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Higher Himalayan catchments are often poorly monitored for hydrological activities involving flood flow 
prediction for the safety of riverside communities and the successful operation of hydropower projects. 
This study aimed to estimate the comparative performance of artificial neural network (ANN) based flow 
prediction models using 10 years of daily river flow data of Kaligandaki catchment at Kotagaun, Nepal, which 
is a snow-fed catchment in the Himalayan region. The flow prediction models were trained and tested at a 
hydrological station using the previous 3 days’ river flow data to predict the 1-day ahead flow data. Eight 
different training functions were employed in an ANN model for comprehensive statistical assessment 
of accuracy and precision of each training function. The most significant and validated result obtained in 
this study is the comprehensive comparison of various training functions’ performance, and identification 
of the most efficient training function for the study case. Among the training functions investigated, the 
Levenberg-Marquardt backpropagation function exhibits the best performance for the model having Nash-
Sutcliffe efficiency, root mean square error and mean absolute error values of 0.866, 209.578 and 75.422, 
respectively. This study provides a fundamental basis for accurate flow prediction of topographically 
challenged catchments where hydrological monitoring and data collection may be limited. In particular, 
this model will help to improve early warning system, hydrological planning, and the safety of riverside 
communities in the Himalayan region.
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INTRODUCTION

In modern times, the exploitation of river water and its energy for human needs has become 
widespread (White, 1943). Researchers are constantly focusing on the wise use of river water with 
maximum utilization while maintaining a healthy river ecosystem (Suwal et al., 2020; Yuqin et al., 
2019; Vugteveen et al., 2006; Elosegi and Sabater, 2013; Ekka et al., 2020; Joshi et al., 2018; Boulton, 
2000). Due to the limitation of the available water resources, efficient management and optimized use 
of water resources is imperative (Simonovic, 2012). While optimizing river water use, prediction of 
future flow characteristics of water bodies becomes crucial. Reliable flow forecasting not only ensures 
effective management of water resources and supports sustainable environmental management 
practices, but also protects communities from the impact of floods and other water hazards by 
establishing early warning systems (Alfieri et al., 2012). A plethora of research has been conducted 
to develop tools and methodologies for precise flow forecasting (Firat, 2008; Adamowski, 2008; Nash 
and Sutcliffe, 1970; Yaseen et al., 2019; Shamseldin, 2010; Kasiviswanathan and Sudheer, 2013; Ahani 
et al., 2018). However, due to vastly diverse characteristics of river basins all over the world, developing 
a reliable common methodology applicable to all types of river basins is highly challenging (Gharib 
and Davies, 2021; Hapuarachchi et al., 2011; Pagano et al., 2014), especially in the context of Nepal, 
which is bestowed with plentiful water bodies in a highly varied geographical and climatic region 
within a very small area, and where the water basins are poorly monitored due to the limitations of 
hydrological data measurement and geographical extremities. This study applies an artificial neural 
network (ANN) to predict 1-day ahead river discharge in the Kaligandaki River, using 8 different 
training functions. The study will provide fundamental knowledge for river discharge prediction 
in Nepal, which can assist in water resource management and hazard management practices in the 
country. The study further investigates the performance of different training functions employed in 
an ANN model through a detailed statistical analysis of each training function.

Flow forecasting is a highly challenging application, as it involves prediction of natural future 
events that are governed by a number of parameters that interact in a complex non-linear fashion 
(Steere et al., 2000; Jain et al., 2018). Several machine-learning techniques are gaining attention 
for flow forecasting due to their constant improvisation and efficacy in flow prediction precision 
(Mosavi et al., 2018; Dodangeh et al., 2020; Rathod et al., 2023). Recent studies have wisely applied 
artificial intelligence for enhanced prediction of various flow characteristics (Pandey et al., 2023, 
2022; Shivashankar et al., 2022). Dodangeh et al. (2020) integrated multi-time resampling, random 
subsampling and bootstrapping algorithms into machine learning models and obtained improved 
results relative to traditional models (Dodangeh et al., 2020). Plumb et al. (2005) employed four 
different training functions into three ANN packages and observed that all models had high 
accuracy and no model outperformed the others in all categories of analyses (Plumb et al., 2005).  
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Aggarwal and Kumar (2015) developed models of ANN using 
various training functions to predict hourly temperature for 
24 hours and concluded that training functions are the most 
important parameters of the ANN model and revealed that 
the Levenberg-Marquardt backpropagation training function 
outperformed the other training functions for the model 
(Aggarwal and Kumar, 2015). Similarly, Tabbussum and Dar 
(2020) developed a flood forecasting model using an ANN 
algorithm with five different training functions and concluded 
that the Levenburg-Marquardt model performed the best among 
those tested (Tabbussum and Dar, 2020). Khan et al. (2019) carried 
out a comparative analysis of Levenburg-Marquardt, Bayesian 
regularization and scaled conjugate gradient based ANN models 
and showed that the Bayesian regularization model performed 
better than other algorithms in terms of fitness, regression value, 
mean square error and number of epochs (Khan et al., 2019). 
Yonaba et al. (2010) compared three different activation functions 
for multi-step-ahead streamflow forecasting, and their results 
demonstrated that the tangent sigmoid activation function had 
the best predictive ability for their study case (Yonaba et al., 2010). 
Dash et al. (2010) developed a hybrid neural network model 
using ANN in conjunction with genetic algorithm for prediction 
of groundwater levels in Mahanandi River basin of Orissa State, 
India. They employed three training functions and the simulations 
suggested that the Bayesian regularization model was the most 
efficient model among those tested (Dash et al., 2010). Afzaal 
et al. (2019) estimated groundwater levels for two watersheds in 
Prince Edward Island, Canada, with deep learning techniques 
and ANN models, and discovered that the convolutional neural 
network outperformed the other models (Afzaal et al., 2019). 
Aqil et al. (2007) developed three adaptive techniques to study 
the behaviour of ANN and neuro-fuzzy system in modelling of 
daily and hourly runoff. Their study revealed that the neuro-fuzzy 
system performed better than the other models (Aqil et al., 2007). 
Bui et al. (2012) developed two models for landslide susceptibility 
assessment using Bayesian regularization and Levenberg-
Marquardt techniques in ANN and discovered that both models 

produced high accuracy results with the former being slightly 
superior to the latter (Bui et al., 2012).

