
Water SA 50(2) 201–210 / Apr 2024
https://doi.org/10.17159/wsa/2024.v50.i2.4077

Research paper

ISSN (online) 1816-7950 
Available on website https://www.watersa.net

201

CORRESPONDENCE
CS James

EMAIL
chris.james@wits.ac.za

DATES
Received: 1 May 2023
Accepted: 18 April 2024

KEYWORDS
boulders
stability
incipient motion
critical velocity
aquatic habitat

COPYRIGHT
© The Author(s)
Published under a Creative 
Commons Attribution 4.0 
International Licence 
(CC BY 4.0)

The placement of boulders in streams enhances aquatic habitat by increasing the heterogeneity of flow 
conditions. Practical design must ensure the stability of individual boulders, requiring calculation of their 
incipient movement conditions. The stability of a boulder on a cobble bed is shown experimentally to 
depend on its size, the bed material size, the degree of embedment of the boulder, the slope of the bed and 
the flow velocity and depth. An equation is derived through a pivoting analysis for predicting the relationship 
between the critical ambient depth-averaged velocity and the critical flow depth; this, together with a 
resistance equation, can be used to predict the flow conditions for boulder stability. The equation is used 
to develop a simpler form for unsubmerged spherical boulders and cobbles. The stability equation is tested 
against the experimental data, using an experimentally determined drag coefficient relationship.
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INTRODUCTION

The placement of rocks or boulders is common practice in stream stabilization and rehabilitation 
projects. Boulders increase resistance (James, 2021), thereby reducing scouring velocities and 
inducing sediment deposition (Dermisis and Papanicolaou, 2008). Sparsely placed boulders can have 
a stabilizing effect on the channel as a whole and are usefully employed in gradient-controlling rock 
ramps (Pagliara and Chiavaccini, 2006).

Boulders have been found to be an effective and low-cost alternative solution for river rehabilitation 
(Rutherfurd et al., 2000; Van Zyll De Jong et al., 1997; Dolinsek et al., 2007). The heterogeneous 
flow conditions around boulders provide suitable habitats for various life stages and activities of 
biota (Harvey and Clifford, 2009). The low-velocity wake zones provide important refuge areas for 
invertebrates and fish for resting and feeding, as well as enhancing the resilience of biotic communities 
to sudden floods (Engström et al., 2009; Huusko and Yrjänä, 1997; Merz et al. 2004). The turbulence and 
vortices in these zones also create cover for fish from visual predators by diffusing sunlight (Dermisis 
and Papanicolaou, 2008) and inducing local scour (Fischenich and Seal, 1999). Riverine Salmonid 
species use flow obstructions (including boulders) as velocity shelters to minimize exertion and save 
energy while migrating upstream; boulders are therefore valuable features in natural fishway design.

Various recommendations have been published for the use and placement of boulders for habitat 
enhancement (Fischenich and Seal, 1999; Rutherfurd et al., 2000; Schueler and Brown, 2004). These 
give guidance for the size, location, spacing and distribution pattern of the boulders. As an aid for 
habitat definition and rehabilitation design, Hamuy-Blanco and James (2014) and Heyneke (2019) 
described the ‘zone of influence’ around an individual boulder or boulder cluster with quantitative 
descriptions of the variations of velocity upstream, downstream, and laterally away from a boulder.

Apart from providing the required habitat conditions, the boulder size must be selected so as to also 
ensure that it remains in place and effective under anticipated flow conditions. Failure may occur by 
the boulder moving out of position, or by becoming deeply embedded if the cobbles surrounding it are 
excessively scoured. Various approaches are available for predicting incipient movement conditions for 
sediments. Probably the most common is the Shields criterion (Shields, 1936), which is incorporated in 
the moment-equilibrium based factor of safety calculation recommended by Fischenich and Seal (1999) 
for boulders. Such criteria are intended for application to relatively uniform-sized and well-submerged 
bed material rather than for the considered case of a single large particle on a bed of very much smaller 
ones. They are also based on comparison of the shear stress on the bed with a critical value, which is 
unrealistic for situations where the flow depth is comparable with the size of the potentially moving 
particle and the force actually moving the particle is not well described by the bed shear. A stability 
criterion in terms of velocity is therefore preferable. Erosion criteria in terms of velocity have previously 
been proposed by, for example, Novak (1948, cited in Vanoni, 1975), Neill (1968) and Prakash (2010).  
A method is presented here for predicting the critical ambient depth-averaged velocity and flow depth 
for incipient movement of a boulder on a cobble bed. Failure by self-embedding is not considered.

