Servicios Personalizados
Articulo
Indicadores
Links relacionados
- Citado por Google
- Similares en Google
Compartir
South African Journal of Science
versión On-line ISSN 1996-7489
versión impresa ISSN 0038-2353
S. Afr. j. sci. vol.103 no.3-4 Pretoria mar./abr. 2007
RESEARCH LETTERS
Enhanced drought tolerance in transgenic potato expressing the Arabidopsis thaliana Cu/Zn superoxide dismutase gene
A. Van der MeschtI; J.A. De RondeII; M.M. SlabbertIII; D. OelofseII
IMangosuthu Technikon, P.O. Box 12363, Jacobs, Durban 4026, South Africa
IIARC-VOPI, Private Bag X293, Pretoria 0001, South Africa
IIIDepartment of Agricultural Management, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
ABSTRACT
All aerobic organisms must possess the means to protect themselves from the toxic effects of reduced oxygen species generated during the normal metabolic activity of cells or as a result of environmental stresses such as drought. Cells are protected from the deleterious effects of free oxygen radicals by Cu/Zn superoxide dismutase (SOD), which catalyses the initial step in neutralizing activated oxygen species. In the study reported here, the potato cultivar Aviva was transformed with a cytosolic Cu/Zn superoxide dismutase gene from Arabidopsis thaliana using Agrobacterium-mediated gene transformation. Four transgenic potato lines were identified and evaluated for drought tolerance in the greenhouse. Two transformed lines could withstand drought in the greenhouse for two weeks longer than the untransformed plants and one week longer than two other transformed lines. These findings were confirmed by data from enzyme activity as well as by 2,3,5-triphenyltetrazolium chloride reduction.
“Full text available only in PDF format”
REFERENCES
1. Sen Gupta A., Heinen J.L., Holaday A.S., Burke J.J. and Allen R.D. (1993). Increased resistance to oxidase stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl Acad. Sci. USA 90, 1692-1633. [ Links ]
2. Bowler C., Van Montagu M. and Inzé D. (1992). Superoxide dismutase and stress tolerance. Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 43, 83-116. [ Links ]
3. Scandalios J.G. (1993). Oxygen stress and superoxide dismutase. Plant. Physiol. 101, 7-12. [ Links ]
4. Zhu D. and Scandalios J.G. (1994). Differential accumulation of manganese -superoxide dismutase transcripts in maize in response to abscisic acid and high osmoticum. Plant Physiol. 106, 173-178. [ Links ]
5. Malan C., Greyling M.M. and Gressel J. (1990). Correlation between Cu/Zn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci. 69, 157-166. [ Links ]
6. Van Rensburg L. and Krüger G.J.H. (1994). Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum (L). J. Pl. Physiol. 143, 730-737. [ Links ]
7. McKersie B.D., Bowley S.R., Harjanto E. and Leprince O. (1996). Water deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 111, 1177-1181. [ Links ]
8. Sakamuto A., Ohsuga H., Wakaura M., Mitsukawa N., Hibino T., Masumura T, Sasaki Y. and Tanaka K. (1993). cDNA Cloning and expression of the plastidic copper/zink - superoxide dismutase from spinach (Spinacea vleracea L.) leaves. Plant Cell Physiol. 34(6), 965-968. [ Links ]
9. PerlA., Perl-Treves R., Galili S., Aviv D., ShalgiE., Malkin S. and Galum E. (1993). Enhanced oxidative-stress defence in transgenic potato expressing tomato Cu/Zn superoxide dismutases. Theor. Appl. Genet. 85, 568-576. [ Links ]
10. Liu H-T., Liu T-T., Pan Q-H., Yang H-R., Zhan J-C. and Huang W-D. (2006). Novel interrelations between salicylic acid, abscisic acid, and PIP2-speáfic phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J. Exp. Bot 57(12), 3337-3347. [ Links ]