The focus of previous research has primarily been on two transfer 
functions: Levenberg-Marquardt and Bayesian regularization 
transfer functions. However, a comprehensive analysis of other 
training functions for large hydrological time-series data has not 
been attempted. This study uses 10 years of daily river flow data from 
Kotagaun in the Kaligandaki basin to conduct a thorough analysis of 
8 different training functions for predicting 1-day ahead discharge. 
The study also includes detailed analyses using various statistical 
parameters. As a result, this research provides significant insights into 
selecting the best training function for hydrological data prediction 
in a Himalayan catchment without relying on meteorological data.

MATERIALS AND METHODS

Study area and data collection

This study focuses on flow forecasting in the Kaligandaki River 
basin at Kotagaun, which is one of the major catchments in Nepal 
with diverse geographic and climatic characteristics (Fig. 1).  
The Kaligandaki River originates in the Mustang region of the 
Himalayas in Nepal. It has a length of approximately 630 km, 
ultimately joining the Trishuli River at Devghat in central Nepal, 
and has a catchment area of approximately 11 830 km2. It is one of 
the major tributaries of the Gandaki River, which is a significant 
river system in Nepal. The basin is characterized by high mountain 
peaks ranging in elevation from 202 to 8 147 m amsl. The basin 
holds a total hydropower potential of approximately 2 108.97 MW 
(Bagale, 2017). Currently, the only hydropower project operational 
in this area is the Kaligandaki A, which generates 144 MW of 
electricity. In the current study, a time-series data of 10 years, from 
2001 to 2010, was utilized in the model. The first 7 years of data were 
used for training and the later 3 years data for testing of the model, 
i.e. a ratio of 70:30 was applied, which is considered to be the ideal 
ratio for hydrological time-series data in ANN models (Khosravi 
et al., 2020; Lei et al., 2021; Nguyen et al., 2021; Abraham, 2002).

Figure 1. Catchment characteristics of the study area
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Artificial neural network

An artificial neural network (ANN) is a machine-learning 
algorithm inspired by the structure and functioning of 
biological neurons in human brains. It consists of a collection of 
interconnected nodes or artificial neurons that collaboratively 
process and analyse complex data inputs. The concept of ANN was 
initially proposed by Warren McCulloch and Walter Pitts, who 
developed the McCulloch-Pitts neuron, which is considered as the 
basic building block in many neural network designs (Abraham, 
2002). Subsequently, Frank Rosenblatt (1958) introduced a 
simple neural network model that could learn to classify patterns 
into different categories (Rosenblatt, 1958). Since then, several 
researchers have developed improved ANN models for a variety 
of applications (Yaseen et al., 2019; Shamseldin, 2010; Zainuddin 
et al., 2019; Khashei and Bijari, 2011; Zhang et al., 2020; Khashei 
et al., 2012; Jahangir et al., 2019).

The basic building block of an ANN is the artificial neuron, which 
receives one or more input signals, performs a mathematical 
operation on them, and produces an output signal that is 
transmitted to other neurons in the network. The connections 
between the neurons are represented by weights, which are 
adjusted during the training process to optimize the network’s 
performance on a specific task. Figure 2 illustrates the basic 
architecture of an ANN.

Training functions for ANN

Training functions are vital parameters in an ANN model, playing 
a significant role in determining the accuracy and precision 
of predicted output results. A training function serves as a tool 
within the ANN framework, encompassing a specific procedure 
or algorithm to train the network by iteratively updating its 
weights and biases based on the provided input and desired 
output data. The training function continues its iterative process 
until a specified stoppage condition is met, and continuously 
enhances the predictive capacity of the ANN model. Thus, 
training functions are the focal parameters that determine the 
performance of the model (Aggarwal and Kumar, 2015).

In this study, we explore the predictive capabilities of 8 well-
established training functions for the flow prediction model of 
Kaligandaki River at Kotagaun. By systematically analysing and 

comparing the results obtained, we aim to uncover valuable 
insights into the efficacy of various training functions and 
their impact on the overall model performance. The 8 training 
functions under investigation in this study were as follows:

1. Levenberg-Marquardt backpropagation (LMB)
2. Resilient backpropagation (RB)
3. Conjugate gradient backpropagation with Powell-Beale 

restarts (CGBPB)
4. Conjugate gradient backpropagation with Fletcher-Reeves 

updates (CGBFR)
5. Conjugate gradient backpropagation with Polak-Ribiere 

updates (CGBPR)
6. Bayesian regulation backpropagation (BRB)
7. Scaled conjugate gradient backpropagation (SCGB)
8. One step secant backpropagation (OSSB)

Model setup

The ANN model was implemented using Matlab programming. 
For this study, daily discharge measurement values from the 
Kaligandaki River at Kotagaun were used over a period of 10 years 
from 2001 to 2010. The dataset was divided into two, with the 
first 7 years of data used for model training and the remaining 
3 years of data used for model testing. Thus, each model has to 
handle a large volume of data, which consists of large fluctuations, 
noise, and even faulty data values, and which requires complex 
non-linear relations to be established for effective prediction. 
ANNs are well-established tools for such predictions (Reddy et 
al., 2021). The input parameters for the model included the 3 
previous days’ discharge values and the day of prediction (day 
number out of 365 days). These inputs were utilized to train 
the ANN model and predict the flow. The model architecture 
consisted of 3 hidden layers with sigmoid activation function, 
while the output layer employed a linear activation function. The 
study evaluates the performance of 8 different training function 
models of ANN in predicting 1-day ahead river discharge with 
reference to the previous 3 days’ data. After the predictions were 
made, the 3 major statistical tools for hydrological data analysis, 
namely, Nash-Sutcliffe efficiency (NSE), root mean square error 
(RMSE), and mean absolute error (MAE), were studied for all of 
the 8 training function models to investigate and analyse their 
respective predictive capabilities.