METHODS AND RESULTS

Analytical model

It is assumed that at the condition of incipient motion the boulder will begin to move by pivoting 
over an axis formed by contact points with supporting particles (as by White, 1940; Bagnold, 1941; 
Slingerland, 1977; Komar and Wang, 1984; Komar and Li, 1986; James, 1990). The development here 
follows the analysis of James (1990), but with the prediction made in terms of the depth-averaged 
velocity rather than the boundary shear stress.
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The situation analysed is of a boulder with nominal diameter D 
resting on bed particles with nominal diameter K (Fig. 1). The 
centroid of the boulder is a distance μD above the centroids of 
the supporting particles, and the distance between the centroids 
of the two supporting particles defining the pivot axis is λK. The 
boulder may be embedded with its bottom a distance E below the 
tops of the supporting particles.

At incipient motion the forces on the boulder will include its 
submerged weight (W), friction (Fr) and reaction (R) forces only 
at points of contact with the supporting particles defining the 
pivot axis, and the hydrodynamic lift (FL) and drag (FD) forces 
(Fig. 1). The moments of the disturbing and stabilizing forces are 
in equilibrium:

Wa F b F csin� � �D L                                  (1)

in which ϕ is the pivot angle and a, b and c are the distances from 
the pivot axis to the boulder centroid, line of action of the drag 
force, and line of action of the lift force, respectively.

The submerged weight of the boulder is its unsubmerged weight 
less the weight of water it displaces, which depends on whether it 
is completely or partially submerged:.

W g k D V� �( )
1

3� �s disp w                                (2)

in which g is gravitational acceleration, Vdisp is the volume 
displaced, ρs is the boulder material density, ρw is the density of 
water, and k1 is a proportionality constant for the relationship 
between the boulder volume and the cube of its diameter (= π/6 
for a sphere).

The pivot angle (ϕ) depends on the sizes of the boulder and the 
supporting particles, their spatial arrangement, the slope of the 
bed (α), and the embedment (E) of the boulder.

The distance between the boulder centroid and the pivot axis, a, is 
assumed to be proportional to the size of the boulder:

a k D= 2
                                             (3)

with k2 depending also on the size and arrangement of the 
supporting particles.

The drag force is given by:

F C A VD D w n cr� 1
2

2�                                       (4)

in which CD is the drag coefficient, An is the boulder’s exposed 
cross-sectional area projected in the flow direction, and Vcr is the 
ambient depth-averaged velocity at incipient movement. The drag 
force is assumed to act through the centroid of the exposed area 
of the boulder projected in the flow direction. The lever arm, b, is 
then given by:

b a k D� � �cos( )� � 3                                  (5)

in which k3 depends on the sizes of the boulder and supporting 
particles, the spacing of the supporting particles, the embedment 
of the boulder and whether the water surface is above or below the 
top of the boulder.

The lift force, assumed to occur only when the boulder is 
completely submerged, is given by:

F C A VL L w p cr� 1
2

2�                                       (6)

in which CL is the lift coefficient and Ap is the boulder’s cross-
sectional area projected normal to the flow direction. The lift force 
is assumed to act through the centroid of the area of the boulder 
projected normal to the flow direction. The lever arm, c, is then 
given by:

c a� �sin( )� �                                      (7)

Substituting the boulder weight (Eq. 2), centroid-pivot distance 
(Eq. 3) and the drag and lift force expressions (Eqs 4 and 6) 
into Eq. 1 yields an equation for the critical velocity at incipient 
motion:

V
g k D V k D

w C A b C A c
s

cr
disp w

n pD L

2 2 1
3

2�
�

�

( ) sin

( )

� �
�

�
                           (8)

Further manipulation and introduction of the submerged specific 
weight (g(ρs − ρw)) leads to an expression for the dimensionless 
critical velocity:
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                   (9)

with Ss = ρs/ρw. Equation 9 provides a relationship between the 
critical velocity and the critical flow depth (ycr) at incipient 
motion, the flow depth being implicit in Vdisp, CD, An and b. A 
second relationship between depth and velocity is therefore 
required for its solution, which is provided by a conventional 
resistance equation, such as the Manning equation.