11. Tepperman J.M. and Dunsmur P. (1990). Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol. Biol. 14, 501-511. [ Links ]
12. Allen R.D. (1995). Direction of oxidative stress tolerance using transgenic plants. Plant Physiol. 107, 1049-1054. [ Links ]
13. BowlerC., Slooten L., Vandenbranden S., De Rycke R., Booterman J., Sysbesma C., Van Montagu M. and Inzé D. (1991). Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 10, 1723-1732. [ Links ]
14. Van der Mescht A., De Ronde J.A. and Rossouw F.T. (1998). Cu/Zn superoxide dismutase, glutathione reductase and ascorbate peroxidase levels during drought stress in potato. S. Afr. J. Sci. 94, 496-499. [ Links ]
15 Murashige T. and Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. [ Links ]
16. Hinges R. and Slusarenko A. (1992). cDNA and derived amino acid sequence of a cytosolic Cu/Zn superoxide dismutase from Arabidopsis thaliana (L.) Heyhn. Plant Mol. Biol. 18, 123-125. [ Links ]
17. SambrookJ., Fritsch E.F. and Maniatis T. (1989). Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, New York. [ Links ]
18. Chung C.T. and Miller R.H. (1988). A rapid and convenient method for the preparation and storage of competentbacterial cells. Nucleic Acids Res. 16, 3580. [ Links ]
19. Armitage P. (1988). Transformation of dicotyledonous plant cells using the Ti plasmid of Agrobacterium tumefaciens and Ri plasmid of A. rhizogenes. In Plant Genetic Engineering and Gene Expression: A laboratory manual, eds J. Draper, R. Scott, P. Armitage and R. Welden, pp. 69-160. Blackwell Scientific Publications, Oxford. [ Links ]
20. Murray S.L., Burger J.T., Oelofse D., Cress W.A., Van Staden J. and Berger D.K. (1998). Transformation of potatoes (cv Late Harvest) with the potato leafroll virus coat protein gene, and molecular analysis of transgenic lines. S. Afr. J. Sci. 94, 263-268. [ Links ]
21. McGregor C.E., LambertC.A., Greyling M.G., Louw H. and Arnich L. (2000). A comparative assessmentofDNAfingerprintingtechniques(RAPD,ISSR,AFLP, SSR) in tetraploid potato germplasm. Euphytica 113(1), 135-144. [ Links ]
22. Ish-Horowicz D. and Burke J.F. (1981). Rapid and efficient cosmid cloning. Nucleic Acids Res. 9, 2989-2998. [ Links ]
23. Van der Mescht A., Visser A.F., De Ronde J.A. and Vorster H.J. (1992). Protein profiles during drought stress in potato. J. S. Afr. Soc. Hort. Sci. 2(1), 55-57. [ Links ]
24. De Ronde J.A., Van der Mescht A. and Cress W.A. (1994). The biochemical responses of six cotton cultivars to heat stress. S. Afr. J. Sci. 91, 363-366. [ Links ]
25. Kasukabe Y., He I., Watakabe Y., Otani M., Shimada T. and Tachibana S. (2006). Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol. 23, 75-83. [ Links ]
26. Van Camp W., Willekens H., Bowler C., Van Montagu M., Inzé D., Reupold-Popp P, Sandermann H Jr. and Langebartels C. (1994). Elevated levels of super-oxide dismutase protect transgenic plants against ozone damage. Biol Technology 12, 165-168. [ Links ]
27. Cassels A.C. and Doyle B.M. (2003). Genetic engineering and mutation breeding for tolerance to abiotic and biotic stresses: science, technology and safety. Bulg. J. Plant Physiol. (Special Issue), 52-82. [ Links ]
28. Chen H.H., Shen Z.Y. and Li P.H. (1982). Adaptability of crop plants to high temperature stress. Crop Sci. 22, 719-725. [ Links ]
Received 30 March 1999
Accepted 8 April 2007.
* Author for correspondence. E-mail: anette@julian.mantec.ac.za