Figure 2. Schematic diagram of ANN architecture



193Water SA 50(2) 190–200 / Apr 2024
https://doi.org/10.17159/wsa/2024.v50.i2.4099

Statistical evaluation

The flow prediction models were prepared for the Kaligandaki 
catchment using 8 different training functions. The obtained 
results were analysed using statistical indices such as NSE, 
RMSE, and MAE. NSE measures the proportion of variation in 
the observed data relative to the mean of the observed data. In 
NSE, a value of 1 indicates a perfect match, whereas a value of 0 
indicates the mean value of observed data, and a negative value 
indicates that the predicted values are worse than the mean values 
of the observed data. RMSE is calculated by taking the square 
root of the average of the squared differences between the model 
predictions and the corresponding observed values. A lower 
RMSE value signifies better performance in predicting the data, 
while a larger RMSE value indicates higher discrepancies between 
the predicted and observed values. MAE represents the average 

absolute deviation of the differences between the predicted and 
observed data. Similar to RMSE, a lower value of MAE indicates 
better model performance, while a larger value indicates higher 
deviation of the predicted values from the observed values. Table 1  
presents the range and the mathematical expressions for each of 
the statistical tools employed in this study.

RESULTS AND DISCUSSION

Comparison with observed data

Figure 3 illustrates the time-series of the predicted and observed 
data for each model and their respective scatter plots. The models 
demonstrate good performance in data prediction, with R2 
values ranging from 0.806 to 0.866 indicating a reasonable match 
between the predicted and observed values. However, for each 
model it was observed that the regression line lies slightly below 

Table 1. Mathematical expressions of the statistical indices

Statistical index Symbol Range Mathematical expression
Nash-Sutcliffe efficiency NSE (-∞, 1]

NSE 1
2

1
2

1

( )

( )

X Y

X X
i ii

n

i ii

n

Root mean square error RMSE (0, ∞)
RMSE � �

��1 2
1n X Yi ii

n ( )

Mean absolute error MAE (∞, 0]
MAE � �

��1
1n Y Xi ii

n | |

where: Xi is the observed value, Xi is the mean of observed values, Yi is the predicted value, and n is the total number of observations

Figure 3. Comparison of model output with observed data along with regression plots for (a) LMB, (b) RB, (c) CGBPB, (d) CGBFR, (e) CGBPR,  
(f) BRB, (g) SCGB, and (h) OSSB training functions
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Figure 3 continued. Comparison of model output with observed data along with regression plots for (a) LMB, (b) RB, (c) CGBPB, (d) CGBFR,  
(e) CGBPR, (f) BRB, (g) SCGB, and (h) OSSB training functions
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the mean line, which indicates that, on average, the predicted 
values are underestimated compared to the observed values.  
This underestimation for all models is particularly dominant 
during the monsoon season (June, July, August and September), 
when the discharge is high, with fluctuating values. Conversely, 
for RB, CGBPR and OSSB models, a slight overestimate was 
observed in the dry season as depicted in the time-series shown 
in Fig. 3. Among the 8 models, the most accurate predictions were 
achieved by the LMB and BRB models, with R2 values of 0.866 and 
0.860, respectively. This result is comparable to that obtained by 
Heng et al. (2022), where the authors demonstrated the superior 
prediction capability of LMB and BRB models (Heng et al., 
2022). The LMB model combines the gradient descent method 
with the Gauss-Newton method, resulting in higher convergence 
rates (Sapna et al., 2012; Singh et al., 2007). Both LMB and BRB 
are effective in handling noisy data (Mahapatra and Sood, 2012; 
Kayri, 2016; Payal et al., 2013; Wali and Tyagi, 2020; Jazayeri et al., 
2016), contributing to their superior performance compared to 
the other models. On the other hand, the RB and CGBPR models 
exhibit the least accurate predictions among the 8 models, with R2 
values of 0.806 and 0.814, respectively.

Deviation of predicted data

The outputs from the 8 models were analysed to evaluate their 
respective accuracy of prediction. The deviation of the predicted 
from observed data was plotted, along with a box-and-whisker 
plot of the deviation values for all models (Fig. 4). It was observed 
that all the models exhibited a similar deviation pattern with slight 
variations. The deviation values for the monsoon season of 2009 
showed larger deviations for all models, which is mainly due to 
the high levels of fluctuation and presence of noisy data during 
that period. Additionally, box-and-whisker plots for the observed 
and predicted data were generated, as shown in Fig. 5. The median 
values for all the models were found to be similar to that of the 
observed data, except for the RB and CGBPR models, which have 
slightly higher median values, of 266.8 and 223.6, respectively, as 
shown in Table 2. Moreover, the difference between the 3rd quartile 
and 1st quartile values closely resembles that for the observed values, 
except for the RB and CGBPR models, having values of 344.8 and 
264.6, respectively, which indicates that the output values for these 
models are more concentrated in the middle 50%, having lower 
variability and an inability to predict fluctuating data correctly.

