SciELO - Scientific Electronic Library Online

vol.24 issue2A techno-economic feasibility study on the use of distributed concentrating solar power generation in JohannesburgEvaluation of a second order simulation for Sterling engine design and optimisation author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


Journal of Energy in Southern Africa

On-line version ISSN 2413-3051
Print version ISSN 1021-447X


TEMBO, Bernard  and  MERVEN, Bruno. Policy options for the sustainable development of Zambia's electricity sector. J. energy South. Afr. [online]. 2013, vol.24, n.2, pp.16-27. ISSN 2413-3051.

This paper aims at understanding how Zambia's electricity system would be affected by droughts (due to a dry year) and how the system's adaptive capacity could be improved. Hydropower currently supplies 99% of the total electricity in Zambia, and concerns have been raised because many climate change studies project increased occurrences of dry years in the Southern Africa region. Different economic and climatic scenarios were explored to understand their impact on the development of Zambia's power generation system, and what policies and strategies could be adopted to mitigate these impacts on security of supply and average generation costs, which directly affect the electricity price. The results show that a dry year has significant impact on the average generating cost since hydropower continues to dominate the system. Diversifying the system does not improve the adaptive capacity of the system but only increases the average cost of generating electricity in an average year. The most cost effective way of increasing the system's adaptive capacity is by importing electricity and gradually increasing share of renewable and coal technologies in the system. Further research on how electricity trade in Southern Africa could be enhanced, should be done.

Keywords : Zambia; energy planning; hydro technology; climate change.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License