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Irrigation is required to supplement rainfall to enhance the productivity of chickpea in South Africa (SA). 
However, the dependence on irrigation can be problematic for SA and other countries with limited natural 
water resources and variable rainfall. Even though access to irrigation water has been identified as one of 
the challenges faced when planting chickpea in the winter season in SA, irrigation management strategies 
for chickpea grown on soils differing in texture have not gained considerable research attention. Hence, this 
study aimed to assess the effects of irrigation levels on dry matter production of chickpea grown on two soils 
differing in soil texture under greenhouse conditions. The experiment was arranged as a 3 × 2 factorial in a 
completely randomized design, with 3 irrigation levels (25%, 50% and 75% of the water-holding capacity of 
soil (WHC)) and 2 soils differing in soil textural class (Loamy sand (LS) soil and sandy loam (SL) soil), replicated 
thrice. Irrigation level, soil texture and their interaction significantly affected shoot biomass (SBM) and total 
plant biomass (TBM). Generally, SBM, TBM and root biomass decreased correspondingly with the reduction in 
irrigation. The 25% WHC significantly reduced the SBM by up to 60% and TBM by up to 56% compared to the 
50% and 75% WHC. The SBM and TBM were higher in SL soil than in LS soil. A significantly higher root/shoot 
ratio (0.45) in the LS soil than in the SL soil (0.16) indicated that the conditions of LS soil encouraged plants to 
allocate higher proportions of biomass into roots, possibly due to increased competition for soil resources. In 
conclusion, maintaining soil moisture at 50% WHC ensures better chickpea dry matter production in SL soil.
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INTRODUCTION

Chickpea (Cicer arietinum L.) is the third most important pulse crop in production after dry bean 
and field pea (Siddique and Krishnamurthy, 2016; Merga and Haji, 2019) and is cultivated all over the 
world for its seeds (Yegrem 2021). It is grown primarily in developing and underdeveloped countries 
for household consumption and localized trade (Bell, 2014; Sharma et al., 2020). Chickpea is well 
known for contributing to soil fertility by fixing atmospheric nitrogen (N2) into ammonia, which can 
be further transformed into various organic forms (Verma et al., 2015; Abd-Alla et al., 2023; Crop 
Trust, 2023) and thus minimizes the fertilizer costs for subsequent crops. It is a quality food source 
rich in protein (McDermott and Wyatt, 2017), minerals (calcium, magnesium, phosphorus and 
potassium), vitamins (riboflavin, niacin, thiamine, folate, and the vitamin A precursor β-carotene), 
and carbohydrates (Jukanti et al., 2012; Singh et al., 2021). The protein quality of chickpea seeds is 
better than that of other pulses (Jukanti et al., 2012). Chickpea seeds contain on average 23% proteins 
(Verma et al., 2015; Crop Trust, 2023). Chickpeas are reported to contain a low quantity of lipids, but 
are rich in nutritionally vital unsaturated fatty acids such as linoleic acid and oleic acid (Yegrem, 2021).

Although chickpea has a large economic potential in sub-Saharan Africa (Fikre et al., 2020), there is 
hardly any commercial production of chickpea in some sub-Saharan African countries such as South 
Africa (SA). Several research trials aiming to encourage the local production of chickpea have been 
conducted in the Limpopo and Mpumalanga Provinces of SA (Madzivhandila et al., 2012; Masowa  
et al., 2012; Ogola, 2015; Lusiba et al., 2017; Makonya, 2019; Leboho, 2020; Moloto et al., 2018; Ogola 
et al., 2021). Although these studies have demonstrated that chickpea can be grown in those parts 
of SA, access to irrigation water has been identified as one of the serious challenges that could be 
faced by South African smallholder crop farmers when cultivating chickpea during the winter season 
(Mpai and Maseko, 2018; Leboho, 2020). Against the previous context, investigations on appropriate 
water-saving irrigation management strategies that will ensure higher yields of chickpea with a 
limited amount of water are crucial. The need to use water efficiently is unquestionable in water-
scarce countries such as SA (Stelli et al., 2018; Mahlare et al., 2023).