Figure 4. Deviation in the predicted flow and box-and-whisker plot of the error values for (a) LMB, (b) RB, (c) CGBPB, (d) CGBFR, (e) CGBPR, (f) BRB, 
(g) SCGB, and (h) OSSB training function models
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Table 2. Statistical evaluation of predicted data by different training functions

Statistical 
value

Observed 
value

Training functions

LMB RB CGBPB CGBFR CGBPR BRB SCGB OSSB

Minimum 55.3 58.2 102.5 71.5 77.5 119.3 69.8 47.0 104.5

1st Quartile 106.5 106.1 135.4 112.7 105.4 168.3 110.4 108.5 155.8

Median 166.0 181.4 266.8 171.4 180.6 223.6 174.2 165.7 195.6

3rd Quartile 545.5 569.7 480.2 554.4 554.8 432.9 565.3 579.0 599.7

Maximum 4 441.0 3 424.4 3 740.1 4 196.5 4 754.2 4 572.4 3 187.4 3 799.1 4 187.2

Mean 446.5 443.0 447.6 442.8 438.4 449.1 446.7 441.9 477.6

Figure 5. Box-and-whisker plot for the observed and predicted data

Figure 4 continued. Deviation in the predicted flow and box-and-whisker plot of the error values for (a) LMB, (b) RB, (c) CGBPB, (d) CGBFR,  
(e) CGBPR, (f) BRB, (g) SCGB, and (h) OSSB training function models
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Performance analysis

The Taylor diagram serves as an excellent tool for assessing the level of 
agreement between the actual observed data and predicted data from 
various models (Apaydin et al., 2021; Ali Ghorbani et al., 2018; Reddy 
et al., 2021). In this study, the Taylor diagram was utilized to visually 
represent the accuracy and predictive ability of the 8 different training 
function models through comparison of correlation coefficient (CC), 
standard deviation (SD), and root mean square error (RMSE). The 
Taylor diagrams for the 8 models show similar properties with all 
values converging to same location, as shown in Fig. 6. The lower 
values of SD and RMSD, and higher values of CC, indicate a better 
match of the predicted model with the observed data. The lowest 
values of RMSD were observed for the LMB and BRB models, having 
values of 209.6 and 212.8, respectively. The observed data has an SD 
value of 573.5, while all the predicted values for all the models have 
a lower value the observed data, which indicates that the predicted 
values are clustered closely around the average value compared to the 
observed values. The BRB and LMB model gave the closest SD values 

to the observed values, at 551.5 and 547.8, respectively. Similarly, 
the highest values of CC were observed for LMB and BRB models, 
with values of 0.866 and 0.862, respectively. Therefore, the Taylor 
diagram confirms the LMB model as having the highest accuracy of 
prediction, followed by the BRB model.

Statistical analysis

In this study, we conducted an in-depth analysis utilizing three 
prominent statistical metrics commonly employed in hydrological 
data assessment: NSE, RMSE, and MAE. Our objective was to 
assess and compare the predictive capabilities of each of the 8 
training function models.

For NSE, a value of 1 indicates the perfect prediction of the model. 
In this study, the highest values of NSE were obtained for the LMB 
model, followed by the BRB and SCGB models, as presented in 
Table 3 and Fig. 7. The RB model, followed by CGBPR and CGBFR 
models, showed the worst performance based on NSE values.

Figure 6. Taylor diagram for different models of training function

Figure 7. (a) NSE, (b) RMSE, and (c) MAE values for the predicted data from different training functions

Table 3. Statistical evaluation of different training functions

Statistical values Training functions

LMB RB CGBPB CGBFR CGBPR BRB SCGB OSSB

NSE 0.866 0.806 0.858 0.836 0.814 0.862 0.860 0.856

RMSE 209.578 252.212 216.079 231.907 247.210 212.785 214.616 217.662

MAE 75.422 112.661 74.683 84.355 131.214 74.839 81.444 99.506
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RMSE values indicate average error in the predicted model. The 
RMSE values for the 8 models ranged from 209.578 to 252.212, 
with the lowest value for the LMB model and highest value for the 
RB model, as shown in Table 3 and Fig. 7.

MAE indicates the average amount of deviation of the predicted 
values from the observed values. For the 8 training functions in 
this study, the CGBPB model had the lowest MAE, followed by 
BRB, LMB, SCGB and SCGFR, which have similar values. The 
CGBPR model had the highest MAE, followed by the RB and 
OSSB models.

CONCLUSION

In conclusion, this study presents an analysis of 8 different 
ANN training functions for predicting the daily river discharge 
at Kaligandaki River, Kotagaun. It highlights the effective 
application of these models in a remotely situated basin with 
scarce meteorological data. The LMB model demonstrated the 
highest accuracy in flow prediction, as evidenced by its high 
NSE value of 0.866 and optimal SD, RMSE, and MAE values. 
This was closely followed by the BRB model, which also showed 
commendable performance. The superiority of the LMB and 
BRB models is attributed to their robust handling of noisy data, 
underpinned by LMB’s integration of gradient descent and 
Gauss-Newton methods, ensuring effective data convergence 
(Sapna et al., 2012; Singh et al., 2007; Mahapatra and Sood, 
2012). These findings substantiate the LMB model’s prominence 
as the most suitable training function for the specified area and 
input parameters, offering significant implications for similar 
hydrological modelling endeavours.

AUTHOR CONTRIBUTIONS

Shikhar KC carried out conceptualization, methodology, analysis 
of the models, and writing of the manuscript. Khem Prasad 
Bhattarai performed data acquisition and curation, validation, 
programming, analysis of models, and review of the manuscript. 
Tang De Shan supervised the study and assisted in review, editing, 
and funding acquisition for the study. Ishwar Joshi carried 
out analysis of model, programming, results compilation and 
manuscript writing. Anurag Kumar Singh performed curation of 
data and revision of the manuscript.

FUNDING

This research was funded by the Key Technologies Research and 
Development Program of China (Ref. No.: 2017YFC0405805).