Figure 1. Schematic diagram of boulder on cobble bed
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Experimental investigation

Two laboratory investigations were carried out. The first was to 
measure the incipient movement conditions for a single sphere 
resting on a bed of spheres in order to verify Eq. 9. The second 
was to determine the drag coefficient for the exposed sphere to 
provide the necessary value for applying Eq. 9.

Incipient motion experiments

The incipient motion experiments were carried out in a 12.0 m 
long, 2.00 m wide, tilting flume with a working width of 0.90 m. The 
discharge (Q) was controlled by a computer-operated valve in a line 
leading from a constant head tank, and measured by an inline flow 
meter as well as a V-notch downstream from the flume. Flow depth 
(y) was controlled by a weir at the end of the flume, and measured on 
several scales along its length. The flume bed was lined with alluvial 
pebbles with a mean diameter of 25 mm, and a patch of 25 mm  
spheres was placed in the immediate vicinity of the test sphere.

Test spheres were placed in a recess halfway along the flume. A 
surface within the recess was made with ‘Lego’ toy building blocks 
to enable the sphere mounting level to be adjusted. Test spheres 
were placed initially on three 25 mm supporting spheres in closest 
packing, with the front two aligned perpendicular to the flow 
direction. Further tests were done with the test sphere embedded 
at a lower level and with the front two supporting spheres spaced 
31.3 mm apart, centre-to-centre.

Test spheres with different diameters and densities were used, 
with a number of different flume slopes, as listed in Table 1. The 
different densities were obtained by filling the hollow steel 80 mm 
sphere with different substances.

The experimental procedure was to place a boulder sphere in 
position and to increase the discharge in small increments for 
5-min durations until the sphere was dislodged. The sphere was 
then removed from the flume and the uniformity of the flow 
checked by measuring the flow depth at 3 locations along the 

Table 1. Incipient motion experimental conditions and results

Exp. D (mm) ρs (kg/m3) So E (mm) ycr (mm) Vcr
* measured Vcr

* predicted Abs. Vcr
* error (%)