Chickpea is normally grown in semi-arid or arid tropical regions under rain-fed conditions and the 
crop can be harmed by a shortage of moisture in the soil (Mohammed et al., 2017). Shortage of soil 
moisture reduces grain and biological yields of crops (Fahad et al., 2017; Pour-Aboughadareh et al., 2019) 
through negative impacts on plant growth, physiology, and reproduction (Yordanov et al., 2000; Pour-
Aboughadareh et al., 2019; Mustafa et al., 2021). Also, a shortage of moisture in the soil leads to difficulties 
in crop management with regards to pests and diseases and reduced nutrient availability and assimilation 
by plants (Al-Kaisi et al., 2013; Yetgin, 2023). Although plants cope with soil moisture shortages by evolving 
various complex resistance and adaptation mechanisms (Osakabe et al., 2014; Fahad et al., 2017; Seleiman 
et al., 2021), adding the required amount of water through irrigation may alleviate plant water stress.
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Supplemental irrigation is used to overcome the reduction of 
chickpea yield caused by a shortage of soil moisture in some parts 
of the world (Singh et al., 2016; Zhao et al., 2020). However, the 
dependence on irrigation to supplement rainfall can be a problem 
for countries that have limited natural water resources and variable 
rainfall, such as SA (Stelli et al., 2018). This problem can be 
exacerbated by inappropriate irrigation management practices that 
not only waste water resources but also damage crop growth (Zhao 
et al., 2020). Therefore, studies to determine the amount of water 
to apply to provide the maximum useable soil moisture in a plant’s 
root zone without inducing harmful stress to the crop are crucial. 
The use of suitable irrigation levels will ensure better water use 
efficiency of chickpea and reduced water wastage during irrigation 
(Zhao et al., 2020). However, such irrigation management trials 
should also evaluate the effects of soil properties on crop growth 
because soil properties such as soil texture can affect the soil 
available water capacity as well as the growth of plant roots, which 
are the main organs in water uptake (Duo et al., 2016). Hence, the 
objective of this study was to determine the effects of different 
irrigation levels and soil texture on dry matter production of 
chickpea grown under greenhouse conditions.

MATERIALS AND METHODS

Study site description, design and treatments

A pot experiment was conducted for 50 days in the greenhouse 
at the Green Biotechnologies Research Centre of Excellence 
(GBRCE) of the University of Limpopo (23° 53’ 10” S, 29° 44’ 15” E;  
1327 m) in South Africa between February and March 2021. The 
ambient day/night greenhouse temperatures averaged 28/21°C, 
with maximum temperatures controlled using thermostatically 
activated fans. The experiment was arranged as a 3 × 2 factorial 
in a completely randomized design, with 3 irrigation levels 
(25%, 50% and 75% of the water-holding capacity (WHC) of the 
soil (maximum amount of water a soil can retain)) and 2 different 
textured soils (greyish-brown sandy loam and reddish-brown 
loamy sand textured soils), replicated thrice.

Soil collection, preparation, and characterization

The loamy sand textured soil was obtained from the GBRCE, while 
the sandy loam textured soil was collected from the University 
of Limpopo Experimental Farm (ULEF; 23° 50’ 42.86” S;  
29° 42’ 44.35” E). The ULEF and GBRCE soils were previously 
classified as Hutton soils following the South African soil 
classification system (Phefadu and Kutu, 2016; Pofu and Mashela, 
2022). For the purposes of this paper, the loamy sand textured 
soil and sandy loam textured soil will hereafter be referred to as 
LS soil and SL soil, respectively. Both soils were collected from 
the surface (0–25 cm), air-dried, homogenized and sieved (4 mm 
sieve) to remove stones and plant roots.