ACKNOWLEDGEMENTS

The authors would like to acknowledge the Department of 
Hydrology and Meteorology, Kathmandu, Nepal, for the 
permission and access to use the daily flow data of Kaligandaki 
River at Kotagaun, Nepal.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

ABRAHAM TH (2002) (Physio) logical circuits: The intellectual  
origins of the McCulloch–Pitts neural networks. J. Hist. Behav. Sci. 
38 (1) 3–25. https://doi.org/10.1002/jhbs.1094

ADAMOWSKI JF (2008) River flow forecasting using wavelet and 
cross‐wavelet transform models. Hydrol. Process. 22 (25) 4877–4891. 
https://doi.org/10.1002/hyp.7107

AFZAAL H, FAROOQUE AA, ABBAS F, ACHARYA B and ESAU T 
(2019) Groundwater estimation from major physical hydrology 
components using artificial neural networks and deep learning. 
Water 12 (1) 5. https://doi.org/10.3390/w12010005

AGGARWAL R and KUMAR R (2015) Effect of training functions of 
artificial neural networks (ANN) on time series forecasting. Int. J. 
Comput. Appl. 109 (3). https://doi.org/10.5120/19168-0634

AHANI A, SHOURIAN M and RAHIMI RAD P (2018) Performance 
assessment of the linear, nonlinear and nonparametric data driven 
models in river flow forecasting. Water Resour. Manage. 32 383–399. 
https://doi.org/10.1007/s11269-017-1792-5

ALFIERI L, SALAMON P, PAPPENBERGER F, WETTERHALL F  
and THIELEN J (2012) Operational early warning systems for  
water-related hazards in Europe. Environ. Sci. Polic. 21 35–49. 
https://doi.org/10.1016/j.envsci.2012.01.008

ALI GHORBANI M, KAZEMPOUR R, CHAU K-W, SHAMSHIRBAND 
S and TAHEREI GHAZVINEI P (2018) Forecasting pan evaporation 
with an integrated artificial neural network quantum-behaved 
particle swarm optimization model: a case study in Talesh, Northern 
Iran. Eng. Appl. Comput. Fluid Mech. 12 (1) 724–737. https://doi.org
/10.1080/19942060.2018.1517052

APAYDIN H, SATTARI MT, FALSAFIAN K and PRASAD R (2021) 
Artificial intelligence modelling integrated with singular spectral 
analysis and seasonal-trend decomposition using Loess approaches 
for streamflow predictions. J. Hydrol. 600 126506. https://doi.
org/10.1016/j.jhydrol.2021.126506

AQIL M, KITA I, YANO A and NISHIYAMA S (2007) A comparative 
study of artificial neural networks and neuro-fuzzy in continuous 
modeling of the daily and hourly behaviour of runoff. J. Hydrol. 337 
(1–2) 22–34. https://doi.org/10.1016/j.jhydrol.2007.01.013

BAGALE LN (2017) Impacts of climate change on hydropower  
potential in Kaligandaki River Basin-A case study of Kaligandaki 
gorge hydropower project, North of Nepal. Oceanogr. Fish. 4 555629. 
https://doi.org/10.19080/OFOAJ.2017.04.555629

BOULTON AJ (2000) River ecosystem health down under: assessing 
ecological condition in riverine groundwater zones in Australia. 
Ecosyst. Health 6 (2) 108–118. https://doi.org/10.1046/j.1526-0992. 
2000.00011.x

BUI DT, PRADHAN B, LOFMAN O, REVHAUG I and DICK OB (2012) 
Landslide susceptibility assessment in the Hoa Binh province of 
Vietnam: a comparison of the Levenberg–Marquardt and Bayesian 
regularized neural networks. Geomorphology 171 12–29. https://doi.
org/10.1016/j.geomorph.2012.04.023

DASH NB, PANDA SN, REMESAN R and SAHOO N (2010) Hybrid 
neural modeling for groundwater level prediction. Neural Comput. 
Appl. 19 1251–1263. https://doi.org/10.1007/s00521-010-0360-1

DODANGEH E, CHOUBIN B, EIGDIR AN, NABIPOUR N, PANAHI M, 
SHAMSHIRBAND S and MOSAVI A (2020) Integrated machine 
learning methods with resampling algorithms for flood susceptibility 
prediction. Sci. Total Environ. 705 135983. https://doi.org/10.1016/ 
j.scitotenv.2019.135983

EKKA A, PANDE S, JIANG Y and VAN DER ZAAG P (2020) 
Anthropogenic modifications and river ecosystem services: A 
landscape perspective. Water 12 (10) 2706. https://doi.org/10.3390/
w12102706

ELOSEGI A and SABATER S (2013) Effects of hydromorphological 
impacts on river ecosystem functioning: a review and suggestions 
for assessing ecological impacts. Hydrobiologia 712 129–143. https://
doi.org/10.1007/s10750-012-1226-6

FIRAT M (2008) Comparison of artificial intelligence techniques for 
river flow forecasting. Hydrol. Earth Syst. Sci. 12 (1) 123–139. https://
doi.org/10.5194/hess-12-123-2008

GHARIB A and DAVIES EGR (2021) A workflow to address pitfalls 
and challenges in applying machine learning models to hydrology. 
Adv. Water Resour. 152 103920. https://doi.org/10.1016/j.advwatres. 
2021.103920

HAPUARACHCHI HAP, WANG QJ and PAGANO TC (2011) A  
review of advances in flash flood forecasting. Hydrol. Process. 25 (18) 
2771–2784. https://doi.org/10.1002/hyp.8040

HENG SY, RIDWAN WM, KUMAR P, AHMED AN, FAI CM, BIRIMA 
AH and EL-SHAFIE A (2022) Artificial neural network model with 
different backpropagation algorithms and meteorological data 
for solar radiation prediction. Sci. Rep. 12 (1) 10457. https://doi.
org/10.1038/s41598-022-13532-3