1 50 2 240 0.00645 0 70 0.603 0.557 7.6
2 50 2 240 0.00645 0 61 0.537 0.515 4.2
3 80 1 877 0.00646 0 65 0.544 0.555 2.1
4 100 1 591 0.00646 0 72 0.639 0.596 6.7
5 120 1 682 0.00646 0 80 0.590 0.571 3.1
6 150 1 558 0.00646 0 84 0.610 0.654 7.3
7 80 1 877 0.00518 0 69 0.495 0.518 4.6
8 100 1 591 0.00518 0 76 0.599 0.554 7.4
9 80 1 877 0.00261 0 77 0.424 0.465 9.6
10 100 1 591 0.00261 0 84 0.504 0.488 3.2
11 80 1 877 0.00134 0 83 0.419 0.442 5.5
12 100 1 591 0.00134 0 95 0.421 0.434 0.6
13 80 1 877 0.00390 0 72 0.470 0.495 5.4
14 100 1 591 0.00390 0 79 0.553 0.528 4.5
15 80 1 877 0.00582 0 68 0.504 0.526 4.3
16 100 1 591 0.00582 0 73 0.618 0.586 5.2
17 80 1 877 0.00710 0 64 0.543 0.565 4.1
18 100 1 591 0.00710 0 71 0.650 0.607 6.6
19 80 1 877 0.00646 0 66 0.523 0.544 4.1
20 100 1 591 0.00646 0 73 0.629 0.584 7.1
22 80 1 877 0.00648 6 94 0.708 0.678 4.3
23 100 1 591 0.00648 6 90 0.745 0.753 1.0
24 120 1 682 0.00648 6 99 0.678 0.782 15.4
26 80 1 645 0.00646 6 78 0.704 0.734 4.2
27 80 1 877 0.00646 6 94 0.707 0.678 4.1
29 80 1 645 0.00647 8 94 0.806 0.753 6.6
33 80 1 645 0.00647 10 98 0.855 0.829 3.0
34 80 1 645 0.00647 11 102 0.878 0.874 0.5
35 50 2 240 0.00645 0 61 0.537 0.515 4.2
36 80 1 645 0.00647 0 64 0.568 0.590 3.8
37 80 1 877 0.00647 0 66 0.512 0.544 6.3
38 80 2 335 0.00647 0 72 0.431 0.479 11.0
39 100 1 591 0.00647 0 72 0.580 0.596 2.8
40 120 1 682 0.00647 0 82 0.573 0.552 3.6
41 150 1 558 0.00647 0 86 0.594 0.633 6.5
42 80 1 645 0.00519 0 66 0.546 0.567 3.9
43 80 1 877 0.00519 0 69 0.495 0.518 4.6
44 80 2 335 0.00519 0 75 0.423 0.464 9.6
45 80 1 645 0.00391 0 69 0.517 0.536 3.7
46 80 1 877 0.00391 0 73 0.462 0.488 5.6
47 80 2 335 0.00391 0 78 0.410 0.452 10.2

Average 5.3
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length of the flume. If the flow was not uniform, the weir was 
adjusted to make it so. The flume was then drained, the sphere 
placed back in position, and the process repeated with the correct 
weir setting so that the dislodging occurred with uniform flow. 
The ambient depth-averaged critical velocity was then calculated 
by dividing the discharge by the cross-sectional flow area. 
Results are presented in Table 1, with the critical flow depth (ycr) 
measured from the theoretical bed, assumed to be at the level of 
the centroids of the supporting particles (James, 1990).

The results show that the stability of the boulder depends on 
its size (D), density (ρs), embedment (E) and the longitudinal 
bed gradient (So = tan α). (The supporting particle size (K) was 
constant in the experiments.) The incipient motion condition is 
defined by the critical velocity (Vcr) and the critical flow depth 
(ycr) pair. Because each measured critical velocity occurs with a 
different critical depth, the results are interpreted in terms of the 
critical unit-width discharge (qcr = Vcr ycr) rather than simply Vcr.

Data for assessing the effect of boulder size on stability are provided 
by the results of the experiments with D = 80 mm, 100 mm,  
120 mm and 150 mm, with So = 0.00645 and E = 0. The densities 
of the different-sized boulders were not identical, ranging from  
1 558 kg/m3 to 1 682 kg/m3, but this range was shown to be 
associated with a variation in qcr of less than about 6%. The boulder 
stability depends on the size of the bed particles as well as of the 
boulder itself. As the ratio D/K increases the pivot angle reduces, 

tending to decrease stability, but for D/K > ~1 this tendency is 
more than offset by the greater boulder weight as D increases. 
For the fixed value of K in the experiments, the critical discharge 
increases considerably with D (Fig. 2).

The effect of embedding is shown by the experiments with D =  
80 mm and ρs =1 645 kg/m3, for which 5 embedded conditions were 
used. Two embedded conditions were also used for experiments 
with D = 80 mm and ρs = 1 877 kg/m3, D = 100 mm and ρs =  
1 591 kg/m3, and D = 120 mm and ρs = 1 682 kg/m3. So was the same 
(0.00645) for all these experiments. As shown in Fig. 3, the effect 
of embedding is considerable: the critical discharge is doubled by 
embedding the boulder by just a tenth of its diameter.

The effect of channel slope on stability is shown by the experiments 
with D = 80 mm and ρs = 1 645 kg/m3, 1 877 kg/m3 and  
2 335 kg/m3, and with D = 100 mm and ρs = 1 591 kg/m3. Slopes 
tested ranged from 0.00134 to 0.0071. As shown in Fig. 4, the 
critical discharge is quite insensitive to channel slope over the 
range tested.