Selected physico-chemical properties (Table 1) of the soils 
used in this study were analysed following standard laboratory 
procedures. Soil particle size was determined using a hydrometer 
procedure as described by Sheldrick and Wang (1993). Soil pH 
was measured in a 1:2.5 soil: water extract (Non-Affiliated Soil 
Analyses Work Committee, 1990) while soil organic carbon (C) 
was determined using the Walkley-Black method (Walkley and 
Black, 1934). The contents of nitrate and ammonium in the soil 
were determined colorimetrically following the extraction with 
0.5 M KCl solution (Okalebo et al., 2002). The total mineral N 
content was calculated as the sum of the contents of ammonium 
and nitrate. Available phosphorus (P) was determined using the 
Bray-1 method (Bray and Kurtz, 1945). The WHC of the soil was 
determined using a method described by Mahajan et al. (2018) 
with slight modifications. Six pots (25 cm diameter and 20 cm 
height) filled with 6 kg of air-dried soil were saturated with tap 

water (3 pots for LS soil and 3 pots for SL soil). The surface of 
the pot was covered with a plastic sheet and then left to drain for 
48 h. Following this, a soil sample was taken from the middle of 
each pot. These samples were weighed (wet weight of soil, A), 
oven-dried at 105°C for 72 h and re-weighed (dry weight of soil, 
B). Following this, the WHC was calculated using the following 
formula (Mahajan et al., 2018):

WHC = [(A−B) × 100]/B                             (1)

Crop husbandry

Prior to planting, pots (25 cm diameter and 20 cm height) were 
filled with 6 kg of air-dried soil. Limestone ammonium nitrate 
(LAN; 28%) and single superphosphate fertilizers (SSP; 10.5%) 
were applied before planting to supply N and P at the rates of 20 
and 40 kg/ha, respectively. These fertilizers were applied based 
on the calculated weight of soil used per pot and an assumption 
of 2 million kg/ha weight of soil from the furrow slice (Masowa  
et al., 2022). Based on the recommended rates and percentage of 
N and P content in the fertilizers, the quantities of LAN and SSP 
fertilizers were 214.28 and 1 142.86 mg/pot, respectively. Three 
seeds of kabuli-type chickpea were planted in each pot and one 
seedling was thinned after 2 weeks of planting. Pots were watered 
to achieve 100% of the WHC of the soil before subjecting the 
plants to the different irrigation levels 28 days after planting. To 
subject the plants to water deficit treatments, pots were watered 
to achieve 25%, 50% and 75% of WHC (Table 2). The amount of 
water lost from each pot was measured every 7 days by weighing 
each pot before re-watering to 25%, 50%, 75% and 100% of WHC. 
The mass of water added was considered to be equal to the volume 
of water added, assuming that the density of water is 1 g/cm3 
(Mulidzi et al., 2016; Imakumbili et al., 2021).

Table 1. Physico-chemical properties of soils used in this study

Soil property Loamy sand soil Sandy loam soil

Particle size (%):

Sand 80.88 73.33

Silt 10.29 10.00

Clay 8.83 16.67

Bulk density (kg/m3) 1.53 1.58

Porosity (%) 42.0 40.22

WHC (kg H2O/kg soil) 0.19 0.27

pH (H2O) 5.06 6.29

Soil organic C (%) 1.56 0.70

NO3-N (mg/kg) 4.42 3.53

NH4-N (mg/kg) 1.40 1.80

Available P (mg/kg) 27.0 63.0

Exchangeable K (mg/kg) 158.0 370.0

WHC = water-holding capacity

Table 2. The amount of water applied to achieve 25%, 50%, 75% and 
100% of soil water-holding capacity

Soil texture Irrigation water (mL/pot)

25% WHC 50% WHC 75% WHC 100% WHC

Loamy sand soil 285 570 855 1140

Sandy loam soil 405 810 1215 1620

WHC = water-holding capacity
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Data collection

Plants were harvested 50 days after sowing (R1: flowering stage) 
for the determination of shoot biomass (SBM), root biomass 
(RBM), total plant biomass (TBM; SBM + RBM) and root/shoot 
ratio (RSR; root dry weight/shoot dry weight). After harvesting 
the plants, shoots and roots were separated, washed with tap water 
to remove dirt, placed in separate labelled paper bags, oven-dried 
to a constant mass at 65°C, and the mass recorded as dry matter 
(g dry matter/plant).