JAHANGIR H, TAYARANI H, BAGHALI S, AHMADIAN A, 
ELKAMEL A, GOLKAR MA and CASTILLA M (2019) A novel 
electricity price forecasting approach based on dimension reduction 
strategy and rough artificial neural networks. IEEE Trans. Ind. Inf. 
16 (4) 2369–2381. https://doi.org/10.1109/TII.2019.2933009

https://doi.org/10.1002/jhbs.1094
https://doi.org/10.1002/hyp.7107
https://doi.org/10.3390/w12010005
https://doi.org/10.5120/19168-0634
https://doi.org/10.1007/s11269-017-1792-5
https://doi.org/10.1016/j.envsci.2012.01.008
https://doi.org/10.1080/19942060.2018.1517052
https://doi.org/10.1080/19942060.2018.1517052
https://doi.org/10.1016/j.jhydrol.2021.126506
https://doi.org/10.1016/j.jhydrol.2021.126506
https://doi.org/10.1016/j.jhydrol.2007.01.013
https://doi.org/10.19080/OFOAJ.2017.04.555629
https://doi.org/10.1046/j.1526-0992.2000.00011.x
https://doi.org/10.1046/j.1526-0992.2000.00011.x
https://doi.org/10.1016/j.geomorph.2012.04.023
https://doi.org/10.1016/j.geomorph.2012.04.023
https://doi.org/10.1007/s00521-010-0360-1
https://doi.org/10.1016/j.scitotenv.2019.135983
https://doi.org/10.1016/j.scitotenv.2019.135983
https://doi.org/10.3390/w12102706
https://doi.org/10.3390/w12102706
https://doi.org/10.1007/s10750-012-1226-6
https://doi.org/10.1007/s10750-012-1226-6
https://doi.org/10.5194/hess-12-123-2008
https://doi.org/10.5194/hess-12-123-2008
https://doi.org/10.1016/j.advwatres.2021.103920
https://doi.org/10.1016/j.advwatres.2021.103920
https://doi.org/10.1002/hyp.8040
https://doi.org/10.1038/s41598-022-13532-3
https://doi.org/10.1038/s41598-022-13532-3
https://doi.org/10.1109/TII.2019.2933009


199Water SA 50(2) 190–200 / Apr 2024
https://doi.org/10.17159/wsa/2024.v50.i2.4099

JAIN SK, MANI P, JAIN SK, PRAKASH P, SINGH VP, TULLOS D, 
KUMAR S, AGARWAL SP and DIMRI AP (2018) A brief review 
of flood forecasting techniques and their applications. Int. J. River 
Basin Manage. 16 (3) 329–344. https://doi.org/10.1080/15715124.20
17.1411920

JAZAYERI K, JAZAYERI M and UYSAL S (2016) Comparative 
analysis of Levenberg-Marquardt and Bayesian regularization 
backpropagation algorithms in photovoltaic power estimation 
using artificial neural network. In: Perner P (ed.) Advances in Data 
Mining. Applications and Theoretical Aspects. ICDM 2016. Lecture 
Notes in Computer Science vol 9728. Springer, Cham. https://doi.
org/10.1007/978-3-319-41561-1_7

JOSHI I, DAI W, BILAL A, UPRETI AR and HE Z (2018) Evaluation 
and comparison of extremal hypothesis-based regime methods. 
Water 10 (3) 271. https://doi.org/10.3390/w10030271

KASIVISWANATHAN KS and SUDHEER KP (2013) Quantification  
of the predictive uncertainty of artificial neural network based river 
flow forecast models. Stoch. Environ. Res. Risk Assess. 27 137–146. 
https://doi.org/10.1007/s00477-012-0600-2

KAYRI M (2016) Predictive abilities of bayesian regularization and 
Levenberg–Marquardt algorithms in artificial neural networks: a 
comparative empirical study on social data. Math. Comput. Appl. 21 
(2) 20. https://doi.org/10.3390/mca21020020

KHAN TA, ALAM M, SHAHID Z and MAZLIHAM MS (2019) 
Comparative performance analysis of Levenberg-Marquardt, 
Bayesian regularization and scaled conjugate gradient for the 
prediction of flash floods. J. Inf. Commun. Technol. Robot. Appl. 10 
(2) 52–58. https://doi.org/10.3390/mca21020020

KHASHEI M and BIJARI M (2011) A novel hybridization of artificial 
neural networks and ARIMA models for time series forecasting. 
Appl. Soft Comput. 11 (2) 2664–2675. https://doi.org/10.1016/ 
j.asoc.2010.10.015

KHASHEI M, HAMADANI AZ and BIJARI M (2012) A novel hybrid 
classification model of artificial neural networks and multiple linear 
regression models. Expert Syst. Appl. 39 (3) 2606–2620. https://doi.
org/10.1016/j.eswa.2011.08.116

KHOSRAVI K, PANAHI M, GOLKARIAN A, KEESSTRA SD, SACO 
PM, BUI DT and LEE S (2020) Convolutional neural network 
approach for spatial prediction of flood hazard at national 
scale of Iran. J. Hydrol. 591 125552. https://doi.org/10.1016/ 
j.jhydrol.2020.125552

LEI X, CHEN W, PANAHI M, FALAH F, RAHMATI O, UUEMAA E, 
KALANTARI Z, FERREIRA CSS, REZAIE F and TIEFENBACHER 
JP (2021) Urban flood modeling using deep-learning approaches in 
Seoul, South Korea. J. Hydrol. 601 126684. https://doi.org/10.1016/ 
j.jhydrol.2021.126684