The effect of boulder density on stability is shown by the 
experiments with D = 80 mm with So = 0.00391, 0.00519 and 
0.00647, and with ρs = 1 645 kg/m3, 1 877 kg/m3 and 2 335 kg/m3.  
Figure 5 shows that density increases stability (similarly for all 
channel slopes), but the effect would be relatively minor for the 
range of densities experienced in practice.

Figure 2. Effect of boulder size on stability

Figure 3. Effect of relative embedment on boulder stability
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Drag coefficient experiments

The experiments to determine the drag coefficient on the exposed 
spheres were carried out in a 0.90 m wide horizontal flume. The 
bed was prepared in the same way as for the incipient motion 
experiments, except that the test sphere did not rest on supporting 
spheres but was suspended just clear of them. The drag force was 
measured by means of moment equilibrium. The test sphere was 
attached to a rod, which pivoted about a pin, inducing a force 
measured on a tension sensor placed above the pin. Details of the 
apparatus and its calibration are described by Stols (2018) and 
Jackson (2016). Discharge (Q) was measured using the inline flow 
meter as well as volumetrically in the sump at the end of the flume; 
the water level was controlled by a weir at the end of the flume and 
measured at the test location using a digital point gauge. Twelve 
boulder conditions were tested, 10 for an 80 mm diameter sphere, 
including two embedded cases, and two for a 120 mm diameter 
sphere. Relative depths ranging from 0.65 to 1.83 were tested. 
The conditions are listed in Table 2. The sphere Reynolds number 
(Re = VD/ν, where V is the ambient depth-averaged velocity and 
ν is the kinematic viscosity of water) was in the range 9.2 x 104 to 
1.65 x 105, within which CD would be expected to be practically 
independent of Re.

For each test, a target water depth was set on the point gauge. 
The discharge in the flume was then slowly increased to a desired 
value and once this was stable the weir was adjusted to produce 
the target water depth at the test location. This condition was 

maintained for 5 min for the force sensor data collection. The 
point gauge was then lowered to a new target level and the weir 
readjusted accordingly.

Values of CD (as listed in Table 2) were calculated from the 
measured force by Eq. 4 with An calculated by Eqs 21 to 25. The 
flow depth (y) was defined as the distance from the water level to 
the theoretical bed (K/2 below the tops of the bed particles). The 
relationship between CD and relative depth is shown in Fig. 6, and 
is described by:

C e
y
D

D �
�2 69 0 884. . ( )

                                  (10)

with R2 = 0.65. The data are limited, and the embedded and 
non-embedded cases are combined for defining this relationship 
although they appear to be slightly distinct. It is also assumed that 
for high submergences the value of CD will level off (Coleman 
(1972) found CD for well-submerged spheres to be approximately 
equal to the value in free fall); a minimum of 0.77 is suggested by 
the highest non-embedded y/D value, which was not included in 
the regression, and is assumed to apply for y/D > 1.5.

DISCUSSION

Model confirmation

The experimental results are used to assess the performance of Eq. 
9 for predicting the depth-averaged velocity at incipient motion. 
The geometry of the experimental conditions with a spherical 

Figure 4. Effect of channel slope on boulder stability

Figure 5. Effect of boulder density on stability 
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boulder and supporting particles is well defined, enabling the 
variables to be described precisely (Fig. 7).

For a spherical boulder k1 = π/6. The volume of water displaced by 
the boulder depends on whether it is completely or only partially 
submerged. For the submerged condition:

V D
disp �

� 3

6                                           (11)

and for the unsubmerged condition:

V hD h D
disp � � �� �3 2

6 3 23( )                           (12)

in which h is the distance of the top of the boulder above the water 
surface, given by:

h D E yK� � �� � �2
                                 (13)

with E being the embedment and y the flow depth measured from 
the theoretical bed.