Statistical analysis

The data collected were subjected to a factorial analysis of variance 
using SAS software version 9.4. The treatment means were separated 
using Fisher’s protected least significant difference (LSD) test at 
the 5% level of significance. Regression analysis was performed to 
establish the relationship between the measured crop parameters 
and the irrigation levels, regardless of the soil textural class.

RESULTS AND DISCUSSION

The assessment of SBM and plant weight is of primary importance 
when quantifying the accumulation of biomass (Souza et al., 
2016), which is used when evaluating the crop performance 
(Ogola et al., 2021; Wang et al., 2021; Meiyan et al., 2022). In 

this study, the performance of chickpea subjected to different 
irrigation levels and soils with different textures was assessed by 
measuring the crop’s dry biomass. Shoot biomass and the TBM 
were significantly influenced by the soil texture, irrigation level 
and their interaction, while RSR was significantly affected by 
the soil texture and irrigation level (Table 3). The 25% WHC 
treatment reduced SBM by up to 60% and TBM by up to 56% 
as compared to the 50% and 75% WHC treatments, which were 
statistically on par with each other (Figs 1A and 1C). Previous 
studies also reported a decrease in the SBM of various plants 
under reduced irrigation (Moosavi et al., 2015; Imakumbili et al., 
2021; Mehak et al., 2021). The non-significant effect of irrigation 
level on RBM (Fig. 1C) indicated that subjecting chickpea plants 
to reduced irrigation (25% and 50% WHC) does not compromise 
chickpea root growth. Root biomass adjustment is one of the 
strategies that plants use to avoid and tolerate water deficit 
(Brunner et al., 2015). The 50% and 75% WHC treatments gave 
significantly lower RSR values as compared to the 25% WHC 
treatment (Fig. 1D), indicating that the 25% WHC reduced the 
growth of shoots more than that of roots. A study by Saidi et al. 
(2010) also showed a decrease in RSR under reduced irrigation 
treatment as compared to that observed under full irrigation. This 
finding confirms that the reduction of root growth in response 
to low water availability due to a decreased amount of irrigation 

Table 3. Results of analysis of variance conducted to determine the effects of soil texture, irrigation level and their interaction on shoot 
biomass, root biomass, root/shoot ratio and total plant biomass of chickpea

Source df p-value
Root biomass Shoot biomass Root/shoot ratio Total plant biomass

Model 7 0.5649 0.0006 <0.0001 0.0035
Factors:
Soil texture (S) 1 0.2215 0.0001 <0.0001 0.0013
Irrigation level (I) 2 0.2881 0.0014 0.0052 0.0041
S x I 2 0.6649 0.0182 0.7380 0.0453
CV (%) 37.67 27.86 16.49 29.10
R2 value 0.38 0.88 0.95 0.83

df = degrees of freedom; CV = coefficient of variation

Figure 1. Effect of irrigation level on (A) shoot biomass, (B) root biomass (C) total plant biomass, and (D) root/shoot ratio of chickpea. Means with 
the same letter are not significantly different at the 5% probability level. WHC = water-holding capacity of soil.
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is lower than the accompanying reduction in shoot growth  
(Hsiao and Liu-Kang, 2000; Saidi et al., 2010).

Although RBM was not significantly increased by an increase 
in the amount of irrigation water applied, a linear (R2 = 0.81) 
effect on RBM was observed, regardless of soil texture (Fig. 2A). 
The SBM (R2 = 0.94; Fig. 2B) and TBM (R2 = 0.93; Fig. 2C) were 
linearly increased regardless of the soil texture. The RSR decreased 
linearly (R2 = 0.88) with irrigation level (Fig. 2D).

