (2008). Their study 
revealed resistance to these antimicrobials in L. monocytogenes 
isolates from poultry and red meat in Morocco. In contrast, 
Yan et al. (2019) conducted a 4-year study spanning from 2012 
to 2015 which did not identify any cases of ampicillin resistance 
in 2 862 L. monocytogenes strains isolated from different food 
samples in China. Additionally, our study revealed a significantly 
low prevalence of resistance to pipemidic acid, streptomycin, and 
tetracycline among all L. monocytogenes isolates obtained from 
the three agricultural produce samples. In contrast to the research 
conducted by Harakeh et al. (2009) and Conter et al. (2009), 
this study revealed a low prevalence of tetracycline resistance. 
Moreover, the pumpkin isolates examined in this study exhibited 
a reduced occurrence of resistance to all of the antibiotics 
tested, including pipemidic acid (7.1%), erythromycin (14.3%), 
tetracycline (7.1%), and streptomycin (14.3%). In contrast to the 
findings of Jamali et al. (2013), who found that L. monocytogenes 
isolates were susceptible to gentamicin and vancomycin, our 
study revealed that all L. monocytogenes isolates obtained from 
lettuce, spinach, and pumpkin exhibited complete resistance to 
fosfomycin, gentamicin, and vancomycin. The widespread use of 
antimicrobials like gentamicin and vancomycin in the treatment 
of human and animal infections in South Africa may explain the 
high levels of resistance to these drugs.

The percentage resistance of L. monocytogenes isolates against 
the test antimicrobials is shown in Fig. 4. All the isolates showed 
100% resistance to gentamicin, vancomycin, and fosfomycin. 
Conversely, for chloramphenicol (37.8%), ampicillin (53.3%), and 
colistin (46.7%) higher susceptibility rates were demonstrated.

Table 1. Susceptible rate of L. monocytogenes to antimicrobial agents

Fresh 
produce

No. of 
isolates
tested

CT
(10 µg)

AMP
(10 µg)

KAN
(30 µg)

FOS
(50 µg)

TET
(30 µg)

CHL
(30 µg)

PIP
(20 µg)

GN
(20 µg)

STR
(25 µg)

ERY
(30 µg)

VAN
(30 µg)

No. (%) of resistant isolates

Lettuce 15 8 
(53.3%)

8 
(53.3%)

6 
(40%)

NT 2 
(13.3%)

7 
(46.6%)

2 
(13.3%)

NT 2 
(13.3%)

3 
(20%)

NT

Spinach 16 9 
(56.2%)

11 
(68.8%)

7 
(43.8%)

NT 3 
(18.7%)

6 
(37.5%)

4 
(25%)

NT 3 
(18.6%)

4 
(25%)

NT

Pumpkin 14 4 
(28.6%)

6 
(37.7%)

3 
(21.4%)

NT 2 
(14.3%)

4 
(35.7%)

1 
(7.1%)

NT 2 
(14.3%)

1 
(7.1%)

NT

Key: CT – colistin; AMP – ampicillin; KAN – kanamycin; FOS – fosfomycin; TET – tetracycline; CHL – chloramphenicol; PIP – pipemidic acid;  
GN – gentamicin; STR – streptomycin; ERY – erythromycin; VAN – vancomycin

Figure 3. Total number of L. monocytogenes present in the three fresh produce samples without enrichment expressed in CFU/g. Lettuce 
contained the highest amount of L. monocytogenes followed by spinach and pumpkin.
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The MAR patterns and MAR indices of L. monocytogenes

All isolates of L. monocytogenes obtained from lettuce, spinach, 
and pumpkin exhibited resistance to a minimum of 3 antimicrobial 
agents. Analysis of our data uncovered four distinct MAR patterns 
in the L. monocytogenes strains obtained from the agricultural 
produce. Among these, the combination of AMP-CHL-CT-KAN-
PIP-ERY-TET was the most prevalent, accounting for 40% of 
lettuce and 31% of spinach (Table 2). According to a recent study 
conducted by Mpondo et al. (2021), it has been discovered that 
L. monocytogenes isolates obtained from environmental samples 
exhibit resistance to a maximum of 15 antimicrobials, resulting 
in a MAR index value of 1. In Malaysia, previous reports have 
documented a lower MAR index value of 0.56 in L. monocytogenes 
strains obtained from vegetable farms and retail markets (Huan  
et al., 2017). In this particular study, however, the L. monocytogenes 
isolates demonstrated a maximum MAR index value of 0.54, a 
value that remains significantly higher than the recommended 
MAR index value of 0.2 (Krumperman, 1983). The findings of this 
study demonstrate a high MAR index value (0.54), which signifies 
extensive contamination of the three agricultural products with 
multi-drug resistant L. monocytogenes.

In summary, this study has shown that there was a notable transfer 
of multidrug-resistant L. monocytogenes from the contaminated 
irrigation river water to the agricultural produce. The elevated 
levels of L. monocytogenes in lettuce and spinach are a cause for 
concern as these raw vegetables are commonly eaten in salads and 
could potentially lead to food-borne listeriosis, particularly for 
those who are more vulnerable to infection. Moreover, the MAR 
index values exceeding 0.2 indicate that the irrigation river water 
utilized on the farm poses a significant risk of contamination. 

Therefore, consistently monitoring the presence of foodborne 
pathogens and the emergence of antimicrobial resistance in food 
is crucial. This is vital to minimize the chances of exposure and 
effectively manage agricultural produce to prevent or minimize 
contamination by such pathogens in South Africa.
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