The factor k2, defining the distance (a) between the boulder 
centroid and the pivot axis (Fig. 1), depends on the spacing of 
the two supporting particles forming the pivot axis, λK. This is 
given by:

k D K
D K K

2

2 21
4 4� ��
�( ) ( )�                           (14)

λ = 1 for the non-embedded condition and 1.252 for the 
experimental embedment.

The pivot angle (ϕ) (Fig. 1) (here in radians) depends on the 
supporting particle arrangement as well as the longitudinal bed  

slope, as:

� �
�

��
�

�
�
�

�

�
�
�
��

�
�cos ( ) ( )

1
2 2

4 4

D

K D K                       (15)

The distance μD (the height of the boulder centroid above the 
supporting particle centroids) is given by:

�D D K
E� � �

2 2
                                      (16)

For a boulder resting on 3 particles in contact (λ = 1) the embedment 
is a minimum, given by:

E D K D K K
min

( )
� � �

�
�

2 2 4 3

2 2

                       (17)

For λ ≠ 1, E is specified as required.

The drag force is calculated using Eq. 4 with the drag coefficient given 
by Eq. 10. The projected area for drag is the total projected area of the 
spherical boulder less the area below the theoretical bed (AE) and less 
the area above the water surface (As), if applicable (Fig. 7):

A A AD
n sE� � �� 2

4                                 (18)

The subtracted area AE is given by:

A
D

E E E� �
� �2

2

2 ( sin )� �                               (19)

θE is the angle subtended at the boulder centroid by the width at the 

Figure 6.  Measured boulder drag coefficient

Table 2. Drag coefficient experimental conditions and results

Exp. D (mm) E (mm) Q (m3/s) y (mm) y/D CD

1 80 0 0.041 91 1.13 1.09

2 80 0 0.033 80 0.99 1.24

3 80 0 0.033 91 1.13 1.10

4 80 0 0.028 73 0.91 1.34

5 80 0 0.028 79 0.98 1.25

6 80 0 0.028 90 1.12 1.05

7 80 0 0.028 121 0.80 0.80

8 80 0 0.028 160 0.78 0.78

9 80 0.0080 0.042 92 0.75 0.75

10 80 0.0080 0.042 123 0.58 0.58

11 120 0 0.044 91 1.09 1.09

12 120 0 0.044 121 1.10 1.10
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theoretical bed, and is given by:

�E �
� ��

�
�
�

�

�
�
�

�2
8 0 51 2 2sin

( . ( ))E E
D

D K

                     (20)

The area As is given by:

A
D

s s s� �
� �2

2

2 ( sin )� �                                (21)

θs is the angle subtended at the boulder centroid by the width at the 
water surface, and is given by:

�s �
��

�
�
�

�

�
�
�

�2
8 0 51 2sin

( . )h h
D

D

                          (22)

The drag force lever arm is given by Eq. 5. The distance k3 depends 
on whether the boulder is partially or completely submerged and the 
degree of embeddedness. For a submerged boulder it is given by:

k V

VD3
1

3
6 1

1submerged Z� �
��

�
�

�

�
��

                   (23)

where V1 is the volume of the boulder below the theoretical bed (at 
K/2 below the tops of the supporting particles), given by:

V hh D
1

2

3 23� �� �� / /                                   (24)

with h/ being the distance of the bottom of the boulder below the 
theoretical bed according to:

h E K

h E K E K

/

/

� �

� � �

0
2

2 2

for

for
                              (25)

z1 is the distance of the centroid of V1 below the centroid of the 
boulder, given by:

z D h

D h1
3

4

2

3
2

� � �

�� �
( )/

/                                    (26)

For an emergent boulder:

k V z V z

D V V
3

6

1 1 2 2

1 2

3emergent � �
�

� �
�

�
�
�

�

�
�
�

( )

( )�                        (27)

where V2 is the volume of the boulder above the water surface, given 
by:

V hh D
2

2

3 23� �� ��                                 (28)

z2 is the vertical distance between the centroids of the whole 
boulder and its portion above the water surface, given by Eq. 26 
without the minus sign and with h/ substituted by h.