Shoot biomass and TBM were significantly higher in SL with 
high clay content (16.67% clay) and high WHC than in LS soil 
with low clay content (8.83% clay) and low WHC (Table 4). The 
greater SBM and TBM observed in SL soil than in LS soil may be 
ascribed to the higher WHC of this soil (Souza et al., 2016). This 
finding is in line with that of Ogola et al. (2021), who reported 
that the above-ground biomass and grain yield of chickpea were 
quantitatively higher in high clay content soil (clay-textured 
soil) than in soil with low clay content (loamy sand–textured 
soil). On the contrary, Moloto et al. (2018) found that 4 out of 5 
desi-type chickpea genotypes had greater plant growth in sandy 
loam–textured soil than in the clay-textured soil. High values of 
SBM and TBM in SL soil may be attributed to the sandy loam 
soil’s good water retention capacity (Purushothaman et al., 2017), 
nutrient retention and permeability, as well as its higher clay 
content, which provide good soil structure and fertility (Molepo 
et al., 2017). Conversely, the dry roots of plants from pots with LS 
soil were generally (24.24%) heavier than the dry roots of plants 
from pots with SL soil (Table 4). A study by Ahmadi et al. (2011) 

also showed a significantly higher potato root dry matter in 
loamy sand soil compared to sandy loam soil. Significantly higher 
RSR (Table 4) in the LS soil than in the SL soil indicated that the 
conditions of LS soil allowed plants to allocate higher proportions 
of biomass into roots, possibly due to increased competition for 
soil resources (Qi et al., 2019). Soils with high clay content, such as 
the SL-textured soil used in this study, may also have a temporary 
mechanical impedance that limits root growth when the soil dries 
out (Cairns et al., 2004; Whitmore and Whalley, 2009; Ahmadi 
et al., 2011; Bengough et al., 2011). The loamy sand–textured 
soil on the other hand has a high permeability due to its coarser 
texture (Molepo et al., 2017), which has been shown to promote 
root growth (Ahmadi et al., 2011).

The 25% WHC treatment reduced SBM by up to 68% as compared 
to the 50% and 75% WHC treatments in SL soil (Fig. 3A). Even 
though the differences in RBM amongst the different irrigation 
levels were insignificant, the RBM increased correspondingly 
with the irrigation level in SL soil (Fig. 3B). The TBM obtained 
from the 25% WHC treatment was 65% lower than that 
recorded from the 75% WHC treatment in SL soil (Fig. 3C). The 
RSRs obtained from the irrigation treatments in LS soil were 
significantly higher than those from irrigation treatments in SL 
soil (Fig. 3D), indicating that irrigation treatments favoured root 
growth over shoot growth more under LS soil than SL soil. This 
result is different from that reported by Souza et al. (2016), who 
showed that irrigation promotes greater growth of plants in soils 
of a medium texture with high clay content compared to sandy 
soils with low clay content.

Figure 2. Linear regression of (A) root biomass, (B) shoot biomass, (C) total plant biomass and (D) root/shoot ratio for different irrigation levels 
across the different soils.

Table 4. Effect of soil texture on root biomass, shoot biomass, root/shoot ratio and total plant biomass  

Soil texture Root biomass (g/plant) Shoot biomass (g/plant) Root/shoot ratio Total plant biomass (g/plant)

Loamy sand soil 0.41a 0.98b 0.45a 1.39b

Sandy loam soil 0.33a 2.28a 0.16b 2.60a

Means with the same letter in each column are not significantly different at the 5% probability level



265Water SA 50(3) 261–267 / Jul 2024
https://doi.org/10.17159/wsa/2024.v50.i3.4082

CONCLUSION

Chickpea productivity was studied under varying irrigation levels 
(25%, 50% and 75% of soil WHC and soils (sandy loam soil (SL) 
and loamy sand (LS) soil). The results revealed that shoot biomass 
(SBM), total plant biomass (TBM) and root/shoot ratio are affected 
by irrigation level, soil texture and their interaction. However, 
further studies that assess the influence of irrigation level, soil 
texture and their interaction on chickpea performance up to the 
point of grain harvest are needed. The use of 25% irrigation level is 
discouraged as it leads to SBM and TBM losses compared to 75% 
irrigation level in SL. The SL soil gave higher SBM and TBM as 
compared to the LS soil; therefore, soil texture should be considered 
when selecting a production site for chickpea. Lastly, the results 
showed that maintaining the soil moisture at 50% WHC may 
ensure better production of chickpea dry matter under the SL soil.
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