MAHAPATRA SS and SOOD AK (2012) Bayesian regularization-
based Levenberg–Marquardt neural model combined with BFOA 
for improving surface finish of FDM processed part. Int. J. Adv. 
Manufact. Technol. 60 1223–1235. https://doi.org/10.1007/s00170-
011-3675-x

MOSAVI A, OZTURK P and CHAU K (2018) Flood prediction using 
machine learning models: Literature review. Water 10 (11) 1536. 
https://doi.org/10.3390/w10111536

NASH JE and SUTCLIFFE J V (1970) River flow forecasting through 
conceptual models part I—A discussion of principles. J. Hydrol. 10 
(3) 282–290. https://doi.org/10.1016/0022-1694(70)90255-6

NGUYEN QH, LY H-B, HO LS, AL-ANSARI N, VAN LE H, TRAN 
VQ, PRAKASH I and PHAM BT (2021) Influence of data splitting 
on performance of machine learning models in prediction of 
shear strength of soil. Math. Problems Eng. 2021 1–15. https://doi.
org/10.1155/2021/4832864

PAGANO TC, WOOD AW, RAMOS M-H, CLOKE HL, 
PAPPENBERGER F, CLARK MP, CRANSTON M, KAVETSKI 
D, MATHEVET T and SOROOSHIAN S (2014) Challenges of 
operational river forecasting. J. Hydrometeorol. 15 (4) 1692–1707. 
https://doi.org/10.1175/JHM-D-13-0188.1

PANDEY M, JAMEI M, AHMADIANFAR I, KARBASI M, LODHI 
AS and CHU X (2022) Assessment of scouring around spur dike 
in cohesive sediment mixtures: A comparative study on three 
rigorous machine learning models. J. Hydrol. 606 127330. https://
doi.org/10.1016/j.jhydrol.2021.127330

PANDEY M, KARBASI M, JAMEI M, MALIK A and PU JH (2023) A 
comprehensive experimental and computational investigation on 
estimation of scour depth at bridge abutment: emerging ensemble 
intelligent systems. Water Resour. Manage. 37 (9) 1–23. https://doi.
org/10.1007/s11269-023-03525-w

PAYAL A, RAI CS and REDDY BVR (2013) Comparative analysis 
of Bayesian regularization and Levenberg-Marquardt training 
algorithm for localization in wireless sensor network. In: 2013 15th 
International Conference on Advanced Communications Technology 
(ICACT). https://doi.org/10.1007/978-3-319-41561-1_7

PLUMB AP, ROWE RC, YORK P and BROWN M (2005) Optimisation 
of the predictive ability of artificial neural network (ANN) models: 
a comparison of three ANN programs and four classes of training 
algorithm. Eur. J. Pharmaceut. Sci. 25 (4–5) 395–405. https://doi.
org/10.1016/j.ejps.2005.04.010

RATHOD P, PANDEY M and GUPTA AK (2023) Artificial intelligence-
based fully scalable real-time early flood warning system. In: Pandey 
M, Gupta AK and Oliveto G (eds) River, Sediment and Hydrological 
Extremes: Causes, Impacts and Management. Disaster Resilience 
and Green Growth. Springer, Singapore. 407–416. https://doi.org/ 
10.1007/978-981-99-4811-6_24

REDDY BSN, PRAMADA SK and ROSHNI T (2021) Monthly surface 
runoff prediction using artificial intelligence: a study from a 
tropical climate river basin. J. Earth Syst. Sci. 130 1–15. https://doi.
org/10.1007/s12040-020-01508-8

ROSENBLATT F (1958) The perceptron: a probabilistic model for 
information storage and organization in the brain. Psychol. Rev. 65 
(6) 386. https://doi.org/10.1037/h0042519

SAPNA S, TAMILARASI A and KUMAR MP (2012) Backpropagation 
learning algorithm based on Levenberg Marquardt Algorithm. 
Comp. Sci. Inf. Technol. 2 393–398. https://doi.org/10.5121/csit. 
2012.2438

SHAMSELDIN AY (2010) Artificial neural network model for river flow 
forecasting in a developing country. J. Hydroinf. 12 (1) 22–35. https://
doi.org/10.2166/hydro.2010.027

SHIVASHANKAR M, PANDEY M and ZAKWAN M (2022) Estimation 
of settling velocity using generalized reduced gradient (GRG) and 
hybrid generalized reduced gradient–genetic algorithm (hybrid 
GRG-GA). Acta Geophys. 70 (5) 2487–2497. https://doi.org/10.1007/
s11600-021-00706-2

SIMONOVIC SP (2012) Managing Water Resources: Methods and 
Tools for a Systems Approach. Routledge, London. https://doi.
org/10.4324/9781849771917

SINGH V, GUPTA I and GUPTA HO (2007) ANN-based estimator for 
distillation using Levenberg–Marquardt approach. Eng. Appl. Artif. 
Intell. 20 (2) 249–259. https://doi.org/10.1016/j.engappai.2006.06.017

STEERE DC, BAPTISTA A, MCNAMEE D, PU C and WALPOLE 
J (2000) Research challenges in environmental observation and 
forecasting systems. In: Proceedings of the 6th Annual International 
Conference on Mobile Computing and Networking. https://doi.
org/10.1145/345910.345961

SUWAL N, HUANG X, KURIQI A, CHEN Y, PANDEY KP and 
BHATTARAI KP (2020) Optimisation of cascade reservoir 
operation considering environmental flows for different 
environmental management classes. Renew. Energ. 158 453–464. 
https://doi.org/10.1016/j.renene.2020.05.161

TABBUSSUM R and DAR AQ (2020) Comparative analysis of neural 
network training algorithms for the flood forecast modelling of 
an alluvial Himalayan river. J. Flood Risk Manage. 13 (4) e12656. 
https://doi.org/10.1111/jfr3.12656