The lift force is calculated using Eq. 6. Lift coefficient values have 
not been well established (James, 1990; Marsh et al., 2004). It is 
assumed that lift is zero if the boulder is not fully submerged (as 
by Carling et al., 2002). For large, fully submerged particles CL has 
been found to be fairly constant; Marsh et al. (2004) recommend 
a value of 0.2. The lift coefficient has also been related to the 
drag coefficient (see James, 1990) and for large exposed particles 
different values of CL/CD have been proposed; for example, 0.1 by 
Aksoy (1973), 0.5 by James (1990) and 0.2 by Carling et al. (2002). 
These must depend on the definition of the velocity used in Eq. 6, 
which is not always clear. For the experimental conditions, good 
agreement was obtained using CL/CD = 0.5 in terms of the ambient 
depth-averaged velocity. The projected area for lift is πD2/4, and 
the lever arm is:

c a� �sin( )� �                                 (29)

Equations 11 to 29 are used to represent the experimental 
conditions for calculating the dimensionless critical velocity by 
Eq. 9 for each measured critical flow depth.

Predicted values of Vcr
* are listed in Table 1 and compared with the 

measured values in Fig. 8. The average absolute prediction error 
is 5.3%.

Practical stability assessment

Practical application of Eq. 9 would be laborious, requiring 
approximation of the geometric parameters. A single equation 
involving the key parameters was therefore developed by 
regression of synthetic data generated by Eq. 9 for a range of 
conditions. A sphere with a diameter of 0.40 m and a density of  
2 650 kg/m3 was considered. The size of supporting spheres (K) was 
selected to give a range of relative sizes (D/K) from 4 to 20. Flow 
depths (y) were selected to give an upper limit of y/D equal to 1.0 
(the change in Vcr

* was found to be small once the boulder was 
submerged). Very shallow flow depths (y/D − 0.5K/D < 0.15) were 

Figure 7. Geometry of spherical boulder on spherical supporting particles
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excluded as being unrealistic. Channel slopes (So = tan α) were 
varied from zero to 0.010. A regression analysis of the synthetic 
data produced Eq. 30:

V SD
K

y
D

E
Dcr

* . . . .. ( ) ( ) ( ) ( )� �� �1 66 10 0495 1 000 0 304
0

1 546        (30)

for y ≤ D (for y > D, using y = D – E + K/2 would be a reasonable 
approximation). Predictions by Eqs 9 and 30 are compared in  
Fig. 9. Equation 30 reproduces Eq. 9 with R2 = 0.98, and an  
average absolute difference of 8.6%.

Both Eqs 9 and 30 assume spherical boulders and supporting 
particles. Departures from sphericity would tend to increase 
stability by interlocking and increasing frictional resistance. The 
drag coefficient equation (Eq. 10) also applies to spherical shapes, 
and values would be higher for angular boulders, tending to 
decrease stability. For emerging cylinders, Jackson (2016) found 
CD to increase by about 50% for square compared to circular 
shapes, and more than 100% for diamond shapes.

Assessment of stability through Eqs 9 or 30 requires simultaneous 
solution with a resistance equation, such as Manning’s, because of 
the dependence of both on flow depth. The stability of the boulder 
also depends on the stability of the supporting particles. If the 
supporting particles can be eroded at conditions lower than able 
to move the boulder, then the boulder is likely to become further 
embedded and therefore more stable, although less effective for 

modifying flow conditions. The scour potential of the supporting 
particles can be assessed approximately by the Shields criterion, 
but may be enhanced by vortex formation around the boulder (as 
for scour around bridge piers).

