SciELO - Scientific Electronic Library Online

 
vol.41 issue2Investigating the Concept of South African Old Vine Chenin BlancCold Hardiness of Primary Buds of Wine and Table Grape Cultivars in Poland author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


South African Journal of Enology and Viticulture

On-line version ISSN 2224-7904
Print version ISSN 0253-939X

Abstract

MORRIS, C.; MALAN, A.P.; DE WAAL, J.Y.  and  JOHNSON, S.. Laboratory Bioassays on the Susceptibility of Trimen's False Tiger Moth, Agoma trimenii (Lepidoptera: Agaristidae), to Entomopathogenic Nematodes and Fungi. S. Afr. J. Enol. Vitic. [online]. 2020, vol.41, n.2, pp.183-188. ISSN 2224-7904.  http://dx.doi.org/10.21548/41-2-4038.

Trimen's false tiger moth, Agoma trimenii (Lepidoptera: Agaristidae), recently developed as a pest of grapevine in the Northern Cape and Limpopo (Groblersdal area) provinces of South Africa. Little is known about the biology of A. trimenii and control options are lacking. The aim of this study was to test the susceptibility of A. trimenii larvae and pupae to two locally isolated entomopathogenic nematodes (EPNs), Steinernema yirgalemense and Heterorhabditis noenieputensis, and two commercially available entomopathogenic fungi (EPF), Metarhizium anisopliae and Beauveria bassiana, under laboratory conditions. Larvae and pupae were screened for pathogenicity of the two nematode species, using a concentration of 100 infective juveniles (IJs)/50 μ! of water. After 48 h, 100% mortality of the larval stage was found. However, no pupae were infected with EPNs. Larvae and pupae were screened for pathogenicity of the two EPF isolates by means of a dipping test, at a concentration of 0.2 ml/500 ml water and 0.5 g/500 ml water, respectively. Five days post-treatment, 100% larval mortality was recorded in comparison with no deaths in the controls. Overt mycosis was only observed in the case of M. anisopliae. However, in the case of pupae, no mortality was observed for both the nematode and the fungal applications. In future studies, the prepupal soil stage of A. trimenii should be screened for susceptibility to EPNs and EPF. The results of this study indicate the excellent potential of EPNs and EPF as biological control agents against the larvae of A. trimenii, especially for application to small areas with high infestation, without disrupting an integrated pest management programme.

Keywords : Agoma trimenii; biological control; Trimen's false tiger moth; entomopathogenic fungi; entomopathogenic nematodes.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License