VUGTEVEEN P, LEUVEN RSEW, HUIJBREGTS MAJ and LENDERS 
HJR (2006) Redefinition and elaboration of river ecosystem health: 
perspective for river management. Hydrobiologia 565 289–308. 
https://doi.org/10.1007/s10750-005-1920-8

WALI AS and TYAGI A (2020) Comparative study of advance smart 
strain approximation method using Levenberg-Marquardt and 
Bayesian regularization backpropagation algorithm. Mater. Today 
Proc. 21 1380–1395. https://doi.org/10.1016/j.matpr.2020.01.178

WHITE LA (1943) Energy and the evolution of culture. Am. Anthropol. 
45 (3) 335–356. https://doi.org/10.1525/aa.1943.45.3.02a00010

YASEEN ZM, SULAIMAN SO, DEO RC and CHAU K-W (2019) 
An enhanced extreme learning machine model for river flow 
forecasting: State-of-the-art, practical applications in water resource 
engineering area and future research direction. J. Hydrol. 569  
387–408. https://doi.org/10.1016/j.jhydrol.2018.11.069

https://doi.org/10.1080/15715124.2017.1411920
https://doi.org/10.1080/15715124.2017.1411920
https://doi.org/10.1007/978-3-319-41561-1_7
https://doi.org/10.1007/978-3-319-41561-1_7
https://doi.org/10.3390/w10030271
https://doi.org/10.1007/s00477-012-0600-2
https://doi.org/10.3390/mca21020020
https://doi.org/10.3390/mca21020020
https://doi.org/10.1016/j.asoc.2010.10.015
https://doi.org/10.1016/j.asoc.2010.10.015
https://doi.org/10.1016/j.eswa.2011.08.116
https://doi.org/10.1016/j.eswa.2011.08.116
https://doi.org/10.1016/j.jhydrol.2020.125552
https://doi.org/10.1016/j.jhydrol.2020.125552
https://doi.org/10.1016/j.jhydrol.2021.126684
https://doi.org/10.1016/j.jhydrol.2021.126684
https://doi.org/10.1007/s00170-011-3675-x
https://doi.org/10.1007/s00170-011-3675-x
https://doi.org/10.3390/w10111536
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1155/2021/4832864
https://doi.org/10.1155/2021/4832864
https://doi.org/10.1175/JHM-D-13-0188.1
https://doi.org/10.1016/j.jhydrol.2021.127330
https://doi.org/10.1016/j.jhydrol.2021.127330
https://doi.org/10.1007/s11269-023-03525-w
https://doi.org/10.1007/s11269-023-03525-w
https://doi.org/10.1007/978-3-319-41561-1_7
https://doi.org/10.1016/j.ejps.2005.04.010
https://doi.org/10.1016/j.ejps.2005.04.010
https://doi.org/10.1007/978-981-99-4811-6_24
https://doi.org/10.1007/978-981-99-4811-6_24
https://doi.org/10.1007/s12040-020-01508-8
https://doi.org/10.1007/s12040-020-01508-8
https://doi.org/10.1037/h0042519
https://doi.org/10.5121/csit.2012.2438
https://doi.org/10.5121/csit.2012.2438
https://doi.org/10.2166/hydro.2010.027
https://doi.org/10.2166/hydro.2010.027
https://doi.org/10.1007/s11600-021-00706-2
https://doi.org/10.1007/s11600-021-00706-2
https://doi.org/10.4324/9781849771917
https://doi.org/10.4324/9781849771917
https://doi.org/10.1016/j.engappai.2006.06.017
https://doi.org/10.1145/345910.345961
https://doi.org/10.1145/345910.345961
https://doi.org/10.1016/j.renene.2020.05.161
https://doi.org/10.1111/jfr3.12656
https://doi.org/10.1007/s10750-005-1920-8
https://doi.org/10.1016/j.matpr.2020.01.178
https://doi.org/10.1525/aa.1943.45.3.02a00010
https://doi.org/10.1016/j.jhydrol.2018.11.069


200Water SA 50(2) 190–200 / Apr 2024
https://doi.org/10.17159/wsa/2024.v50.i2.4099

YONABA H, ANCTIL F and FORTIN V (2010) Comparing sigmoid 
transfer functions for neural network multistep ahead streamflow 
forecasting. J. Hydrol. Eng. 15 (4) 275–283. https://doi.org/10.1061/
(ASCE)HE.1943-5584.0000188

YUQIN G, PANDEY KP, HUANG X, SUWAL N and BHATTARAI 
KP (2019) Estimation of hydrologic alteration in Kaligandaki River 
using representative hydrologic indices. Water 11 (4) 688. https://
doi.org/10.3390/w11040688

ZAINUDDIN NH, LOLA MS, DJAUHARI MA, YUSOF F, RAMLEE 
MNA, DERAMAN A, IBRAHIM Y and ABDULLAH MT (2019) 
Improvement of time forecasting models using a novel hybridization 
of bootstrap and double bootstrap artificial neural networks. Appl. 
Soft Comput. 84 105676. https://doi.org/10.1016/j.asoc.2019.105676

ZHANG H, NGUYEN H, BUI X-N, NGUYEN-THOI T, BUI T-T, 
NGUYEN N, VU D-A, MAHESH V and MOAYEDI H (2020) 
Developing a novel artificial intelligence model to estimate the 
capital cost of mining projects using deep neural network-based ant 
colony optimization algorithm. Resour. Polic. 66 101604. https://doi.
org/10.1016/j.resourpol.2020.101604

https://doi.org/10.1061/(ASCE)HE.1943-5584.0000188
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000188
https://doi.org/10.3390/w11040688
https://doi.org/10.3390/w11040688
https://doi.org/10.1016/j.asoc.2019.105676
https://doi.org/10.1016/j.resourpol.2020.101604
https://doi.org/10.1016/j.resourpol.2020.101604