As an example, the stability of a 0.55 m boulder embedded by 
0.010 m in a bed of 0.050 m cobbles with a channel slope of 0.0050 
is considered. The relationship between Vcr and flow depth (y) is 
described by Eq. 9. The relationship between the actual velocity 
(V) and y is described by the Manning equation, with n = K1/6/26, 
and assuming the channel to be wide. The two relationships are 
plotted in Fig. 10, showing that the boulder will be stable for all 
flow depths less than 0.43 m, when V < Vcr. It also shows that Vcr 
decreases with depth towards a constant value at full submergence. 
It is possible that self-embedding could occur if the cobbles are able 
to be scoured at lower flow depths. There appear to be no methods 
for predicting local scour around boulders, but bridge pier scour 
predictions can give a rough indication by assuming the boulder 
to be a cylinder with the same diameter. Chiew (1995) proposed 
a procedure for estimating the approach velocity at which scour 
around piers would occur (Vo). The relationship between Vo and 
y according to this procedure is also plotted in Fig. 6, suggesting 
that scour, and hence self-embedding, would occur for depths 
greater than 0.37 m, when V > Vo. This is a conservative estimate, 
as scouring vortices would be undeveloped with flow occurring 
below part of the boulder.

Figure 8. Comparison of predicted and measured dimensionless critical velocity

Figure 9. Comparison of predictions by Eq. 9 and Eq. 30
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CONCLUSIONS

The stability of an individual boulder on a cobble bed depends 
on the size and density of the boulder, the size of the cobbles, 
the embedment of the boulder in the cobbles, the channel slope, 
and the flow velocity and depth. The critical velocity for incipient 
movement reduces with increasing flow depth, reaching an 
effective minimum at the top of the boulder.

Stability can be predicted through a classical pivoting analysis. 
Equation 9 provides the relationship between the critical 
dimensionless velocity and the critical flow depth (implicit in 
the boulder submergence condition). Equation 30 provides a 
simpler, direct relationship for unsubmerged spherical boulders 
on spherical cobbles. Practical predictions require a second 
relationship between velocity and flow depth, which is provided 
by a resistance equation such as Manning’s.

The drag coefficient on a boulder depends strongly on its degree of 
submergence. The relationship presented by Eq. 10 is provisional, 
and further investigation for the transition to full submergence 
and the influence of boulder shape is necessary.

The stability of a boulder depends strongly on its size, and is 
increased considerably by even small degrees of embedding.

Prediction capability has been confirmed by experiments with 
spherical boulders and cobbles. Non-sphericity would tend to 
increase stability through particle interlocking and increasing 
friction, but reduce it through an increase in the drag coefficient.

Self-embedding is likely if the bed material around the boulder 
erodes at flow conditions lower than would move the boulder. 
This occurrence needs further investigation.
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NOTATION

AE Cross-sectional area below theoretical bed of boulder  
 normal to flow direction

An Exposed cross-sectional area of boulder in flow direction

Ap Cross-sectional area of boulder normal to flow direction

As Cross-sectional area above water surface of boulder 
 normal to flow direction

a Distance from pivot axis to boulder centroid

b Distance from pivot axis to drag force line of action

CD Drag coefficient

CL Lift coefficient

c Distance from pivot axis to lift force line of action

D Boulder diameter

E Embedment of boulder

FD Drag force

FL Lift force

Fr Friction between boulder and supporting particles

g Gravitational acceleration

h Distance of top of unsubmerged boulder above  
 water surface

h/ Distance of boulder bottom below theoretical bed

K Supporting particle diameter

k1 Proportionality constant for boulder volume

k2 Proportionality constant for dimension a

k3 Proportionality constant on D for dimension  
 b (submerged or emergent)

Q Discharge

qcr Critical unit-width discharge

R Reaction force between boulder and supporting  
 particles

Re Sphere Reynolds number

So Channel slope

Ss Boulder specific gravity

V Velocity

Vcr Critical velocity

V*
cr Dimensionless critical velocity

Figure 10. Conditions for boulder instability in example
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Vdisp Water volume displaced by boulder

Vo Critical approach velocity for scour around a  
 bridge pier

V1 Boulder volume below theoretical bed

V2 Boulder volume above water surface

W Submerged weight of boulder

y Flow depth

ycr Critical flow depth

z1 Distance of V1 centroid below boulder centroid

z2 Distance of V2 centroid above boulder centroid

α Bed slope

λK Distance between centroids of pivot supporting  
 particles

μD Distance between centroids of boulder and supporting  
 particles

ν Water kinematic viscosity

ρs Boulder density

ρw Water density

ϕ Pivot angle
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